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Abstract

In this work we aim to develop a unified mathematical framework and a reliable computational approach

to model the brittle fracture in heterogeneous materials with variability in material microstructures, and to

provide statistic metrics for quantities of interest, such as the fracture toughness. To depict the material

responses and naturally describe the nucleation and growth of fractures, we consider the peridynamics model.

In particular, a stochastic state-based peridynamic model is developed, where the micromechanical parame-

ters are modeled by a finite-dimensional random vector, or a combination of random variables truncating the

Karhunen-Loève decomposition or the principle component analysis (PCA). To solve this stochastic peridy-

namic problem, probabilistic collocation method (PCM) is employed to sample the random field representing

the micromechanical parameters. For each sample, the deterministic peridynamic problem is discretized with

an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and

demonstrate its convergence for a number of benchmark problems, showing that it sustains the asymptotic

compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random space as

the number of collocation points grows. Finally, to validate the applicability of this approach on real-world

fracture problems, we consider the problem of crystallization toughening in glass-ceramic materials, in which

the material at the microstructural scale contains both amorphous glass and crystalline phases. The pro-

posed stochastic peridynamic solver is employed to capture the crack initiation and growth for glass-ceramics

with different crystal volume fractions, and the averaged fracture toughness are calculated. The numerical

estimates of fracture toughness show good consistency with experimental measurements.
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1. Introduction

Prediction and monitoring heterogeneous material damage are ubiquitous in applications of interest to

the broad scientific and engineering community [1–10]. In disciplines ranging from material design to non-

destructive evaluation, heterogeneities in materials and media need to be accurately captured to guarantee

reliable and trustworthy damage predictions that inform decision making. In the past decades, important

discoveries and advancements have been made toward understanding material microstructures and its rela-

tionship with damage observed in the macroscale. New experimental technologies and test procedures have

been designed to observe much smaller microstructure patterns and find defects in less time [11–18]. On

the other hand, novel mathematical models and numerical tools have been developed to describe failure

initiation and progression, which provide relatively inexpensive alternatives to extensive experimental test-

ing [19–23]. However, fundamental challenges are still present in utilizing multiscale material models, and

numerical simulations to provide a comprehensive physical and functional description of material damage,

mainly due to the following difficulties [24]:
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1. The high degrees of complexity and heterogeneity in material damage problems generally require

numerical simulations at fine scales that are often computationally prohibitive. For instance, bottom-

up approaches such as the fine-grained atomistic models have provided important insights into the

fracture process, but they generally do not scale up to finite-size samples. This limitation raises the

need for new mathematical models that act at coarser scales and capture complex nonlinear modes of

failure from the fine scale.

2. Different material microstructure, property, interfacial conditions, and operating environments all cause

variability within material, which is tremendously difficult to be fully quantified. Therefore, without

complete detailed measurements for each individual material sample, it is often non-practical, if not

impossible, to provide full quantitative damage characterization for each sample. This fact calls for

stochastic modeling of the variability and characterization of material failure for uncertainty quantifi-

cation.

These two challenges both call for mathematical models that not only capture the material fracture

initiation and progression, but also account for heterogeneity and variability. To describe crack initiation

and evolution simultaneously from the microscale-up, we employ the peridynamic theory, a spatially nonlocal

continuum theory which provides a description of continuum mechanics in terms of integral operators rather

than classical differential operators [25–40]. These nonlocal models are defined in terms of a lengthscale

δ, referred to as a horizon, which denotes the range of nonlocal interaction between particles. The integral

operator allows a natural description of processes requiring reduced regularity in the relevant solution, such as

fracture mechanics [41, 42]. Therefore in peridynamics the material damage can be captured autonomously

as a natural component of the material deformation. To account for heterogeneity and variability, we propose

to develop a stochastic peridynamics formulation where the heterogeneous material property is modeled by

a random field. Most of the current state-of-the-art works on peridynamics consider a homogenized and/or

deterministic model, which may not work well when the material is heterogeneous and its microsctructure

plays a critical role. In a recent study on reinforced concrete modeling, Zhao et al. found that a fully

homogenized peridynamic model fails to capture certain correct fracture modes/patterns [43]. Therefore,

they have proposed a stochastic bond-based peridynamic model where the material property is described as

random fields. The type of each bond connecting two material points x and y was modeled by a random

variable, and the discrete probability distribution of this random variable depends on the volume fraction of

aggregate and cement. With this model, fracture patterns match experimental observations. Their findings

indicate the importance of considering the spatial variability of material properties in peridynamics. However,

in [43] the authors focused on the crack pattern in individual realizations rather than the solution statistics.

Their numerical study only provides a qualitative validation on the fracture patterns and the order in which

various cracks develop. To provide any quantitative verification and validation of the model, it calls for an

effective stochastic method to provide the statistic metric on the impact of microstructure variability.
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To this end, in this current work we propose a stochastic state-based peridynamics model where the

heterogeneous material property is varying spatially and described by a random field. The solution of

this stochastic problem describes the statistics of the material responses, such as the displacement and

damage fields. In particular, we employ the linear peridynamic solid (LPS) model [44] as a prototypical

state-based model appropriate for brittle fracture, and propose a heterogeneous LPS formulation where two-

point function formulations are used to describe the heterogeneous material properties. Although such an

averaged two-point function formulation were developed for nonlocal diffusion [45, 46] and peridynamics

[47–51] models, we have for the first time provided rigorous mathematical analysis for the well-posedness of

this formulation in a heterogeneous LPS model. Furthermore, an important feature of peridynamics is that

when classical continuum models still apply, peridynamics revert back to classical continuum models as its

horizon size δ → 0. Numerical discretizations which preserve this limit under the grid refinement h→ 0 are

termed asymptotically compatible (AC) [52], and there has been significant works in recent years toward

establishing such discretizations [33, 45, 52–61]. In this work, we have also theoretically shown that our

stochastic heterogeneous LPS model guarantees consistency to the corresponding local limit, which provides

a critical ingredient in achieving a convergent simulation.

To enable numerical simulations to investigate the impact of microstructure variability, our second aim

is to numerically discretize the proposed stochastic peridynamics model and provide the first two statistical

moments, i.e., the mean and (co)variance. The mean provides an unbiased estimate of the variables and the

variance quantifies the uncertainty associated with this estimate. Such a development calls for a comprehen-

sive treatment of an AC spatial discretization method together with an effective stochastic method, which

is able to perform convergent and efficient heterogeneous peridynamic fracture simulations while providing

stochastic modeling of the variability and characterization of material failure for uncertainty quantification.

Broadly, AC spatial discretization strategies for peridynamics can be classified into two categories. The

first class involves traditional finite element formulations and carefully performing geometric calculations to

integrate over relevant horizon/element subdomains, while the second type adopts a strong-form meshfree

discretization where particles are associated with an abstract measure, and provides a sharp representation

of the fracture surface by breaking bonds. The former is based on a variational setting and therefore is more

amenable to mathematical analysis, while the latter is simple to implement and generally faster [62, 63]. In

this paper we pursue the meshfree viewpoint. In particular, a meshfree method is developed based on the

optimization-based quadrature rule1 [33, 34, 45, 65]. For the stochastic numerical method, several approaches

were developed for stochastic local (classical) PDE models, including probabilistic Galerkin methods (PGMs)

[66–72], probablistic collocation methods (PCMs) [73–77], reduced basis methods [46, 78–82], etc. Among

these methods, PCM with sparse grids inherits the ease of implementation in the Monte Carlo methods

1For peridynamics one often refines both δ and h at the same rate under so-called δ-convergence [64]. In this setting, banded
stiffness matrices is obtained which allows scalable implementations. Although in the literature a scheme is termed AC if it
recovers the solution whenever δ, h → 0, in this work we adopt a practical setting and only require the δ-convergence case for
AC.
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since only solutions at sample points are needed. At the same time, it also reduces the required number

of sample points to achieve a given numerical accuracy for problems with relatively high dimension in the

random space. Therefore, in this work we will employ PCM with full tensor products for random dimen-

sions N ≤ 4, and PCM with sparse grids when the dimension in the random dimension is larger than 4,

following the suggestion by [77]. To verify and validate the proposed model and the numerical approach, we

numerically investigate the convergence to the analytical local limit for a number of benchmark problems,

including manufactured smooth solutions, composite material with discontinuous material properties, and

material fracture problems. Last but not least, we validate estimates of fracture toughness on randomly

heterogeneous materials against an experiment of glass-ceramics [83], providing evidence that the scheme

yields accurate predictions for statistic damage metrics in practical engineering problems.

