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Abstract We will present a meshfree method based on the
local partition of unity for cohesive cracks. The cracks are
described by a jump in the displacement field for particles
whose domain of influence is cut by the crack. Particles with
partially cut domain of influence are enriched with branch
functions. Crack propagation is governed by the material sta-
bility condition. Due to the smoothness and higher order con-
tinuity, the method is very accurate which is demonstrated for
several quasi static and dynamic crack propagation examples.

Keywords Extended element-gree Galerkin method
(XEFG) · Cracks · Cohesive models · Dynamic fracture

1 Introduction

Different methods have been presented to model cracks in
finite element and meshfree methods. Simple and robust meth-
ods are interelement separation models in which cracks are
modelled along element interfaces in the mesh, see Xu and
Needleman [43], Camacho and Ortiz [17], Ortiz and Pandolfi
[33], and Zhou and Molinari [44]. Another simple method
was proposed by Remmers et al. [37] who introduced crack
segments in finite elements. Rabczuk and Belytschko [34]
developed a ‘cracking particle’ model in meshfree methods
where discontinuities are introduced at the particle positions.
The major advantage of these methods are their robustness
and ease in implementation. However, for certain classes of
problems, more accurate methods are needed.

The embedded discontinuity model [3, 7, 39] is another
method for crack problems. However, its effectiveness in
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crack dynamics has still not been assessed and these methods
require the crack to propagate one element at a time.

A very accurate method for crack problems is the ex-
tended finite element method (XFEM) developed by the group
of Prof. Belytschko [5, 31]. This method is based on the ‘lo-
cal’ partition of unity, in which the solution space is enriched
by a priori knowledge about the behaviour of the solution near
cracks. Because only the nodes belonging to the elements cut
by cracks are enriched, the number of additional degrees of
freedom for the local enrichment is minimized. The detailed
discussion about the (local) partition of unity is found in the
literature, e.g. Melenk and Babuska [30]; Chessa et al. [18].
This method has been successfully applied to static prob-
lems in two and three dimensions, (see e.g. [22, 31, 32, 45,
47]) and to dynamic problems ([6, 46]) in two dimensions.

Previous meshfree methods for cracking [9, 11, 14, 26,
29] in two and three dimensions were treated by the so called
visibility criterion or some modifications of it. Therefore, the
support is truncated by the line of discontinuity. Other novel
approaches which were able to treat kinked and curve cracks
were proposed by [41]. They also enriched the MLS base
functions p around the crack tip and significantly improved
the convergence behaviour. The major drawback is the need
for an explicit representation of the crack.

A meshfree concept of XFEM was proposed by Ventura
et al. [41] for linear elastic fracture mechanics in statics. We
will pursue this idea and extend it to dynamics and cohesive
cracks. The advantage of this meshfree method over XFEM
is the higher smoothness, non-local interpolation character
and higher order continuity which results in a better stress
distribution around the crack tip which is important for the
propagation of the crack.

In XFEM, mainly piecewise linear crack opening is as-
sumed (due to the use of low order shape functions) but it
is well known that in reality, the crack opening displace-
ment is nonlinear, especially near the crack tip. Nonlinear
crack opening relations can be easily incorporated in mesh-
free methods. In XFEM, Laborde et al. [27] have shown that
a wider support for the crack tip enrichment improves the
accuracy and convergence; more nodes are enriched for the
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Fig. 1 Crack with partial cut and complete cut domain of influence
particles

crack tip than in the classical XFEM. Meshfree methods natu-
rally have a wider support due to their non-local interpolation
character than FEM. However, this results in difficulties in
imposing the Dirichlet boundary conditions at the crack, i.e.
the crack has to close at the crack tip. A possible solution is
addressed in the next section.

The paper is arranged as follows: in the next section, we
will describe the concept, i.e. the approximation of the jump
in the displacement. The meshfree method is briefly reviewed
afterwards. In Sect. 4, we will give the governing equations
and derive the discrete equations in Sect. 5. We will verify our
model first for linear elastic fracture mechanics and compare
results to former meshfree methods. Finally, we will solve
several quasi-static and dynamic crack propagation problems
and compare the results to experimental data or other data in
the literature.

2 Approximation of the test and trial functions

The main idea to capture the crack is to enrich the test and
trial functions with additional unknowns so that the approxi-
mation is continuous in the whole domain but discontinuous
along the crack as done in many former methods such as
XFEM [31]. Therefore, the test and trial functions are writ-
ten in terms of a signed distance function f (see Fig. 1):

δu(X) =
∑

I∈W(X)

�I (X) δuI

+
∑

I∈Wb(X)

�I (X) H ( f I (X)) δaI

+
∑

I∈Ws(X)

�I (X)
∑

K

BK (X) δbK I (1)

u(X) =
∑

I∈W(X)

�I (X) uI

+
∑

I∈Wb(X)

�I (X) H ( f I (X)) aI

+
∑

I∈Ws(X)

�I (X)
∑

K

BK (X) bK I (2)

where W(X) is the entire domain, Wb(X) is the completely
cut domain, Ws(X) is the partial cut domain, and H and B
are the enrichment functions explained later. The first term
on the right hand side of Eq. (1) or (2), respectively, is the
usual approximation where �I are the shape functions, and
uI and δuI are the parameters. The second and third term is
the enrichment, in which the coefficient δa and δb or a and
b, respectively, are additional unknowns introduced for the
crack in the variational formulation.

H( f (X)) depends on the signed distance function f I (X)
and is defined as:

H ( f I (X)) = 1 if f I (X) > 0
H ( f I (X)) = −1 if f I (X) < 0 (3)

with

f I (X)

=
{

sign[n · (XI − X)] min ‖XI − X‖, for XI ∈ Wb
n · (Xtip − XI ), for XI ∈ Ws

(4)

where Xtip are the coordinates of the crack tip and n is the
crack normal. Only nodes which are located in the domain
Wb(X) are enriched with the additional unknowns δa and a.
The second term of Eq. (1) or (2) is called the ‘step’ enrich-
ment.