The paper is organized as follows. We describe first the deterministic and stochastic heterogeneous

LPS problems in Section 2, and provide mathematical analysis to establish their compatibility with the

corresponding local problem. Next, we pursue a consistent discretization, and our numerical approach for

stochastic LPS problems is proposed in Section 3 and numerically verified in Section 4. When no fracture

occurs and the material properties are sufficiently smooth, the classical continuum theory applies and the

formulation preserves the AC limit under δ-convergence, with an optimal O(δ2) convergence rate. When

fracture occurs and/or the material properties present discontinuity, the spatial discretization formulation

is able to capture the material heterogeneity and the resultant damage field, with an O(δ) convergence rate

to the local limit. When the nonlocal solution is analytic with respect to the input random variables, this

method guarantees an at least algebraic convergence (for PCM with sparse grids) or exponential convergence

(for PCM with full tensor products) with increasing sample numbers. Therefore, we have establish a unified

mathematical framework, which is able to incorporate all of the necessary ingredients to perform non-trivial

simulations of fracture mechanics in heterogeneous materials while maintaining a scalable implementation

and guaranteeing convergence. In Section 5, we further extend the proposed formulation to handle a more

engineering-oriented problem, where a glassy matrix contains randomly distributed crystal grains. A quasi-

static brittle fracture model is considered, to provide preliminary quantitative validation results by comparing

our numerical results with available experimental measurements on material fracture toughness. Section 6

summarizes our findings and discusses future research. Additional discussions and proofs for the truncation

estimates between the local and nonlocal operators are provided in Appendix A.

2. Peridynamics for Randomly Heterogeneous Materials

In this section, we introduce the state-based peridynamics formulation, together with the major notations

and definitions. In particular, we will consider the linear peridynamic solid (LPS) model [44], which is a

prototypical state-based model appropriate for brittle fracture. The LPS model may be interpreted as a

nonlocal generalization of the mixed form of linear elasticity, evolving both displacements and a dilatation.

We begin with a review of the deterministic LPS model for heterogeneous materials [34] in Section 2.1, then
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extend the formulation to the stochastic LPS problem with random parameters in Section 2.2. Finally, we

discuss the treatment of material fracture, including the damage criteria and the handling of free surfaces

created by evolving fracture, in Section 2.3.

2.1. Deterministic Peridynamics Problem with Heterogeneous Material Properties

We begin by reviewing the governing equations of deterministic LPS models which provide the foundation

for the stochastic problems of interest. In this section, we consider the material without damage, with fully

prescribed Dirichlet type boundary conditions, and will further extend the discussions to more general

boundary conditions and brittle fractures in Section 2.3.

Consider a body occupying a bounded Lipschitz and convex domain Ω ⊂ Rd, d = 2 or 3, with Dirichlet-

type boundary conditions. Let u : Ω → Rd be the displacement field, θ : Ω → R be the nonlocal dilatation,

generalizing the local divergence of displacement, and K : Rd × Rd → R+ ∪ {0} is a nonnegative kernel

function. In this paper we further assume that the interacting kernel function K is radially symmetric

(which can therefore be denoted as K(r) for r ∈ R+ ∪ {0}, with a slight abuse of notation), with compactly

support on Bδ(0), the δ-ball centered at 0, and satisfies the following conditions:


K(x,y) = K(|x− y|) = Kδ(|x− y|) = 1

δd+2K1

(
|x−y|
δ

)
,

where K1 is nonnegative and there exists a positive constant ζ < 1 satisfying

Bζ(0) ⊂ supp(K1) ⊂ B1(0) and
´
B1(0)

K1(|z|)|z|2dz = d.

(2.1)

The above kernel assumptions have implications on the boundary conditions that are prescribed on a collar

of thickness δ near the boundary ∂Ω, that we denote as

IΩ := {x ∈ Ω|dist(x, ∂Ω) < δ}, BΩ := {x /∈ Ω|dist(x, ∂Ω) < δ}, BBΩ := {x /∈ Ω|dist(x, ∂Ω) < 2δ}.

To apply the nonlocal Dirichlet-type boundary condition, we assume that u(x) = uD(x) are provided in

BBΩ. Without loss of generality, for the analysis, we consider homogeneous Dirichlet boundary conditions

uD(x) = 0.

In the original LPS model for materials with homogeneous material properties [44], the momentum

balance is given by the following

Lδu :=− Cα
d

ˆ
Bδ(x)

(λ− µ)K(|y − x|) (y − x) (θ(x) + θ(y)) dy

− Cβ
d

ˆ
Bδ(x)

µK(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy = f(x), for x ∈ Ω,

(2.2)

where the nonlocal dilatation θ(x) is defined as

θ(x) :=

ˆ
Bδ(x)

K(|y − x|)(y − x) · (u(y)− u(x)) dy, for x ∈ Ω ∪ BΩ. (2.3)
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Here, f ∈ Rd denotes the external body loading forces, and µ, λ denote the (constant) shear modulus and

Lamé first parameter, respectively. With appropriate choice of scaling parameters Cα > 0, Cβ > 0 and the

kernel function K(r), it can be shown that the system converges to the Navier equations [84–86] for linear

elasticity:

L0u := −∇ · (λtr(E)I + 2µE) = −(λ− µ)∇[tr(E)]− µ∇ · (2E + tr(E)I) = f , (2.4)

where the strain tensor E :=
1

2
(∇u + (∇u)T ) and tr(E) denotes its trace. To recover parameters for 3D

linear elasticity, one should take Cα = 3, Cβ = 30; whereas for 2D problems, Cα = 2, Cβ = 16. In this paper

we consider 2D problems (d = 2), although the algorithm may be generalized to more general kernels and

3D cases.

In [34], the authors extended the above original LPS model to composite materials constituted of mul-

tiple phases, where the domain was partitioned into disjoint subdomains with piecewise constant material

properties such that λ(x) and µ(x) may vary for each material point x. In this work, we propose to further

extend the original LPS model (2.2) and (2.3) to the general heterogeneous materials, with either continuous

or discontinuous material parameters λ(x) and µ(x). Specifically, for the deterministic problem where the

Lamé moduli λ(x) and µ(x) may vary for each material point x, satisfying

0 < λ0 = inf
x∈Ω∪BBΩ

λ(x) ≤ sup
x∈Ω∪BBΩ

λ(x) = λ∞ <∞,

0 < µ0 = inf
x∈Ω∪BBΩ

µ(x) ≤ sup
x∈Ω∪BBΩ

µ(x) = µ∞ <∞,

we employ the following momentum balance and nonlocal dilatation formulations:

LHδu :=−
ˆ
Bδ(x)

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) (θ(x) + θ(y)) dy

− 8

ˆ
Bδ(x)

µ(x,y)K(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy = f(x),

(2.5)

where θ is defined in (2.3), and the two-point functions µ(·, ·), λ(·, ·) denote averaged material properties.

Specifically, we consider the interaction between x and y as a series of two springs connecting the two

points, and then the equivalent total spring constant will be the harmonic mean of the two spring constants

[47, 51, 87]:
2

µ(x,y)
=

1

µ(x)
+

1

µ(y)
,

2

λ(x,y)
=

1

λ(x)
+

1

λ(y)
. (2.6)

We notice that µ(·, ·) and λ(·, ·) will also satisfy

0 < λ0 = inf
x,y∈Ω∪BBΩ

λ(x,y) ≤ sup
x,y∈Ω∪BBΩ

λ(x,y) = λ∞ <∞,

0 < µ0 = inf
x,y∈Ω∪BBΩ

µ(x,y) ≤ sup
x,y∈Ω∪BBΩ

µ(x,y) = µ∞ <∞.

7



For the proof of the algorithm’s wellposedness, we will also need the following assumptions on λ0, µ0, λ∞

and µ∞:

Assumption 1. There exist two constants A0, A1 > 0 such that

(4−A1)µ0 −A0(λ∞ − λ0) > 0, (2.7)

λ∞ −
λ∞ − λ0

2A0
− µ∞

2A1
≥ 0. (2.8)

Remark 1. We note that the above assumption generally requires a upper bound of µ∞ and relatively

small fluctuation of λ(x) and µ(x). When considering homogeneous materials where the Lamé and shear

modulus λ(x) and µ(x) are both constants, we have λ∞ − λ0 = 0 and the two conditions yield 8λ∞ > µ∞.

This condition is suboptimal, since the homogeneous LPS model can be proved to be well-posed given any

λ, µ > 0 (see, e.g., [86]).

In Sections 4-5, empirical experiments are performed on cases not satisfying Assumption 1. Stable and

converging numerical results are still observed. We will investigate more general and optimal conditions of

λ and µ in future work.

Consider a (quasi) static state-based peridynamic problem with Dirichlet-type boundary conditions:
LHδu(x) = f(x), in Ω

θ(x) =
´
Bδ(x)

K(|y − x|)(y − x) · (u(y)− u(x)) dy, in Ω ∪ BΩ

u(x) = uD(x), in BBΩ

(2.9)

multiply a test function v(x) satisfying v(x) = 0 in BBΩ to (2.5), and integrate it with respect to x ∈

Ω ∪ BBΩ, we then obtain the weak formulation

(f ,v)L2(Ω)

=−
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) · v(x) (θ(x) + θ(y)) dydx

− 8

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)K(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dyv(x)dx

=

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) · (v(y)− v(x)) dy θ(x)dx

+ 4

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)
K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))][(y − x) · (v(y)− v(x))]dydx

:=THδ[u,v;λ, µ],

where θ is defined by (2.3) and λ, µ are the two point material property functions defined in (2.6). And we
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denote the strain energy density function at material point x as

Wu(x) :=

ˆ
Ω∪BBΩ

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) · (v(y)− v(x)) dy θ(x)

+ 4

ˆ
Ω∪BBΩ

µ(x,y)
K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dy.

With the boundedness properties of λ(·, ·) and µ(·, ·), we have the following charaterization of the space

Lemma 1. The nonlocal energy semi-norm is

|u|SHδ(Ω) =

[ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

]1/2
,

and the nonlocal energy space is

SHδ(Ω) =

{
u ∈ L2(Ω;Rd) :

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx <∞, u|BBΩ = 0

}
.

Proof. With the Cauchy-Schwartz inequality we have

|θ(x)| =
∣∣∣∣ˆ
Ω∪BBΩ

K(|y − x|)(y − x) · (u(y)− u(x)) dy

∣∣∣∣
≤
√

2

(ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dy

)1/2

, (2.10)

and

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)|(y − x) · (u(y)− u(x))|dy θ(x)dx

≤
√

2

ˆ
Ω∪BBΩ

(ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dy

)1/2

|θ(x)|dx

≤ 1

2Ã

ˆ
Ω∪BBΩ

(θ(x))2dx+ Ã

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx, (2.11)

where the second inequality comes from the Young’s inequality with any positive constant Ã. We then insert

(2.10) into (2.11) to get

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)|(y − x) · (u(y)− u(x))|dy |θ(x)| dx

≤ 1

2Ã

ˆ
Ω∪BBΩ

(θ(x))2dx+ Ã

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

≤
(

1

Ã
+ Ã

)ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx.

(2.12)

We then prove that any u ∈ SHδ(Ω) has a bounded total strain energy. Taking Ã = 1, for any u ∈ SHδ(Ω)
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its total strain energy satisfies

ˆ
Ω∪BBΩ

Wu(x)dx ≤
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

(λ(x,y) + µ(x,y))K(|y − x|)|(y − x) · (u(y)− u(x))|dy |θ(x)|dx

+ 4

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)
K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

≤(2λ∞ + 6µ∞)

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx <∞.

On the other hand, for any u satisfying
´
Ω∪BBΩWu(x)dx ≤ ∞, we aim to show that u ∈ SHδ(Ω). In

particular,

ˆ
Ω∪BBΩ

Wu(x)dx =

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

(λ(x,y)− µ(x,y))K(|y − x|)(y − x) · (u(y)− u(x))dy θ(x)dx

+ 4

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)
K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

≥
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

λ(x,y)K(|y − x|)(y − x) · (u(y)− u(x))dy θ(x)dx

+A1

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)K(|y − x|)
[

(y − x) · (u(y)− u(x))

|y − x|
− 1

2A1
|y − x| θ(x)

]2
dydx

+ (4−A1)

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)
K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

− 1

4A1

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)K(|y − x|) |y − x|2 dy(θ(x))2dx

Since for d = 2 and (2.1) we have

−
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)K(|y − x|) |y − x|2 dy(θ(x))2dx

≥ −µ∞
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|) |y − x|2 dy(θ(x))2dx = −2µ∞

ˆ
Ω∪BBΩ

(θ(x))2dx,

and by taking Ã = A0(λ∞ − λ0) in (2.11)

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

λ(x,y)K(|y − x|)[(y − x) · (u(y)− u(x))]dy θ(x)dx

=

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

(λ(x,y)− λ∞)K(|y − x|)[(y − x) · (u(y)− u(x))]dy θ(x)dx+ λ∞

ˆ
Ω∪BBΩ

(θ(x))2dx

≥λ∞
ˆ
Ω∪BBΩ

(θ(x))2dx− (λ∞ − λ0)

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)|(y − x) · (u(y)− u(x))|dy |θ(x)|dx

≥
(
λ∞ −

(λ∞ − λ0)

2A0

)ˆ
Ω∪BBΩ

(θ(x))2dx−A0(λ∞ − λ0)

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx,
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substituting the above two inequalities yields:

ˆ
Ω∪BBΩ

Wu(x)dx ≥A1

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

µ(x,y)K(|y − x|)
[

(y − x) · (u(y)− u(x))

|y − x|
− 1

2A1
|y − x| θ(x)

]2
dydx

+ ((4−A1)µ0 −A0(λ∞ − λ0))

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx

+

(
λ∞ −

λ∞ − λ0
2A0

− µ∞
2A1

)ˆ
Ω∪BBΩ

(θ(x))2dx

≥((4−A1)µ0 −A0(λ∞ − λ0))

ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx.

Therefore,
´
Ω∪BBΩ

´
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx <∞ and u ∈ SHδ(Ω).

Remark 2. Note that the above derivation also holds for the local extremes of λ(·, ·) and µ(·, ·). Therefore

an alternative (local) form of Assumption 1 writes:

(4−A1)µ0(x)−A0(λ∞(x)− λ0(x)) > 0, (2.13)

λ∞(x)− λ∞(x)− λ0(x)

2A0
− µ∞(x)

2A1
≥ 0, (2.14)

for any x ∈ Ω ∪ BBΩ, where

λ∞(x) := sup
y∈Bδ(x)∩(Ω∪BBΩ)

λ(x,y), λ0(x) := inf
y∈Bδ(x)∩(Ω∪BBΩ)

λ(x,y),

µ∞(x) := sup
y∈Bδ(x)∩(Ω∪BBΩ)

µ(x,y), µ0(x) := inf
y∈Bδ(x)∩(Ω∪BBΩ)

µ(x,y).

If further assuming that λ(·), µ(·) ∈ C(Ω ∪ BBΩ), we will have

sup
x∈Ω∪BBΩ

sup
y,z∈Bδ(x)∩(Ω∪BBΩ)

|λ(x,y)− λ(x, z)| ≤ C1δ,

sup
x∈Ω∪BBΩ

sup
y,z∈Bδ(x)∩(Ω∪BBΩ)

|µ(x,y)− µ(x, z)| ≤ C2δ,

for generic constant C1 and C2 which are independent of δ. Then Assumption 1 can be relaxed to:

(4−A1)µ0(x) > A0C1δ, λ∞(x)− µ∞(x)

2A1
≥ C2δ

2A0
. (2.15)

In the rest of this paper, we will use ||u||L2 to denote the L2(Ω;Rd) norm of u, and ||u||SHδ to denote

the norm on SHδ(Ω):

||u||2SHδ = ||u||2L2 + |u|2SHδ .

With the equivalance of the total strain energy with the |·|SHδ seminorm proved in Lemma 1, similar as in

[86] we have the following characterization of the zero energy solution:

11



Lemma 2. For all u ∈ SHδ(Ω),
´
Ω∪BBΩWu(x)dx ≥ 0, and

u = 0 in Ω ∪ BBΩ ⇐⇒ |u|SHδ = 0⇐⇒
ˆ
Ω∪BBΩ

Wu(x)dx = 0.

Following the proof of [86, Proposition 2], we also have the nonlocal Poincare inequality:

Lemma 3. Suppose that V is a closed subspace of L2(Ω;Rd), then there exists C such that

||u||L2 ≤ C
ˆ
Ω∪BBΩ

ˆ
Ω∪BBΩ

K(|y − x|)
|y − x|2

[(y − x) · (u(y)− u(x))]2dydx, ∀u ∈ V.

Here C is a generic constant depending on K, V and Ω. Consequently, there exists a generic constant C̃

such that

||u||L2 ≤ C̃|u|SHδ , ∀u ∈ SHδ(Ω).

With the above lemmas, we obtain the coercivity and continuity of the bilinear form THδ[u,v;λ, µ]:

Lemma 4. There exist two constants r, C > 0 such that

Coercivity: THδ[u,u;λ, µ] ≥ r|u|2SHδ , (2.16)

Continuity: THδ[u,v;λ, µ] ≤ C|u|SHδ |v|SHδ , (2.17)

for any u,v ∈ SHδ(Ω).

Proof. The coercivity of THδ is an immediate result of Lemma 1. The continuity is obtained by applying

(2.10) and (2.11).

Finally, denoting the dual space of SHδ(Ω) as SHδ(Ω)∗, the well-posedness result is obtained as an

application of the Lax-Milgram theorem:

Theorem 1. For a given body load f ∈ SHδ(Ω)∗, there exists a unique u ∈ SHδ(Ω) such that

THδ[u,v;λ, µ] = 〈f ,v〉, ∀v ∈ SHδ(Ω).

With the well-posedness proved, we now investigate the consistency of the proposed nonlocal formula-

tion with the classical linear elastic model as δ → 0. Specifically, the classical linear elastic model with

12



heterogeneous material parameters writes:2 LH0u(x) := −(λ(x)− µ(x))∇[tr(E(x))]− µ(x)∇ · (2E(x) + tr(E(x))I) = f(x), in Ω,

u(x) = uD(x), on BBΩ,
(2.18)

where E(x) :=
1

2
(∇u(x) + (∇u(x))T ). We denote uδ as the solution of the peridynamics problem (2.9) and

u0 as the solution of (2.18), and aim to show that uδ → u0 as δ → 0.

We first study the consistency of operators with the following lemma. Detailed proofs are elaborated in

Appendix A.