The third term of Eqs. (1) and (2) is applied around the
crack tip Ws(X). In linear elastic fracture mechanics, B is
chosen to be continuous in the whole domain Ws(X), but
discontinuous at the crack line:

B =
(√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

)
(5)

according to the analytical solution around the crack tip where
r is the distance of X to the crack tip and θ(X) = sin−1 ( f/r)
is the angle between the tangent to the crack line and the seg-
ment X−Xtip, see Fig. 1. It is called the ‘branch’ enrichment.

For cohesive cracks, there is no crack tip singularity and
the crack opening displacement, which the cohesive traction
depends on, may be described by the additional unknown
a only. In XFEM, this procedure is straightforward since it
is easy to impose the appropriate boundary conditions, see
Fig. 2a, i.e. the crack has to close at the end of the element
edge. This can be accomplished e.g. by not enriching the
nodes at the element edge where the crack tip is located as
shown in Fig. 2a. However, in meshfree methods, this tech-
nique cannot be applied analogous to the way in XFEM, see
Fig. 2b.

Therefore, we keep the branch enrichment for cohesive
cracks, but without the crack tip singularity:

B =
(

rm sin
θ

2

)
m = 1, 2, 3 (6)
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(a) (b)

Fig. 2 Crack with enriched nodes in a XFEM and b meshfree methods

While lower order finite elements (that are usually applied)
can capture only linear crack opening, meshfree methods
have the advantage to capture more realistic crack openings,
as measured in experiments, due to their ease of increasing
the order of continuity. Another advantage is the non-local
interpolation character, i.e. many particles are enriched. We
have tested the branch functions, Eq. (6), for cohesive cracks.

Furthermore, we shifted the function HI ( f (X)) and BK
(X)by their values at the position of particle I , i.e. HI ( f (XI ))
and BK (XI ), respectively:

H̄n
I (X) = Hn (

f n(X)
) − Hn (

f n(XI )
)

(7)

B̄m
K (X) = Bm

K (X) − Bm
K (XI ) (8)

which makes the enriched region narrower. To avoid having
heavy notations, we drop ·̄ in the following sections; unless
mentioned otherwise, H and B stand for H̄ and B̄ of Eqs. (7)
and (8), respectively.

We would like to mention that for particles in the blend-
ing region, i.e. the particles whose domain of influence is not
cut but influenced by the ‘enriched’ particles, only the ‘usual’
approximation [first term on the right hand side of Eqs. (1)
and (2)] is considered in the approximation of the test and
trial functions.

2.1 Tracing the crack paths

The level set techniques is often used to trace the crack paths,
Moes et al. [31]; Ventura et al. [41]; Belytschko et al. [12];
Rabczuk and Belytschko [35]. We believe it is easier to trace
the crack paths by piecewise linear lines. However, in certain
cases, e.g. for non-linear crack paths, the use of level sets can
be advantageous. The crack is defined by an implicit func-
tion f which is zero along the crack path and has the value of
the minimum distance to the crack with plus or minus sign.
The choice of the sign is completely arbitrary as long as it
is consistent throughout the entire calculation. We will not
explain the crack tracing procedure with level sets in more
detail and refer the interested reader to the literature, e.g.
[12, 31, 41]. However, we briefly describe how to treat crack
branching and crack intersection which is different from the
approach in [19] and [12] in the sense that we do not use
any special branch function in addition to the ‘usual’ enrich-
ment. Consider cracks shown in Fig. 3. Let W1

b be the set of

II

f1 (x)=0 f1 (x)=0

f2 (x)=0 f2 (x)=0

a) b)

Fig. 3 Support of node I with a intersecting discontinuities and b
branching discontinuities

nodes whose domain of influence is completely cut by the
discontinuity f1(X) = 0 and W2

b the corresponding set for
f2(X) = 0. W3

b = W1
b

⋂ W2
b . The same applies accordingly

for nodes whose domain of influence is cut by the crack tip
enrichment. We will denote this set of nodes with W1

s and
W2

s . Then the approximation of the displacement may be
given by [19]

u(X) =
∑

I∈W(X)

�I (X) uI

+
∑

I∈W1
b (X)

�I (X) H ( f1(X)) a(1)
I

+
∑

I∈W2
b (X)

�I (X) H ( f2(X)) a(2)
I

+
∑

I∈W3
b (X)

�I (X) H ( f1(X)) H ( f2(X)) a(3)
I

+
∑

I∈W1
s (X)

�I (X)
∑

K

B(1)
K (X) b(1)

K I

+
∑

I∈W2
s (X)

�I (X)
∑

K

B(2)
K (X) b(2)

K I (9)

Principally, more than two branches can be included at one
time and a branched crack can branch again. As can be easily
seen by Eq. (9), additional complexity is then introduced. We
would like to mention, that Eq. (9) looks worse than it is since
only very few nodes are included in all sets W . However, a
crack branching requires the introduction of another level set
which makes the computation cumbersome for many cracks.

Zi et al. [47] proposed a computationally more efficient
approach than (9) by modifying the signed distance func-
tions so that no cross terms are needed for junction or branch
problems.

When two cracks are joining, the crack tip enrichment is
removed. By using the signed distance functions of the pre-
existing and approaching crack, the signed distance function
of the approaching crack is modified. Consider Fig. 4. Three
different subdomains have to be considered: ( f1 < 0, f2 <
0), ( f1 > 0, f2 > 0), ( f1 > 0, f2 < 0) as in Fig. 4b or
( f1 > 0, f2 < 0), ( f1 > 0, f2 > 0), ( f1 < 0, f2 < 0) as in
Fig. 4d. The signed distance function of crack 1 of a point X
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(a) (b)

(d)(c)

Fig. 4 Sign functions for crack junction

is then obtained by:

f1(X) =
{

f 0
1 (X), if f 0

2 (X1) f 0
2 (X) > 0

f 0
2 (X), if f 0

2 (X1) f 0
2 (X) < 0

(10)

where the superimposed 0 denotes the sign distance func-
tion before crack junction. Therefore, the final approximation
without the cross term reads:

u(X) =
∑

I∈W(X)

�I (X) uI

+
nc∑

n=1

∑

I∈Wb(X)

�I (X) H
(

f (n)
I (X)

)
a(n)

I

+
mt∑

m=1

∑

I∈Ws(X)

�I (X)
∑

K

B(m)
K (X) b(m)

K I (11)

where nc and mt are the number of cracks that completely
or partially, respectively, cross the domain of influence of
the corresponding particle. The test functions are expressed
according to Eq. (11):

δu(X) =
∑

I∈W(X)

�I (X) δuI

+
nc∑

n=1

∑

I∈Wb(X)

�I (X) H
(

f (n)
I (X)

)
δ a(n)

I

+
mt∑

m=1

∑

I∈Ws(X)

�I (X)
∑

K

B(m)
K (X) δb(m)

K I (12)

3 Meshfree approximation

The meshfree approximation can be written as

u(X, t) =
∑

I

�I (X) uI (t) (13)

In the EFG-method (see e.g. [8–10]), the shape functions are
calculated as follows:

�J = p(X)T A(X)−1 D(XJ ) (14)

A(X) =
∑

J

p(XJ ) pT(XJ ) W (X − XJ , h) (15)

D(XJ ) = p(XJ ) W (X − XJ , h) (16)

Hereby, p are the base polynomials, W is the kernel function,
and h is the size of the domain of influence. To ensure the
conservation of angular momentum, the approximation has
to be linear complete. Therefore, the base polynomials are
chosen to be p = (1, X, Y ).

In addition to the fact that the order of continuity can
be increased quite easily, meshfree methods have advantages
over finite elements because of their smoothness and nonlocal
interpolation character. Better stress distributions around the
crack tip are expected, which must lead to a less-oscillatory
crack propagation.

Continuity in meshfree methods is governed by the con-
tinuity of the kernel function W . We used the cubic B-Spline
as the kernel that is C2.

4 Governing equations

The strong form of the momentum equation in a total Lagrang-
ian description is given by

�0 ü = ∇0 · P + �0 b in �0 \ �c
0 (17)

with boundary conditions:

u(X, t) = ū(X, t) on �u
0 (18)

n0 · P(X, t) = t̄0(X, t) on �t
0 (19)

n0 · P− = n0 · P+ = tc0 on �c
0 (20)

tc0 = tc0([[u]]) on �c
0 (21)
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where �0 is the initial density, ü is the acceleration, P denotes
the nominal stress tensor, b designates the body force, ū and
t̄0 are the prescribed displacement and traction, respectively,
n0 is the outward normal to the domain and �u

0

⋃
�t

0

⋃
�c

0 =
�0, (�u

0

⋂
�t

0)
⋃

(�t
0

⋂
�c

0)
⋃

(�c
0

⋂
�u

0 ) = Ø. Moreover,
we assume that the stresses P at the crack surface �c

0 are
bounded. Since the stresses are not well defined in the crack,
the crack surface �c

0 is excluded from the domain �0 which
is considered as an open set.

5 The discrete momentum equation

Starting point is the weak form of the momentum equation
which is given by
δW = δWint − δWext + δWkin = 0 (22)
where

δWint =
∫

�0\�c
0

(∇ ⊗ δu)T : P d�0 (23)

δWext =
∫

�0\�c
0

�0 δu · b d�0 +
∫

�t
0

δu · t̄0 d�0

+
∫

�c
0

[[δu]] · tc0 d�0 (24)

δWkin =
∫

�0\�c
0

�0 δu · ü d�0 (25)

Substituting the test and trial functions (Eqs. (11) and
(12), respectively) into Eqs. (23) to (25), we obtain

Wkin =
∫

�0\�c
0

�0 (�I (X) δuI

+�I (X) H
(

f (n)
I (X)

)
δa(n)

I

+�I (X) B(m)
K δb(m)

K I

)

· (�J (X) üJ

+�J (X)H
(

f (n)
J (X)

)
ä(n)

J

+�J (X) B(m)
K b̈(m)

K J

)
d�0 (26)

Wint =
∫

�0\�c
0

δuI ∇0�I (X) · P d�0

+
∫

�0\�c
0

δa(n)
I

[
∇0�I (X) H

(
f (n)
I (X)

)

+ �I (X)∇0 H
(

f (n)
I (X)

)]
· P d�0

+
∫

�0\�c
0

[(
∇0�I (X) B(m)

K

+ �I (X) ∇0B(m)
K

)
δb(m)

K I

]
· P d�0 (27)

∫

�0\�c
0

�0 δu · b d�0 =
∫

�0\�c
0

�0 (�I (X) δuI

+�I (X) H
(

f (n)
I (X)

)
δa(n)

I

+�I (X) B(m)
K δb(m)

I

)
· b d�0 (28)

∫

�t
0

δu · t̄0 d�0 =
∫

�t
0

(
�I (X)δuI +�I (X)H

(
f (n)
I (X)

)
δa(n)

I

+ �I (X)B(m)
K δb(m)

K I

)
· t̄0 d�0 (29)

∫

�c
0

[[δu]] · tc0 d�0 =
∫

�c
0

[[
�I (X)δuI +�I (X)H

(
f (n)
I (X)

)
δa(n)

I

+ �I (X) B(m)
K δb(m)

K I

]]
· tc0 d�0

=
∫

�c
0

[[
�I (X) H

(
f (n)
I (X)

)
δa(n)

I

+ �I (X) B(m)
K δb(m)

K I

]]
· tc0 d�0 (30)

where Eqs. (28) to (30) are for Wext. After some algebraic
operations the final form of the equation of motion is obtained
by