Lemma 5. Assume that u ∈ C4(Ω ∪ BBΩ) and λ(·), µ(·) ∈ C2(Ω ∪ BBΩ), then there exists δ > 0 such

that for any 0 < δ ≤ δ, |LH0u(x)−LHδu(x)| ≤ Cδ2 for x ∈ Ω. Here the generic constant C is independent

of δ but may depend on the C4 norm of u.

With above regularity assumptions on u0 and λ(·), µ(·), we now further investigate the convergence of

||uδ − u0||L2 :

Theorem 2. Let uδ be the weak solution to the nonlocal problem and u0 the weak solution to the local

problem. Assume that λ(·), µ(·) ∈ C(Ω ∪ BBΩ). Then for any f ∈ (SHδ(Ω))∗, the dual space of SHδ(Ω),

we have

‖uδ‖SHδ(Ω) ≤
‖f‖(SHδ(Ω))∗

r
. (2.19)

In addition, if ‖f‖(SHδ(Ω))∗ is uniformly bounded for all δ ∈ (0, δ0) for some postive constant δ0 > 0, then

the nonlocal and local diffusion problems are compatible as δ → 0:

lim
δ→0
||uδ − u0||L2(Ω;Rd) = 0.

Proof. We first show the proof of (2.19). Since uδ is a solution to the nonlocal problem, we have

THδ[uδ,v;λ, µ] = 〈f ,v〉 ≤ ‖f‖(SHδ(Ω))∗‖v‖SHδ(Ω)

for any test function v ∈ SHδ(Ω). Now let v = uδ, we get r‖uδ‖2SHδ(Ω) ≤ THδ[uδ,uδ] ≤ ‖f‖(SHδ(Ω))∗‖uδ‖SHδ(Ω).

Therefore, we have (2.19).

The proof of the second part involves two steps. In the first step, we assume λ(·), µ(·) ∈ C2(Ω ∪ BBΩ),

then from Lemma 5, we know that LHδv converges to L0v uniformly on Ω for v ∈ C∞0 (Ω) as δ → 0. Notice

that from the assumption on ‖f‖(SHδ(Ω))∗ , we have ‖uδ‖SHδ(Ω) being uniformly bounded for all δ ∈ (0, δ0).

2We note that it is generally not necessary to have the local solution u defined in BBΩ. When Ω is a Lipschitz domain, the
above bounds can also be obtained for the general u ∈ C4(Ω), since one can extend u to a C4 function û in Rd (see, e.g., [88,
Section 2.5]). For further discussions on applying Dirichlet-type boundary conditions as an extended local solution, we refer
interested readers to [65].
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Then using similar arguments in [52] together with the compactness result [86, Lemma 7], we can show

‖uδ − u0‖L2(Ω;Rd) → 0 as δ → 0.

For the general case that λ, µ ∈ C(Ω ∪ BBΩ), we will use the mollification technique. First notice

that we can extend λ and µ continuously to a larger domain that contains Ω ∪ BBΩ. Then we can take

standard mollifiers φε ∈ C∞(Rd), and define λε = φε ∗ λ and µε = φε ∗ µ on Ω ∪ BBΩ for small enough

ε > 0. We denote the solution to (2.9) associated with coefficient λε(x,y) := 2((λε(x))−1 + (λε(y))−1)−1

and µε(x,y) := 2((µε(x))−1 + (µε(y))−1)−1 to be uδ,ε. Then we can use the first step to conclude that

‖uδ,ε − u0,ε‖L2(Ω;Rd)
δ→0−−−→ 0, where u0,ε is the solution to (2.18) associated with coefficient λε and µε. Now

in order to show ‖uδ − u0‖L2(Ω;Rd) → 0, we notice that

lim
δ→0
‖uδ − u0‖L2(Ω;Rd) ≤ sup

δ∈(0,δ0)
‖uδ,ε − uδ‖L2(Ω;Rd) + lim

δ→0
‖uδ,ε − u0,ε‖L2(Ω;Rd) + ‖u0,ε − u0‖L2(Ω;Rd),

for any ε > 0. Therefore, we only need to show
lim
ε→0

sup
δ∈(0,δ0)

‖uδ,ε − uδ‖L2(Ω;Rd) = 0, and

lim
ε→0
‖u0,ε − u0‖L2(Ω;Rd) = 0.

(2.20)

Notice that ‖λε−λ‖C(Ω∪BBΩ) → 0 and ‖µε−µ‖C(Ω∪BBΩ) → 0 as ε→ 0 since λ and µ are continuous. Then

λε(x,y) → λ(x,y) and µε(x,y) → µ(x,y) uniformly on (Ω ∪ BBΩ)2 as ε → 0. For this, we simply write

‖λε − λ‖C((Ω∪BBΩ)2) → 0 and ‖µε − µ‖C((Ω∪BBΩ)2) → 0 where the functions λε, λ, µε and µ are continuous

functions of the two variables x ∈ Ω ∪ BBΩ and y ∈ Ω ∪ BBΩ. Now for the first equation in (2.20), notice

that since uδ,ε and uδ are solutions to (2.9) with different coefficients and the same right-hand side, we have

THδ[uδ,ε − uδ,v;λε, µε] = THδ[uδ,v;λ− λε, µ− µε] =: 〈gδ,ε,v〉,

for any v ∈ SHδ(Ω). We can show 〈gδ,ε,v〉 → 0 as ε→ 0 uniformly independent of δ since

〈gδ,ε,v〉

≤
(
‖λε − λ‖C((Ω∪BBΩ)2) + ‖µε − µ‖C((Ω∪BBΩ)2)

)¨
(Ω∪BBΩ)2

K(|y − x|)| (y − x) · (v(y)− v(x)) |dy |θδ(x)|dx

+ 4‖µε − µ‖C((Ω∪BBΩ)2)

¨
(Ω∪BBΩ)2

K(|y − x|)
|y − x|2

| (y − x) · (uδ(y)− uδ(x)) || (y − x) · (v(y)− v(x)) |dydx

≤5
(
‖λε − λ‖C((Ω∪BBΩ)2) + ‖µε − µ‖C((Ω∪BBΩ)2)

)
‖uδ‖SHδ(Ω)‖v‖SHδ(Ω).
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Now use the coercivity of THδ and ‖uδ‖SHδ(Ω) ≤ C from (2.19), we have

sup
δ∈(0,δ0)

‖uδ,ε − uδ‖SHδ(Ω) ≤ C sup
δ∈(0,δ0)

‖gδ,ε‖(SHδ(Ω))∗

≤C
(
‖λε − λ‖C((Ω∪BBΩ)2) + ‖µε − µ‖C((Ω∪BBΩ)2)

)
→ 0 as ε→ 0

and the convergence in L2 is then implied from the Poincaré inequality in Lemma 3. The proof for the

second equation in (2.20) can be similarly done.

The next theorem characterizes the rate of convergence of uδ to u0 as δ → 0 when additional regularity

is assumed for u0.

Theorem 3. Let uδ be the weak solution to the nonlocal problem and u0 the weak solution to the local

problem. In addition, we assume that u0 ∈ C4(Ω ∪ BBΩ) and λ(·), µ(·) ∈ C2(Ω ∪ BBΩ). Then there exists

δ > 0 such that for any 0 < δ ≤ δ, we have

‖u0 − uδ‖SHδ(Ω) ≤ Cδ2,

where the generic constant C is independent of δ but may depend on the C4 norm of u0.

Proof. Since u0 is defined on Ω ∪ BBΩ, then we can compute −LHδu0(x) for any x ∈ Ω. Let fδ(x) =

−LHδu0(x), then we have −eδ(x) = −LHδ(uδ − u0)(x) = LHδ(u0)(x) − LH0(u0)(x) = f(x) − fδ(x) for

x ∈ Ω. From the truncation error analysis in Lemma 5, we get ‖f − fδ‖L∞(Ω,Rd) = O(δ2). Since uδ −u0 is

the weak solution to the nonlocal problem with load vector f − fδ, we can use (2.19) to get

‖u0 − uδ‖SHδ(Ω) ≤ C‖f − fδ‖L2(Ω,Rd) ≤ C‖f − fδ‖L∞(Ω,Rd) = O(δ2).

2.2. Parametric Peridynamics Problem

In this section, we will consider the case where the material properties λ and µ are provided by random

fields λ(x, ω) and µ(x, ω), where ω ∈ Ωp and Ωp is the sample space of a probability space (Ωp,F ,P). Here,

F is the σ-algebra of subsets of Ωp and P is the probability measure. Following the practice in [45], we

represent this random field in a “truncated” form using a limited number of random variables, either because

they have been approximated by a truncated expansion such as the Karhunen-Loeve expansion or through

PCA (see Section 5), or because the input itself is defined in terms of a finite number of random variables.