MI J · üI = Fext
I − Fint

I (31)

with

MI J =
⎡

⎣
muu

I J mua
I J mub

I J
mau

I J maa
I J mab

I J
mbu

I J mba
I J mbb

I J

⎤

⎦ (32)

üI =
⎡

⎣
üu

I
äI

b̈I K

⎤

⎦ (33)

Fext
I =

⎡

⎣
fu,ext

I
fa,ext

I
fb,ext

I K

⎤

⎦ (34)

Fint
I =

⎡

⎣
fu,int

I
fa,int

I
fb,int

I K

⎤

⎦ (35)

with

muu
I J =

∫

�0\�c
0

�0 �I (X) �J (X) d�0

mua
I J =

∫

�0\�c
0

�0 �I (X) �J (X) H
(

f (n)
I (X)

)
d�0 ,

mua
I J = mau

I J

mub
I J =

∫

�0\�c
0

�0 �I (X) �J (X) B(m)
K d�0 ,

mub
I J = mbu

I J
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maa
I J =

∫

�0\�c
0

�0 �I (X) H
(

f (n)
I (X)

)

ϕJ (X) H
(

f (n)
I (X)

)
d�0

mab
I J =

∫

�0\�c
0

�0 �I (X) H
(

f (n)
I (X)

)

ϕJ (X) B(m)
K d�0 , mab

I J = mba
I J

mbb
I J =

∫

�0\�c
0

�0 �I (X) B(m)
K �J (X) B(m)

K d�0 (36)

fu,ext
I =

∫

�0\�c
0

�0 b �I (X) d�0

+
∫

�t
0

t̄0 �I (X) d�0 + fu,cr
I

fa,ext
I =

∫

�0\�c
0

�0 b �I (X) H
(

f (n)
I (X)

)
d�0

+
∫

�t
0

t̄0 �I (X) H
(

f (n)
I (X)

)
d�0 + fa,cr

I

fb,ext
I =

∫

�0\�c
0

�0 b �I (X) B(m)
K d�0

+
∫

�t
0

t̄0 �I (X) B(m)
K d�0 + fb,cr

I (37)

where

fa,cr
I =

∫

�c
0

�I (X)
[[

H
(

f (n)
I (X)

)]]
tc0 d�0

fb,cr
I =

∫

�c
0

�I (X)
[[

B(m)
K

]]
tc0 d�0 (38)

fu,int
I =

∫

�0\�c
0

∇0�I (X) · P d�0

fa,int
I =

∫

�0\�c
0

((
∇0�I (X) H

(
f (n)
I (X)

)

+ �I (X) ∇0 H
(

f (n)
I (X)

))
· P

)
d�0

fb,int
I K =

∫

�0\�c
0

((
∇0�I (X) B(m)

K

+ �I (X) ∇0B(m)
K

)
· P

)
d�0 (39)

Equation (36) is the consistent mass matrix. In Eq. (39),
the spatial derivatives of H vanish since the domain is con-
sidered as an open set. The cohesive forces are taken into

crack

background cell

1

2
3

4

5
6

7

8

9

10
11

crack

5

9

6

7

8

1

2

3

4

background cell
Crack path produced

by level set Crack path recognized by the code

Fig. 5 Sub-triangulation of background cells

account in the external forces, Eq. (37). Gauss quadrature is
used to obtain the discrete equations. Generally, four nodes
are arranged so that they form the quadrature cell. Integra-
tion cells cut by a crack are sub-triangulated as in XFEM.
Note, that the crack tip does not necessarily cross the entire
background cell, see Fig. 5 for possible sub-triangulations.
Quadrature points are added to the new sampling points. The
integration may be erroneous if any sampling points for trian-
gle 3 is positioned above of the actual crack path, see Fig. 5.
To minimize such an error, a point in the middle of the crack
path in the cell is added as shown in the bottom Fig. 5. Adding
one more point, the error is reduced second order small.

In LEFM, care should be taken at the crack tip since a
singularity is present. Laborder et al. [27] found an elegant
solution by expressing the integral in polar coordinates that
gave excellent results even for very small number of inte-
gration points. This may be implemented in the method pre-
sented. Since we were mainly interested in nonlinear materi-
als without the crack tip singularity, we did not do any special
arrangements near the crack tip.

An alternative of this approach that does not require tri-
angulation of the background cell would be the appropriate
modification of the integration weights. For more details, see
Areias et al. [2].

The cohesive tractions across the crack are integrated by
the standard surface integration.

6 Constitutive model

6.1 Continuum model

We used Rankine type materials, the Lemaitre damage model
[28] and the Johnson–Cook model [24]. For the Lemaitre
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model, the stress–strain behaviour is given by

σ = (1 − D) C : ε (40)

where D is a scalar damage variable which ranges from 0
to a maximum of 1 and C is the initial elasticity tensor. The
damage evolution depends on the effective strain ε̄:

D(ε̄) = 1 − (1 − A) εD0 ε̄−1 − Ae−B(ε̄−εD0 ) (41)

with

ε̄ =
√√√√

3∑

i=1

ε2
i H(εi ) (42)

where εi are the principal strains and with

H(x) = 1 if x > 0

H(x) = 0 if x < 0 (43)

A, B and εD0 are material parameters.
The Johnson–Cook model [24] is based on J2 plasticity

but takes into account strain rate and temperature effects. The
effective yield stress of the Johnson–Cook model is given by

σY = (
A + Bγ n) (

1 + C ln ε̇∗) (
1 − T ∗) (44)

where ε̇∗ = γ̇ /γ̇0, γ is the effective plastic strain, γ̇0 is the
reference strain rate taken to be 1.0/s and A, B, C are material
parameters, respectively. T ∗ is given by

T ∗ = T − Tr

Tm − Tr
(45)

where Tr is the reference temperature and Tm is the melting
temperature. We assume that the plastic deformation is com-
pletely transformed into heat, so β = 1 for the temperature
update:

�T =
γ∫

0

β

�cv

σYdγ (46)

where � is the mass density and cv is the specific heat per
unit mass.

Gummalle [23] pointed out that the initial negative slope
of the effective plastic stress–effective plastic strain curve
highly determines the shear band initiation. He suggested the
following form of the effective yield stress that gave better
results in his computations:

σY = max

[ (
A + Bγ n) (

1 + C ln ε̇∗)

(
1 − δ

(
exp

(
T − T0

κ0

)
− 1

))
, 0

]
(47)

6.2 Cohesive crack model

6.2.1 Cracking criteria

We employed the loss of hyperbolicity criterion for crack
initiation and propagation. Therefore, a crack is initiated or

propagated if the minimum eigenvalue of the acoustic tensor
Q is smaller or equal to zero:
min eig(Q) ≤ 0 with Q = n · A · n and A = Ct+σ ⊗ I

(48)
where n = [cos(θ) sin(θ)] is the normal to the crack surface
depending on the angle θ , Ct is the fourth order tangential
modulus tensor and I is the second order identity tensor.

For a crack propagation, we checked the loss of hyperbo-
licity condition in a half circle around the crack tip for every
material point. If the PDE looses hyperbolicity at one material
point, the crack is advanced from the crack tip. The direction
of crack propagation is completely determined by n obtained
from the localization analysis. Crack branching occurs if the
PDE looses hyperbolicity at two material points with differ-
ent n. Now, it still remains the question of how to propagate
the crack.

There are numerous possibilities how to determine the
crack velocity. The easiest way is to control the crack length,
[45]. However, we believe this approach is not accurate enough
and adopt an approximation suggested by Belytschko et al.
[6]. Key assumption is that the hyperbolicity indicator e =
h · Q · h must vanish at the crack tip:
∂e

∂t
+ vc · ∇e = 0 with vc = vc s (49)

where vc is the crack speed, s gives its direction which must
fulfill the condition n · s = 0 and h is assumed to be parallel
to n (h is the eigenvector of Q obtained from the localization
analysis). To obtain the crack length, the Eq. (49) has to be
solved for vc. In [6], they used an incremental version of s
though the advantage is not clear to us. Hence, we used the
rate form of the hyperbolicity indicator.

6.2.2 Jump in the displacement

The jump in the displacement is governed only by the enrich-
ment and is given by

[[u(X)]] =
nc∑

n=1

∑

I∈Wb(X)

�I (X)[[H(X)]]qI

+
mt∑

m=1

∑

I∈Ws (X)

�I (X)
∑

K

[[BK (X)]] bK I

= 2
nc∑

n=1

∑

I∈Wb(X)

�I (X) qI

+
mt∑

m=1

∑

I∈Ws (X)

�I (X)
∑

K

[[BK (X)]] bK I (50)

The normal part δn, i.e. the crack opening and the tangential
part δt , the crack sliding is given by
δn = [[u(X)]]n = n · [[u(X)]] (51)

δt = [[u(X)]]τ = ‖[[u(X)]] − (δnn)‖ (52)
More details are given in Belytschko et al. [6]. If not men-
tioned otherwise, we only consider normal forces and neglect
mode II effects.
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Fig. 6 Cohesive models: a linear models, b bilinear models, c exponential models
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Fig. 7 a Mode I problem, b (mixed) mode I–II problem

6.2.3 Cohesive law

The cohesive laws that are most popularly used are shown in
Fig. 6. We used linear and exponentially decaying cohesive
laws among them because of their simplicity.

7 Verification using linear elastic fracture mechanics

7.1 Crack problem

Consider a mode I crack problem illustrated in Fig. 7a. Plane
strain conditions and linear elastic material behaviour are
assumed. For an infinite plate, Westergaard [42] provided a
solution for this problem:

σxx = p

(
r0√
r1 r2

cos

(
φ0 − φ1 + φ2

2

)

− a2 r0

(r1 r2)1.5
sin φ0 sin [1.5 (φ1 + φ2)] − 1

)

(53)

σyy = p

(
r0√
r1 r2

cos

(
φ0 − φ1 + φ2

2

)

+ a2 r0

(r1 r2)1.5
sin φ0 sin [1.5 (φ1 + φ2)]

)
(54)

τxy = p
a2 r0

(r1 r2)1.5
sin φ0 cos [1.5(φ1 + φ2)] (55)

aa
x

y

 f2 f0 f1

r2
r0

r1

Fig. 8 The Griffith problem

where the parameters r0, r1, r2, φ0, φ1 and φ2 are explained
in Fig. 8. The exact tractions may be calculated from
Eqs. (53) to (55) and are applied to the boundary shown in
Fig. 7. The near tip stress field is given by

σxx (r, φ) = KI√
2πr

cos
φ

2

(
1 − sin

φ

2
sin

3φ

2

)
(56)

σyy(r, φ) = K I√
2πr

cos
φ

2

(
1 + sin

φ

2
sin

3φ

2

)
(57)

τxy(r, φ) = K I√
2πr

sin
φ

2
cos

φ

2
cos

3φ

2
(58)

with polar coordinates r and φ. The stress intensity factor
for the Griffith problem is dependent on the boundary con-
dition and the loading type, and for the quasi-static problem
in Fig. 7, is given by KI = p

√
πa where p is the external

traction. In numerical simulations, the relation between the
J -integral and KI is used to check the local convergence near
the crack tip;

J = K 2
I

1 − ν2

E
(59)

The J -integral gives the change in strain energy with a unit
change in the crack length a and may be calculated by

J =
∫

�

(
w dy − t

∂u
∂x

d�

)
(60)
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Fig. 9 a Error in the energy for the mode I problem; b normalized stress intensity factor versus h

where w = ∫ ε

0 σ : dε is the energy density, t the traction,
u the displacements and � the path around the crack tip as
illustrated in Fig. 7. The integration path � is chosen to com-
pletely encompass the enriched region near the crack tip.