Thus, the material parameters can be rewritten as λ(x, ξ) and µ(x, ξ), where ξ = (ξ(1), ξ(2), . . . , ξ(N)), N is

a positive integer which denotes the dimension of the parametric space, and ξ(i) are random variables, and

we assume they are independent and identically distributed (i.i.d.) random variables. Under this setting, we
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consider

λ(x, ξ) : (Ω ∪ BBΩ)× Γ → R, µ(x, ξ) : (Ω ∪ BBΩ)× Γ → R,

where Γ is the space of ξ and it is typically called random space or parametric space. Without loss of

generality, here we assume that Γ =
∏N
i=1 Γi ⊂ RN where Γi = [−1, 1], and the random variable ξ ∈ Γ has

a probability density ρ : Γ → R+. Similar as in the deterministic problem, for each ξ ∈ Γ , we use harmonic

means of λ and µ to model averaged material properties:

2

µ(x,y, ξ)
=

1

µ(x, ξ)
+

1

µ(y, ξ)
,

2

λ(x,y, ξ)
=

1

λ(x, ξ)
+

1

λ(y, ξ)
. (2.21)

We are then interested in solving the family of heterogeneous peridynamic problems given by

LHδu := −
´
Bδ(x)

(λ(x,y, ξ)− µ(x,y, ξ))K(|y − x|) (y − x) (θ(x, ξ) + θ(y, ξ)) dy

− 8
´
Bδ(x)

µ(x,y, ξ)K(|y − x|) (y−x)⊗(y−x)
|y−x|2 (u(y, ξ)− u(x, ξ)) dy = f(x), for x ∈ Ω,

θ(x, ξ) =
´
Bδ(x)

K(|y − x|)(y − x) · (u(y, ξ)− u(x, ξ)) dy, for x ∈ Ω ∪ BΩ,

u(x, ξ) = uD(x, ξ), for x ∈ BBΩ.
(2.22)

For each ξ ∈ Γ , we assume the uniform boundedness of the material properties, i.e.,

0 < λ0 = inf
x∈Ω∪BBΩ

λ(x, ξ) ≤ sup
x∈Ω∪BBΩ

λ(x, ξ) = λ∞ <∞,

0 < µ0 = inf
x∈Ω∪BBΩ

µ(x, ξ) ≤ sup
x∈Ω∪BBΩ

µ(x, ξ) = µ∞ <∞,

for ξ ∈ Γ , and λ0, λ∞, µ0, µ∞ satisfy Assumption 1. Therefore, for each ξ ∈ Γ , the conditions for

Theorem 1 still hold and therefore the Lax-Milgram theorem ensures the well-posedness of the corresponding

peridynamic problem. In addition, in order to consider the limit δ → 0, we need to assume that for each

ξ ∈ Γ and x ∈ Ω ∪ BBΩ,

λ(·, ξ), µ(·, ξ) ∈ C(Ω ∪ BBΩ). (2.23)

Then we have the corresponding family of local linear elastic problem for each ξ ∈ Γ : LH0u(x, ξ) := −(λ(x, ξ)− µ(x, ξ))∇[tr(E(x, ξ))]− µ(x, ξ)∇ · (2E(x, ξ) + tr(E(x, ξ))I) = f(x), in Ω,

u(x, ξ) = uD(x, ξ), in BBΩ.
(2.24)

For each given parameter ξ ∈ Γ , we denote the solution to the peridynamic problem (2.22) by uδ(x, ξ)

and the solution to the corresponding local equation (2.24) by u0(x, ξ). A corollary of Theorem 2 is that

uδ(x, ξ) converges to u0(x, ξ) in the space L2(Ω)⊗ L2
ρ(Γ ) as δ → 0:

Corollary 1. Let uδ(x, ξ) be the weak solution to (2.22) and u0(x, ξ) the weak solution to (2.24). Assume
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that λ(·, ξ), µ(·, ξ) ∈ C(Ω ∪ BBΩ), then there exists δ > 0 such that for any 0 < δ ≤ δ, we have

lim
δ→0
‖uδ − u0‖L2(Ω;Rd)⊗L2

ρ(Γ ) = 0 .

In addition, if we have u0(·, ξ) ∈ C4(Ω ∪ BBΩ) with uniform C4 norm for ξ ∈ Γ and λ(·, ξ), µ(·, ξ) ∈

C2(Ω ∪ BBΩ), then

‖uδ − u0‖SHδ(Ω)⊗L2
ρ(Γ ) ≤ Cδ2,

where the generic constant C is independent of δ but may depend on the C4 norm of u0.

Proof. For any ξ ∈ Γ , and, we know from Theorem 2 that ‖uδ(·, ξ)‖SHδ(Ω) ≤ C for all δ ∈ (0, δ0) and

‖uδ(·, ξ)− u0(·, ξ)‖L2(Ω;Rd) → 0 as δ → 0. Therefore, it is easy to see that ‖uδ(·, ξ)− u0(·, ξ)‖L2(Ω;Rd) ≤ C

for all ξ ∈ Γ and δ ∈ (0, δ0). Using the dominated convergence theorem, we have

‖uδ − u0‖L2(Ω;Rd)⊗L2
ρ(Γ ) =

ˆ
Γ

‖uδ(·, ξ)− u0(·, ξ)‖2L2(Ω;Rd)ρ(ξ)dξ
δ→0−→ 0 .

The second statement comes from Theorem 3 by noticing that ‖u0(·, ξ)‖C4(Ω∪BBΩ) ≤ C for all ξ ∈ Γ .

2.3. Peridynamics Formulation for Brittle Fractures

One of the main appeals of peridynamics is to handle fracture problems, where free surfaces are associated

with the evolution of a fracture surface. In this section, we first consider the deterministic LPS model and

propose the handling of free surfaces in heterogeneous materials, then apply it to the treatment of material

fracture. Lastly, we will conclude this section with a stochastic LPS formulation for evolving fracture.

We now consider general mixed boundary conditions: ∂Ω = ∂ΩD
⋃
∂ΩN and (∂ΩD)o

⋂
(∂ΩN )o = ∅.

Here ∂ΩD and ∂ΩN are both curves. To apply the nonlocal Dirichlet-type boundary condition, we assume

that u(x) = uD(x) are provided in a layer with non-zero volume outside Ω, while the free surface boundary

condition is applied on the sharp interface ∂ΩN . To define a Dirichlet-type constraint, we denote

IΩD := {x ∈ Ω|dist(x, ∂ΩD) < δ}, BΩD := {x /∈ Ω|dist(x, ∂ΩD) < δ}, BBΩD := {x /∈ Ω|dist(x, ∂ΩD) < 2δ},

and assume that the value of u is given on BBΩD. For notation simplicity, we denote ΩD := Ω ∪ BBΩD.

Similarly, to apply the free surface boundary condition, we denote

IΩN := {x ∈ Ω|dist(x, ∂ΩN ) < δ}, BΩN := {x /∈ Ω|dist(x, ∂ΩN ) < δ}, BBΩN := {x /∈ Ω|dist(x, ∂ΩN ) < 2δ}.

Unless stated otherwise, in this paper we further assume sufficient regularity in the boundary that we may

take δ sufficiently small so that for any x ∈ IΩ, there exists a unique orthogonal projection3 of x onto ∂Ω,

3Here we notice that it is possible IΩD ∩ IΩN 6= ∅. In our numerical solver, we treat x with the Dirichlet-type boundary
condition if the projection of x is in ∂ΩD. Otherwise, we use the Neumann-type boundary condition at x.
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which is the closest point on ∂Ω to x. We denote this projection as x. Therefore, one has x− x = sxn(x)

for x ∈ IΩN , where 0 < sx < δ. Here n denotes the normal direction pointing out of the domain for each

x ∈ IΩN , and let p denote the tangential direction. Here, we propose the following formulation for the

(partially) free surface problem:

LNδu(x) :=−
ˆ
Bδ(x)∩ΩD

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) (θcorr(x) + θcorr(y)) dy

− 8

ˆ
Bδ(x)∩ΩD

µ(x,y)K(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy

− 2θcorr(x)

ˆ
Bδ(x)\ΩD

(λ(x,y)− µ(x,y))K(|y − x|) (y − x) dy

− 4θcorr(x)

ˆ
Bδ(x)\ΩD

(λ(x,y) + 2µ(x,y))K(|y − x|) [(y − x) · n][(y − x) · p]2

|y − x|2
ndy

+ 4θcorr(x)

ˆ
Bδ(x)\ΩD

λ(x,y)K(|y − x|) [(y − x) · n]3

|y − x|2
ndy = f(x), (2.25)

and

θcorr(x) =

ˆ
Bδ(x)∩ΩD

K(|y − x|) (y − x) ·M(x) · (u(y)− u(x)) dy, (2.26)

M(x) =

[ˆ
Bδ(x)∩ΩD

K(|y − x|) (y − x)⊗ (y − x) dy

]−1
. (2.27)

Here we notice that for x /∈ IΩN , M(x) coincides with the identity matrix and hence θcorr = θ. Therefore,

the nonlocal operator LNδ in (2.25) is the same as LHδ for x ∈ Ω\IΩN . That means, for material points

which are sufficiently far away from the free surface, we obtain the momentum balance and nonlocal dilatation

formulation (2.5). On the other hand, when considering homogeneous materials, i.e., when λ(x) = λ and

µ(x) = µ are constants, we obtain the Neumann-type LPS formulation developed in [34], which as shown to

provide an approximation for the corresponding linear elastic model with free surfaces in the case of linear

displacement fields.