We will study the error in the energy given by

‖err‖energy = ‖uh − uanalytic‖energy

‖uanalytic‖energy
(61)

with

‖u‖energy =
⎛

⎜⎝
∫

�0

ET(u) : C : E(u) d�0

⎞

⎟⎠

1/2

(62)

where E is the Green strain. Additionally, we will check
stress intensity factors KI to compare local convergence.
Note the branch enrichment in Eq. (5) is used for the lin-
ear elasticity problems.

The error in the energy norm is illustrated in Fig. 9a
for the mode I problem. We have also included results ob-
tained by EFG with visibility criterion. The local partition
of unity enrichment gives more accurate results and a bet-
ter convergence rate than the crack approach with visibility
criterion. This is expected due to the crack tip enrichment
with the Westergaard solution. Also local convergence is ob-
tained much faster by the local partition of unity enrichment
as shown in Fig. 9b.

7.2 The mode I–II problem

Let us consider a (mixed) mode I–II problem. We study again
the error in the energy norm. The analytical near-tip field
solution for this problem is given e.g. by Saehn [38]:

σr = 1

4
√

2πr

[
KI

(
5 cos

θ

2
− cos

3θ

2

)

+ KII

(
−5 sin

θ

2
+ 3 sin

3θ

2

)]
(63)

σθ = 1

4
√

2πr

[
KI

(
3 cos

θ

2
− cos

3θ

2

)

+ KII

(
−5 sin

θ

2
+ 3 sin

3θ

2

)]
(64)

τrθ = 1

4
√

2πr

[
KI

(
sin

θ

2
+ sin

3θ

2

)

+ KII

(
cos

θ

2
+ cos

3θ

2

)]
(65)

where r and θ are explained in Fig. 10 and with KI = σn
√

π a
and KII = τn

√
π a, with the loading conditions σn and τn

from Fig. 10 and where

σny = σx̄ + σȳ

2
+ σx̄ − σȳ

2
cos 2α (66)

σnx = σx̄ + σȳ

2
− σx̄ − σȳ

2
cos 2 α (67)

τnxy = σx̄ − σȳ

2
sin 2α (68)

We study again the error in the energy norm and compare
it to the error obtained by the visibility method. The same
tendency as for the mode I crack is observed for the mixed
mode problems (see Fig. 10). Again, the local partition of
unity enrichment gives more accurate results and a higher
convergence rate. However, the error is larger than the one
in the previous example (Fig. 11).

8 Examples

In the following sections, we will present results for several
quasi-static and dynamic problems, in which the traction on
the crack surface is given by the cohesive crack model. There-
fore, the branch enrichment in Eq. (6) is used. Prenotches are
assumed to be traction-free. We show the results with m = 1
in Eq. (6), since the enrichment with higher m gave very sim-
ilar results. In all our examples, we used a structured uniform
particle arrangement if not stated otherwise. This appears at
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Fig. 10 Mixed mode crack problem

Fig. 11 a Error in the energy for the mode I problem; b normalized stress intensity factor versus h

first to be dissonant with the philosophy of meshfree meth-
ods. However, a structured particle arrangement is advanta-
geous when incorporating features such as adaptivity. It also
facilitates pre- and postprocessing.

8.1 Quasi-static examples

8.1.1 Arrea–Ingraffea beam

The first example is the Arrea and Ingraffea [4] beam. The
beam is loaded at two points as shown in Fig. 12. The initial
elastic modulus is 28,000 MPa, tensile strength is 2.8 MPa,
Poisson’s ratio ν = 0.18 and the fracture energy is Gf =
100 N/m. The beam failed due to a mixed tensile/shear failure.

We have used the Lemaitre [28] model for the contin-
uum in tension and the loss of hyperbolicity condition for the
crack initiation and growth. A linear decaying cohesive law
is used. The critical crack opening displacement δc beyond
which the cohesive traction is reduced to zero is calculated
as δc = 2Gf/ ft in which ft is the traction at which the mate-
rial at the crack tip loses its hyperbolicity. The concrete is

Fig. 12 The tensile/shear beam from Arrea–Ingraffea

assumed to be linear elastic in compression. The beam is
discretized with approximately 2,000 and 7,800 particles.

The crack path for the fine particle distribution is shown
in Fig. 13. The curvature of the crack is similar to the one
in the experiment. The load-displacement curves (measured
at the right of the notch) are shown in Fig. 14 and lie in the
experimental scatter. We note that we need significantly less
particles to obtain convergent results in the load–deflection
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Fig. 13 Crack pattern of the Arrea–Ingraffea beam
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Fig. 14 Load–deflection curve of the tensile/shear beam from Arrea–
Ingraffea for different numbers of particles

curve than the ‘cracking particle’ method described in Rab-
czuk and Belytschko [34], where approximately 13,000 par-
ticles were necessary.

We tested also the influence of higher order branch func-
tions. Though higher order branch functions provide a bet-
ter stress distribution around the crack tip, the influence with
regard to the overall crack pattern or the load–deflection curve
is not very high.

8.1.2 Four-point-bending with two notches

Consider a four-point beam in bending with two notches as
shown in Fig. 15. Experimental data were given by Bocca
et al. [16]. The Lemaitre [28] material model and the loss of
hyperbolicity for the crack initiaion and growth, and a linear
decaying cohesive law are employed. The material parame-
ters are: E = 27, 000 MPa, ν = 0.18, ft = 2.0 MPa, Gf =
100 N/m where E is Young’s modulus, ν is Poisson ratio, ft
the tensile strength and Gf the fracture energy. Number of
particles between 660 and 160,000 are studied.

The load–deflection curve is shown in Fig. 16 and agrees
very well with the experiment. At 2,550 particles, mesh depen-
dence is completely removed. However, the load–deflection
curve even with 660 particles was very close to the converged

Fig. 15 The four-point-bending beam with two notches from Bocca
et al. [15]

Fig. 16 Load–deflection curve of the four-point-bending beam with two
notches from Bocca et al. [15]

one. The final crack patterns for computations with different
numbers of particles are illustrated in Fig. 18. The crack path
is obtained by storing the coordinates of the crack tip.

The crack patterns agree very well with the experimental
crack pattern. Again, we need only a few particles to obtain
good results. With the ‘cracking particle’ method in [34],
4,000 particles did neither give an appropriate crack path nor
a reasonable load–deflection curve. At a number of 2,550
particles, we get here mesh independent results in the load–
deflection curve and the crack path.

In Fig. 17, the enriched particles are shown. The enriched
nodes for the 660 particle discretization is shown in Fig. 17a.
The enriched region of one crack is overlapped with that of
the other. This results in a steeper crack path. This problem
can be overcome by decreasing the support size slightly, see
Fig. 18a. Usually, the support size is chosen to be 3.5 times
the particle separation. By decreasing this support size so that
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g)

Fig. 17 Enriched nodes of the two notched beam

the cracked particles of one crack are not influenced by the
other crack, improves the crack paths.

8.2 Dynamic examples

8.2.1 Kalthoff problem

Kalthoff and Winkler [25] performed a series of experiments
in which a steel plate was hit by a projectile with different
impact velocities as shown in Fig. 19. They discovered differ-
ent failure phenomena for different impact velocities. Up to
a certain velocity of the projectile vc = 20 m/s, the steel plate
fails brittle and a crack develops in a 70◦ angle against the
axis parallel to the flight direction of the projectile. When the
velocity exceeds vc, they found a completely different failure
pattern. A shear band develops from the onset of the notch
in a much flatter angle of the opposite direction. We will first
focus on the brittle failure pattern and an impact velocity of
17 m/s.

We used 1,700, 6,500 and 26,000 particles in our simu-
lations. We tested two material models, the Johnson–Cook
model [24] and the Lemaitre [28] model. The latter model
was applied in Belytschko et al. [6] for the Kalthoff problem
and a brittle failure mechanism. For the Lemaitre model, the

a)

c)

e)

g)

Fig. 18 Crack paths of the two notched beam

100 mm

75 mm

75 mm

50 mm 200 mmnotch

75 mm

cylindrical impactor
diameter =50 mm

thickness=6.35mm

u0

Fig. 19 The Kalthoff problem: test setup

material parameters are: Young’s modulus E = 190 GPa,
Poisson ratio ν = 0.3, fracture energy Gf = 22, 170 J/m2,
critical crack opening displacement δmax = 5.378×10−5 m,
damage threshold εD0 = 3 × 10−3 and parameters A = 1.0
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a) b)

d)c)

e) f)

Fig. 20 a, c, e Crack pattern for the 26,000 particle arrangement, b, d, f crack pattern for the 1,700 particle arrangement using the new approach

and B = 200. The material parameters of the Johnson–Cook
model are: A = 2 GPa, B = 94.5 GPa, C = 0.0165, T0 =
293 K, γ0 = 1.3×10−13 s−1 and κ0 = 500 K. An exponential
cohesive law is used.

We exploited the symmetry in our discretization. The
crack paths for the Lemaitre model is shown in Fig. 20 for

two different numbers of particles. The experimental crack
angle at the prenotch of 70◦ versus the crack orientation is
reproduced well by our simulation. However, in the course
of the computation, the crack starts to curve and gets flatter.
A similar crack pattern was obtained by Xu and Needleman
[43]. The damage is plotted in Fig. 20. A higher damage at
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a) b)

d)c)

Fig. 21 Kalthoff problem with brittle failure for different particle refinements; a–c Enriched nodes (red colour); d crack pattern

the right lower corner occurs in Fig. 20b, d, f. However, no
crack initiates. The crack is shown as solid line at the end
of the computation. We therefore conclude that the Lemaitre
model is not well suited to model crack propagation for the
Kalthoff problem.

The results of the different particle arrangement for the
Johnson Cook model are shown in Fig. 21. As in Fig. 20,
only the upper part of the specimen is illustrated. Particles
enriched are shown in red colour.

The crack is shown in Fig. 21d for the 26,000 particle
discretization and is almost identical with the crack pattern
of the coarser simulations. The experimental crack angle at
the prenotch of 70◦ versus the crack orientation is reproduced
well by our simulation. The crack path is very smooth.

Figure 22 shows the speed of the crack tip for the three
different refinements. The Rayleigh wave speed is never ex-
ceeded and the course of the crack speed looks very similar.
For the coarsest discretization with 1,700 particles, the crack
starts to propagate a little later. The course of the crack speed
is similar to the one obtained in Belytschko et al. [6].

We increased the impact velocity to 30 m/s, at which a
ductile failure appeared in the experiments. The failure pat-
tern of our simulation is shown in Fig. 23; enriched nodes are
plotted in red colour. We were able to reproduce the failure
mode of the experiment well. Only 1,700 particles are needed
to resolve the shear band. The results do not show any mesh

Fig. 22 Crack speed time history of the Kalthoff problem with brittle
failure

dependence. Note, that for the shear band we allow only tan-
gential jumps in the displacement field while normal jumps
are suppressed. For details of this concept, see Belytschko
et al. [13].

8.2.2 Crack branching

In the following, we examine the performance of the method
in a crack branching problem. Consider a rectangular
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a) b)

Fig. 23 a, b Kalthoff problem with ductile failure for different particle refinements; enriched nodes are plotted in red colour

prenotched specimen as shown in Fig. 24. The length of the
rectangle is 0.1 m and width 0.04 m. Initially, a horizontal
crack is placed from the left edge to the center of the plate.
Tensile tractions of 1 MPa are applied on the top and bottom
edges.

We used the Lemaitre [28] damage law, loss of hyperbo-
licity and we tested different cohesive laws. We will present
the results for an exponential decaying law. The material
constants are � = 2, 450 kg/m3, E = 32 MPa, ν = 0.2
and A = 1.0, B = 7, 300 and εD0 = 8.5 × 10−5 for the
Lemaitre model. Computations of this problem have previ-
ously been reported by Xu and Needleman [43], Falk et al.
[20], Belytschko et al. [6] and Rabczuk and Belytschko [34].
Experimental data is available, too; see Ravi-Chandar [36],
[40] or [21], but for different dimensions.