With the free surface formulation, we now employ the composite LPS model (2.5) and extend it to model

brittle fracture in the general heterogeneous materials. In peridynamics, material damage is incorporated

into the constitutive model by allowing the bonds of material points to break irreversibly. To model brittle

fracture in the LPS model, we employ the critical stretch criterion where breakage occurs when a bond is

extended beyond some predetermined critical bond deformed length [34, 89]. Although a similar idea can

be applied for dynamic fracture problems [34], in this work we consider quasi-static fracture problems, and

use the time instant t to denote the indexes for (incrementally increasing) loading in quasi-static problems.

For example, the displacement solution at time instant t will be denoted as u(x, t). Consider the case where

the material properties λ, µ and the fracture energy G are provided by random fields λ(x, ξ), µ(x, ξ) and

G(x, ξ), where we recall that ξ = (ξ(1), ξ(2), . . . , ξ(N)), with N ∈ N being the dimension of the parametric

18



space, and ξ(i) are i.i.d. random variables. We propose the following formulation for x ∈ Ω

LFδu(x, t, ξ) := −
ˆ
Bδ(x)

γ(x,y, t, ξ) (λ(x,y, ξ)− µ(x,y, ξ))K(|y − x|) (y − x) (θcorr(x, t, ξ) + θcorr(y, t, ξ)) dy

− 8

ˆ
Bδ(x)

γ(x,y, t, ξ)µ(x,y, ξ)K(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y, t, ξ)− u(x, t, ξ)) dy

− 2θcorr(x, t, ξ)

ˆ
Bδ(x)

(1− γ(x,y, t, ξ)) (λ(x,y, ξ)− µ(x,y, ξ))K(|y − x|) (y − x) dy

− 4θcorr(x, t, ξ)

ˆ
Bδ(x)

(1− γ(x,y, t, ξ))(λ(x,y, ξ) + 2µ(x,y, ξ))K(|y − x|) [(y − x) · n][(y − x) · p]2

|y − x|2
ndy

+ 4θcorr(x, t, ξ)

ˆ
Bδ(x)

(1− γ(x,y, t, ξ))λ(x,y, ξ)K(|y − x|) [(y − x) · n]3

|y − x|2
ndy = f(x, t), (2.28)

and for x ∈ Ω ∪ BΩD

θcorr(x, t, ξ) =

ˆ
Bδ(x)

γ(x,y, t, ξ)K(|y − x|) (y − x) ·M(x, t, ξ) · (u(y, t, ξ)− u(x, t, ξ)) dy, (2.29)

M(x, t, ξ) =

[ˆ
Bδ(x)

γ(x,y, t, ξ)K(|y − x|) (y − x)⊗ (y − x) dy

]−1
, (2.30)

where the averaged two-point functions µ(·, ·, ξ), λ(·, ·, ξ) are defined using the harmonic mean, following

(2.21). The boolean state function γ(x,y, t, ξ) is defined and updated following

γ(x,y, t, ξ) =

1, if s(x,y, τ, ξ) ≤ s0(x,y, ξ), ∀τ ≤ t, and y ∈ Bδ(x) ∩ΩD,

0, otherwise,

(2.31)

with the associated strain s and the critical bond stretch s0 related to material parameters:

s(x,y, t, ξ) :=
||u(y, t, ξ)− u(x, t, ξ) + y − x|| − ||y − x||

||y − x||
,

s0(x,y, ξ) :=

√
G(x,y)

4(λ(x,y, ξ)− µ(x,y, ξ))β′ + 8µ(x,y, ξ)β
, where β :=

3δ

4π
, β′ := 0.23873δ. (2.32)

Here G(x,y, ξ) is the averaged fracture energy defined via the arithmetic mean:

G(x,y, ξ) =
1

2
(G(x, ξ) +G(y, ξ)). (2.33)

To summarize, for each ξ ∈ Γ , we obtain a unified mathematical formulation for a (quasi)-static state-based
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peridynamic problem with general mixed boundary conditions for brittle fractures:
LFδu(x, t, ξ) = f(x, t), in Ω

θcorr(x, t, ξ) =
´
Bδ(x)

γ(x,y, t, ξ)K(|y − x|)(y − x)TM(x, t, ξ) (u(y, t, ξ)− u(x, t, ξ)) dy, in Ω ∪ BΩD
u(x, t, ξ) = uD(x, t, ξ), in BBΩD

(2.34)

Remark 3. To see the intuition for the averaged material properties definition in (2.21) and the averaged

fracture energy definition in (2.33), we take the interaction between x and y as an analog of a series of two

springs connecting the two points. Assuming that the two springs are with elongation lengths l1 and l2,

respectively, and their spring constants are k1 and k2, respectively. We notice that l1 and l2 can be seen

as the analog of the bond elongation in peridynamics, i.e., u(y) − u((x + y)/2) and u((x + y)/2) − u(x),

respectively, and k1, k2 can be seen as the analog of material properties. Then the force balance between x, y

yields k1l1 = k2l2 and therefore the equivalent strength of this bond would be k =
k1l1 + k2l2
l1 + l2

=
2

k−11 + k−12

,

which can be viewed as a simplified version of the harmonic mean formulation for the averaged material

properties definition in (2.21). On the other hand, the total energy of the spring series writes
1

2
(k1l

2
1 +k2l

2
2),

hence we define the averaged fracture energy via the arithmetic mean, as shown in (2.33)4.

3. Spatial and Stochastic Numerical Methods

In this section, we firstly introduce a strong form of meshfree discretization for the stochastic LPS model.

Specifically, the optimization-based quadrature rule [33, 34, 45] will be employed for spatial discretization,

which is simple to implement and generally faster [62, 63], and was shown to be asymptotically compatible

with corresponding local solutions in the absence of fracture [34]. To sample the random field, the proba-

bilistic collocation method (PCM) is employed, for its high accuracy and ease of implementation by sampling

at discrete points in a random space [73, 91, 92]. Of course, the main appeal of peridynamic discretizations

is to handle fracture problems. Therefore, we will also demonstrate how the meshfree scheme adapts to

the brittle fracture formulation described in Section 2.3, where free surfaces are associated with the time

evolution of a fracture surface. Finally, the fully-discretized formulation for heterogeneous LPS model with

random microstructure will be considered. In absence of fracture and assuming that the solution possesses

sufficient continuity, we show that the proposed formulation sustains the asymptotic compatibility spatially

and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as the number

of collocation points grows. When fracture occurs, our formulation automatically provides a sharp represen-

tation of the fracture surface by breaking bonds for each microstructure, and then estimates of quantities of

4We note that in some studies the harmonic mean formulation is employed for the averaged fracture energy (see [47] and
references therein), which would make the interfacial bonds relatively weaker than what we proposed here. However, as studied in
[90], in bimaterial problems the interfacial bond strength depends on the interfacial adhesion strength, which should be provided
by experiments. Therefore, without further measurements from experiments, we employ the arithmetic mean definition here
since it provides a better agreement of fracture toughness with experimental measurements in Section 5.
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interest in heterogeneous material damage problems, such as the fracture toughness, can be obtained.

3.1. Spatial: Optimization-Based Meshfree Quadrature Rules

Discretizing the whole interaction region Ω ∪ BBΩ by a collection of points χh = {xi}{i=1,2,··· ,M} ⊂

Ω ∪ BBΩ, we aim to solve for the displacement ui ≈ u(xi) and nonlocal dilitation θi ≈ θ(xi) on each

xi ∈ χh. Recall the definitions [93] of fill distance hχh,Ω = sup
xi∈Ω∪BBΩ

min
xj∈χh

||xi − xj ||2 and separation

distance qχh = 1
2min
i 6=j
||xi − xj ||2. For simplicity we drop subscripts and simply write h and q. In this paper

we assume that χh is quasi-uniform, namely that there exists cqu > 0 such that qχh ≤ hχh,Ω ≤ cquqχh .

To maintain an easily scalable implementation, we further assume δ to be chosen such that the ratio h
δ is

bounded as δ → 0, restricting ourselves to the “δ-convergence” scenario [64].

Following [34], for materials without fracture we then pursue a discretization in 2D space of the system

(2.2) and (2.3) through the following one point quadrature rule at χh [94]:

(LhHδu)i :=
∑

xj∈χh∩Bδ(xi)

(λij − µij)Kij (xj − xi) (θi + θj)ωj,i (3.1)

+ 8
∑

xj∈χh∩Bδ(xi)

µijKij
(xj − xi)⊗ (xj − xi)

|xj − xi|2
(ui − uj)ωj,i = fi,

θi :=
∑

xj∈χh∩Bδ(xi)

Kij(xj − xi) · (uj − ui)ωj,i, (3.2)

where we adopt notations qi = q(xi), qij = q(xi,xj) for generic functions q. {ωj,i}xj∈Bδ(xi) is a collection of

to-be-determined quadrature weights corresponding to a neighborhood of collocation point xi, which will be

constructed through an optimization-based approach in [45] to ensure consistency guarantees. Specifically,

we seek quadrature weights for integrals supported on balls of the form

I[q] :=

ˆ
Bδ(xi)

q(xi,y)dy ≈ Ih[q] :=
∑

xj∈χh∩Bδ(xi)\{xi}

q(xi,xj)ωj,i (3.3)

where the subscript i in {ωj,i} denote that we seek a different family of quadrature weights for different

subdomains Bδ(xi). These weights are then generated from the following optimization problem

argmin
{ωj,i}

∑
xj∈χh∩Bδ(xi)\{xi}

ω2
j,i such that, Ih[q] = I[q] ∀q ∈ Vh,xi , (3.4)

where Vh,xi =
{
q(y − xi) = p(y−xi)

|y−xi|3

∣∣∣p ∈ P5(Rd) such that
´
Bδ(xi)

q(y − xi)dy <∞
}

denotes the space of

functions which should be integrated exactly. Pm(Rd) is the space of m-th order polynomials. As shown

in [34], for u0 ∈ C4(Ω ∪ BBΩ) this particular choice of reproducing space guarantees that the truncation

error for all nonlocal operators in (2.2) converge to its local limit with an O(δ2) rate in the limit δ → 0.

For further discussions and error estimates of this optimization-based quadrature rule, we refer interested

readers to [45].
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3.2. Stochastic: Probabilistic Collocation Method with Sparse Grids

In this work, we use the probabilistic collocation method (PCM) in the parametric space to solve the

parametric peridynamics problem [73, 91, 92]. Consider the stochastic LPS Problem (2.22), PCM can be seen

as a Lagrange interpolation in the random space. In particular, let ΘN = {ξk}Qk=1 ⊂ Γ be a set of prescribed

nodes such that the Lagrange interpolation in the random space Γ is poised in an interpolation space ΓI ,

where N is the dimension of the parametric space. Then any function v : Γ → R can be approximated using

the Lagrange interpolation polynomial J [v](ξ) =
∑Q
k=1 v(ξk)Jk(ξ), where Jk(ξ) is the Lagrange polynomial

satisfying Jk(ξ) ∈ ΓI and Jk(ξj) = δkj . Denoting û(x, ξ) :=
∑Q
k=1 u(x, ξk)Jk(ξ), the collocation procedure

to solve the stochastic nonlocal equation is R(û(x, ξ))|ξk = 0, ∀k = 1, · · · , Q, where R is the residual of

(2.22). With the property of Lagrange interpolation, we obtain
LHδu(x, ξk) = f(x), in Ω

θ(x, ξk) =
´
Bδ(x)

K(|y − x|)(y − x)T (u(y, ξk)− u(x, ξk)) dy, in Ω ∪ BΩ

u(x, ξk) = uD(x, ξk), in BBΩ

(3.5)

for k = 1, · · · , Q. Note that (3.5) is equivalent to solving Q deterministic nonlocal peridynamics problems,

where the deterministic meshfree solver discussed in Section 3.1 can be readily applied. Therefore, the PCM

approach can be implemented in an embarrassingly parallel way and the total computational cost is the

product of the number of collocation points and the cost of solving a deterministic problem.

To choose the set of prescribed collocation nodes ΘN , in this work we consider two different strategies: the

tensor products of 1D collocation point sets and a sparse grid strategy for high dimensionality. In the tensor

product strategy, one first construct a 1D interpolation for each dimension in the random space. For the

i-th dimension, we take $(i) numbers of nodal points Θ
$(i)

1 = {ξi1, · · · , ξi$(i)
} ⊂ [−1, 1], a 1D interpolation

for a smooth function v on the i-th dimension then writes:

U$(i) [v](ξ(i)) =

$(i)∑
k=1

v(ξik)J ik(ξ(i)) (3.6)

where J ik(ξ(i)) is the 1D Lagrange polynomial. Then for the case with high dimensionality in parametric

space v : RN → R, the tensor product formula is:

J [v] = (U$(1) ⊗ · · · ⊗ U$(N)) [v] =

$(1)∑
k1=1

· · ·
$(N)∑
kN=1

v
(
ξ1k1 , · · · , ξ

N
kN

) (
J1
k1 ⊗ · · · ⊗ J

N
kN

)
. (3.7)

Notice here (3.7) requires Q = ΠN
i=1$(i) numbers of collocation points in total, which grows exponentially

as N increases and makes the simulation non-feasible (see, e.g., [77]). Therefore, the tensor product strategy

may be employed for problems with a small number of random dimension. For problems with a relatively

large random dimension, we employ the sparse grids strategy. In particular, we employ the sparse grids
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constructed by the Smolyak algorithm [95], which is a linear combination of tensor product formulas:

J [v] =
∑

ζ−N+1≤|$|≤ζ

(−1)ζ−|$|l1

(
N − 1

ζ − |$|l1

)
(U$(1) ⊗ · · · ⊗ U$(N)) . (3.8)

Here ζ is the sparseness parameter, $ = ($(1), · · · , $(N)) ∈ NN , |$|l1 =
∑N
i=1$(i), and $(i) represents

the number of collocation points in random dimension i. To compute (3.8), only evaluations on the sparse

grids are needed:

ΘN =
⋃

ζ−N+1≤|$|l1≤ζ

(
Θ
$(1)

1 × · · · ×Θ$(N)

1

)
. (3.9)

As shown in [96, 97], (3.8) is exact for p(ξ) ∈ Pζ−N (RN ) (all polynomials of degree less than ζ −N) and the

total number of nodes Q ∼ 2Nζ−N

(ζ−N)! . Therefore, we may see that the sparse grids formulation typically requires

a much smaller number of collocation points Q than the full tensor product set and we will refer η = ζ −N

as the “level” of the Smolyak formulation. As suggested in [77], generally the tensor product strategy is

employed when the dimension of parametric space N ≤ 4, and the Smolyak sparse grid is preferred when

N > 4.

With a proper choice of ΘN , the statistical moments of each component of the random solution can

then be evaluated with the numerical solution of (3.5) on all probabilisitic collocation points ξk ∈ ΘN . To

numerically compute the mean and the standard deviation of any function q(x, ξ) of interest, we employ the

quadrature rule approximation by choosing the set ΘN as quadrature point set:

E[q](x) ≈
Q∑
k=1

q(x, ξk)µk, (3.10)

σ[q](x) ≈

√√√√ Q∑
k=1

(q(x, ξk))2µk −

[
Q∑
l=1

q(x, ξl)µl

]2
, (3.11)

where {µk}Qk=1 is the set of corresponding quadrature weights.

We now investigate the approximation error of PCM in the parametric space. First, by our assumptions,

λ(x,y, ξ) and µ(x,y, ξ) are continuous in ξ ∈ Γ . Therefore, using similar arguments presented in the last part

of Theorem 2, one can easily see that the map uδ(·, ξ) : Γ 7→ SHδ(Ω) is continuous, i.e., uδ ∈ C(Γ ;SHδ(Ω)).

Next, we follow the error analysis in [98], which depends on higher regularity of the solution with respect to

the parameter ξ ∈ Γ . We make the following regularity assumption for the rest of this subsection.

Assumption 2 (regularity). For each δ, we assume that the map uδ(·, ξ) : Γ 7→ SHδ(Ω) admits an analytic

extension to the region A(Γ, τ) := {ξ̂ ∈ CN : dist(ξ̂, Γ ) ≤ τ}. Moreover,

max
ξ̂∈A(Γ,τ)

‖uδ(·, ξ̂)‖SHδ(Ω;Cd) ≤ C
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for some C > 0. Note that the space SHδ(Ω;Cd) is defined by

SHδ(Ω;Cd) := {u ∈ L2(Ω;Cd) : |u|2SHδ(Ω;Cd) :=

¨
(Ω∪BBΩ)2

K(|y − x|)
|y − x|2

|(y − x) · (u(y)− u(x))|2 dydx <∞}

where |v|2 is understood as vv for v : Ω → Cd.

In [98, Theorems 3.10-3.11], error analysis of the Smolyak sparse grids is presented for the classical linear

elliptic PDEs, which is based on a fundamental result on the polynomial approximation of analytic functions.

Here we present a similar result of [98, Lemma 3.2] (see also [99, Lemma 4.4]) which is the key lemma for

the convergence theorem.

Lemma 6. Let Γ 1 = [−1, 1] and Pp denote the polynomial space of degree p. Given a function v(x, t) ∈

C(Γ 1;SHδ(Ω)) which admits an analytic extension to the region A(Γ 1, τ) = {z ∈ C : dist(z, Γ 1) ≤ τ} for

some τ > 0, then

min
w∈Pp⊗SHδ(Ω;Cd)

‖v −w‖C(Γ 1;SHδ(Ω)) ≤
2

%− 1
e−p log(%) max

z∈A(Γ 1,τ)
‖v(·, z)‖SHδ(Ω;Cd)

where % = 2τ +
√

1 + 4τ2.