We used discretizations with approximately 4,000–16,000
particles. In contrast to Rabczuk and Belytschko [34], we ap-
plied the load as ramp, meaning the maximum load of 1 MPa
is reached linearly within 0.001 ms. An abrupt loading led
to difficulties in tracing the crack paths. The crack pattern
is shown in Fig. 25 for different particle refinements and
does not show mesh dependence. Note that we added for
illustration purposes additional interpolation points for the
coarse discretization. The crack started to branch at approx-
imately 0.03 ms. No more branching occurred in the course
of the simulation. Our crack pattern looks similar to the one
obtained in Belytschko et al. [6].

As in [6], we suffer some difficulties in advancing the
crack paths. One of the most difficult tasks is to decide if the
crack branches or not. This depends on the radius of the circle
around the crack tip where loss of hyperbolicity is checked.

As already noticed in Belytschko et al. [6], in dynamics,
the cracktip direction and speed can become rather erratic.
Therefore, they smoothed the direction by using an average
of the current and several preceding directions. We will use
another approach and smooth the stresses around the crack
tip with a smooth meshfree shape function. One might ques-
tion if this is necessary in meshfree methods but we found out
that the branching enrichment causes some numerical noise.
We used dynamic damping, i.e. added a damping term α v in

0.05 m 

0.1 m 

0.04 m 

σ

σ

Fig. 24 Plate with an edge crack

the equation of motion, where α is a damping parameter that
should be chosen small since it may influence wave effects
and v is the particle velocity.

The time history of the crack speed is shown in Fig. 26.
Both discretizations give a similar course of the crack speed.
The crack starts to propagate at about 0.012 ms. As expected,
the crack speed is the highest at the time of crack branching.
At that point, the crack speed almost reaches the theoretical
Rayleigh wave speed. Afterwards, the crack branches and
the crack speed decreases. The crack speed of only the upper
branch is shown in the figure. The crack speed of the lower
branch is very similar as Fig. 25 might indicate.

We tested higher order branch functions. The results in
the crack pattern were marginal.

8.3 Multiple cracking with crack junctions

Our last example is multiple cracking with crack junctions.
Therefore, consider a square cell with several precracks. It
is assumed that the precracks are traction-free. This problem
was studied by the cracking particle method to investigate mi-
crocracking of a unit cell under uniaxial and biaxial tension.
We will study two unit cells with five precracks of different
sizes as shown in Fig. 27a, b in this paper.
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a)
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c)

d)
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Fig. 25 Crack pattern of the prenotched specimen at different t time steps for a–c 4,000 particles, d–f 16,000 particles; for a better illustration,
additional interpolation points are added in the a–c

Fig. 26 Crack speed time history for the crack branching problem

The unit cell is discretized with two different refinements,
1,600 and 6,400 particles. The Lemaitre [28] damage model
is used in tension and linear elastic behaviour is assumed in
compression. We will compare the results to those obtained
with the cracking particle method in which approximately
23,000 particles were used. The crack pattern at an interme-
diate step and the final crack pattern for the cracking particle
method is shown in Figs. 27a–f. In Figs. 27d–f we considered
longer precracks. The final crack pattern of our new approach
is shown in Figs. 27g,h. The results are mesh-independent and
very similar to the ones obtained with the cracking particle
method. However, we need significantly less particles com-
pared to the cracking particle method. An experimental result
is shown in Fig. 27i.

The crack patterns for different precrack sizes are differ-
ent. For small precracks, cracks propagate from the onset
of the precrack perpendicular to the load direction. In the
lower part of the unit cell where two preflaws are located, the
cracks join in the middle of the specimen. The same tendency
is observed for longer precracks. However, in the upper part
where three precracks are located, the cracks subdivide the
specimen into four parts when the precracks are sufficiently
small while for larger precracks, three fragments occur. This
is due to the fact that for the latter case, the two upper cracks
join and hence unload the region below. The cracks in the
lower region are arrested. If the cracks are small, the middle
precrack joins with the upper right precrack.

9 Conclusion

We have presented a meshfree method – extended element
free Galerkin method (XEFG) – for crack propagation prob-
lems. The method is based on the introduction of a discontinu-
ity in the displacement field after the material looses stability.
The crack tip enrichment with branch functions is employed.
A cohesive model is used that solely depends on the discon-
tinuous part of the displacement field.

The method is applied to several static and dynamic prob-
lems where experimental or other numerical data is available.
It is also applied to mode I and I-II crack problems of which
the analytical solutions are available. The method is very
accurate. It resolves the crack path with low particle resolu-
tions. In two dimensions, more than 10 times less particles
were necessary than in the cracking particle method, [34].
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Fig. 27 Crack pattern of the precracked unit cell at different load steps and for different precrack sizes, a–f cracking particle method, g–h new
approach, i experimental microcrack-result

We tested different branch enrichments. Higher order
branch function did not improve the overall-results signifi-
cantly in the examples that we tested. The overall crack
pattern was almost the same. However, higher order branch
functions give a better stress distribution around the crack
tip.

Most difficulties arise in dynamic crack propagation prob-
lems. Some smoothing of the crack paths, e.g. from the
direction of the previous step or by a stress projection method,
is still needed. Otherwise, the crack paths would have rather

a zig-zag shape. This problem, even for statics, was reported
by other authors, e.g. Belytschko et al. [6]; Areias and Bely-
tschko [1], and can be attenuated by above mentioned
techniques.

It is also not easy to detect branching, especially in cases
with high load amplitude and load velocity. We checked loss
of material stability within a certain radius around the crack
tip. It is sometimes still difficult to determine if an existing
crack branches or if there might be a new crack initiation.
This is a subject of ongoing investigations.
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