Proof. The inequality is shown by taking w to be the truncated Chebyshev expansion of v up to degree p

which follows the proof of [99, Lemma 4.4]. Since our functions are vector valued, we show the proof of the

inequality for completeness. Let {Tk(t)}∞k=1 be the Chebyshev polynomials on [−1, 1], then the expansion of

v(x, t) = v(x, cos(t)) in t is given by

v(x, t) =
a0(x)

2
+

∞∑
k=1

ak(x)Tk(t)

where ak ∈ SHδ(Ω), k = 0, 1, · · · , are given by

ak(x) =
1

π

ˆ π

−π
v
(
x, cos(s)

)
cos(ks)ds.

The Chebyshev series has an analytic extension which converges in any open elliptic disc delimited by the

ellipse E% with foci ±1 and the sum of the half-axes % (see e.g. [100]). Let w = a0(x)/2 +
∑p
k=1 ak(x)Tk(t),

then

‖v −w‖C(Γ 1;SHδ(Ω)) ≤
∞∑

k=q+1

‖ak‖SHδ(Ω) =

∞∑
k=q+1

‖ak‖SHδ(Ω;Cd).

Now for any %̂ with 1 < %̂ < %, following the arguments of [100, Chapter 7, Theorem 8.1], one can rewrite

ak as

ak(x) =
1

2πi

ˆ
C1

v

(
x,
z + z−1

2

)
zk−1dz +

1

2πi

ˆ
C2

v

(
x,
z + z−1

2

)
z−k−1dz (3.12)

where C1 := {z ∈ C : |z| = %̂−1} and C2 := {z ∈ C : |z| = %̂}. Now we do change of variables with z = %̂−1eis
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for the first integral in (3.12) and z = %̂eis for the second integral in (3.12), we get

ak(x) =
1

2π

ˆ π

−π
v
(
x, %̂−1 cos(s)

)
%̂−keiksds+

1

2π

ˆ π

−π
v (x, %̂ cos(s)) %̂−ke−iksds. (3.13)

Using (3.13), it is then easy to see that

‖ak‖SHδ(Ω;Cd) ≤ 2%̂−k max
z∈A(Γ 1,τ)

‖v(·, z)‖SHδ(Ω;Cd).

So

‖v −w‖C(Γ 1;SHδ(Ω)) ≤
∞∑

k=q+1

‖ak‖SHδ(Ω;Cd) ≤
2

%̂− 1
%̂−p max

z∈A(Γ 1,τ)
‖v(·, z)‖SHδ(Ω;Cd).

Taking %̂→ %, we get the desired result.

Once we have Lemma 6, which is an analogue of [98, Lemma 3.2], we can conclude with the following

convergence theorem. The proof is omitted since it follows the arguments in [98, Theorems 3.10-3.11].

Theorem 4. Assume that uδ satisfies Assumption 2. Let uQδ (x, ξ) =
∑Q
k=1 uδ(x, ξk)Jk(ξ). There exists

C1 > 0 and β1 > 0 depending on N and the analytic region A(Γ, τ) such that

max
ξ∈Γ
‖uδ(·, ξ)− uQδ (·, ξ)‖SHδ(Ω) ≤ C1Q

−β1 . (3.14)

Moreover, when η > N
log(2) , there exists C2 > 0, C3 > 0 and β2 > 0 depending on N and the analytic region

A(Γ, τ), and β3 > 0 depending only on N such that

max
ξ∈Γ
‖uδ(·, ξ)− uQδ (·, ξ)‖SHδ(Ω) ≤ C2Q

β2e−C3Q
β3
. (3.15)

Remark 4. The convergence of the sparse grid approximation in the parameter space is presented in

Theorem 4 as the number of Q increases. If we instead use the tensor product formula (3.7) with 1D

Chebyshev points for each dimension in the parameter space (then p(i) = $(i) − 1 for the i-th dimension,

and the total number of samples Q = ΠN
i=1$(i)), then one can use the one dimensional result presented in

Lemma 6 to get a convergence order. In particular, if we assume $ = $(i) for i = 1, 2, · · · , N , then we have

a convergence order O(e−$ log(%)) = O(e−Q
1/N log(%)) where % depends on the analytic region A(Γ, τ).

We now present a result on the estimate of the difference between uQδ and u0.

Theorem 5. Assume that u0 satisfies Assumption 2 with δ = 0. Then there exists C1 > 0 and β1 > 0

depending on N and the analytic region A(Γ, τ) such that

max
ξ∈Γ
‖u0(·, ξ)− uQδ (·, ξ)‖SHδ(Ω) ≤ Λ(η,N) max

ξ∈Γ
‖u0(·, ξ)− uδ(·, ξ)‖SHδ(Ω) + C1Q

−β1 . (3.16)

Moreover, when η > N
log(2) , there exists C2 > 0, C3 > 0 and β2 > 0 depending on N and the analytic region
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A(Γ, τ), and β3 > 0 depending only on N such that

max
ξ∈Γ
‖u0(·, ξ)− uQδ (·, ξ)‖SHδ(Ω) ≤ Λ(η,N) max

ξ∈Γ
‖u0(·, ξ)− uδ(·, ξ)‖SHδ(Ω) + C2Q

β2e−C3Q
β3
. (3.17)

Λ(η,N) is the Lebesgue constant associated with the sparse grid interpolation, satisfying

Λ(η,N) ≤
∑

ζ−N+1≤|$|l1≤ζ

(
N − 1

ζ − |$|l1

) N∏
j=1

(
2

π
log($(j) + 1) + 1

)
. (3.18)

Proof. Let u0−uQδ = u0−uQ0 +uQ0 −u
Q
δ . The term maxξ∈Γ ‖u0(·, ξ)−uQ0 (·, ξ)‖SHδ(Ω) can then be estimated

by Theorem 4. Notice that Λ(η,N) be the Lebesgue constant associated with the sparse grid interpolation,

i.e.,

Λ(η,N) := sup
v∈C(Γ )

‖J [v]‖L∞
‖v‖L∞

,

where J [v] is given by (3.8), then we have

max
ξ∈Γ
‖uQ0 (·, ξ)− uQδ (·, ξ)‖SHδ(Ω) ≤ Λ(η,N) max

ξ∈Γ
‖u0(·, ξ)− uδ(·, ξ)‖SHδ(Ω),

which leads to the desired results.

3.3. Stochastic Peridynamics Formulation with Fracture

We now extend the optimization-based quadrature rule introduced in Section 3.1 to the stochastic LPS

model with fracture.

For a given point xi and the horizon δ, a bond is associated with each neighbor xj ∈ Bδ(xi), and the

weight ωj,i is associated with this bond. In the meshfree formulation, the fracture surface and the corre-

sponding Neumann-type boundary ∂ΩN is represented by breaking bonds between xi and xj ∈ Bδ(xi)\ΩD.

For xj ∈ Bδ(xi) ∩ ΩD and when their bond stretch has not exceeded the critical bond stretch described

in (2.32), we denote the bond between xi and xj as “intact” and the change of displacement on material

point xj may have an impact on the displacement at xi. On the other hand, when xj /∈ ΩD and/or when

s(x,y, τ, ξ) > s0(x,y, ξ) for some time τ < t, we consider the bonds between xi and xj as “broken”. To

discretize the LPS formulation (2.28)-(2.29), the quadrature weights associated with intact bonds will be

employed in the calculation of integrals inside Bδ(xi) ∩ ΩD and the weights associated with broken bonds

will be employed for integrals inside Bδ(xi)\ΩD. Particularly, we express the quadrature weights associated

with intact bonds as ω̃j,i and the quadrature weights associated with broken bonds as ω̂j,i through the scalar
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boolean state function γ. In particular, for each sample ξk ∈ ΘN , at the n−th step we set:

γnj,i,k =

1, if xj ∈ Bδ(xi) ∩ΩD and s(xi,xi, t
l, ξk) ≤ s0(xi,xj , ξk), ∀l = 1, · · · , n,

0, otherwise,

(3.19)

ω̃nj,i,k := ωj,iγ
n
j,i,k, ω̂nj,i,k := ωj,i(1− γnj,i,k). (3.20)

Notice that the new crack forms new free surfaces, which will be included in ∂ΩN . Therefore, the compu-

tational domain Ω will be updated with the evolution of cracks, we therefore denote the updated domain

Ω after the n−th step as Ωn and all subdomains such as ΩD will also be denoted with a similar fashion.

Numerical quadrature of a given function a(x) over Bδ(xi)∩ΩnD and Bδ(xi)\ΩnD may thus be calculated via

ˆ
Bδ(xi)∩ΩnD

a(y)dy ≈
∑

xj∈χh∩Bδ(xi)

ω̃nj,i,ka(xj),

ˆ
Bδ(xi)\ΩnD

a(y)dy ≈
∑

xj∈χh∩Bδ(xi)

ω̂nj,i,ka(xj).

This process is consistent with how damage is typically induced in bond-based peridynamics, such as the

prototype microelastic brittle model [101].

Applying the above formulation in (2.28)-(2.29), at the n−th quasi-static step, we aim to solve for the

displacement uni,k ≈ u(xi, t
n, ξk) and nonlocal dilitation θni,k ≈ θ(xi, t

n, ξk) through the following meshfree

scheme:

(LhFδu)ni,k =
∑

xj∈χh∩Bδ(xi)

Kij

[(
− (λij,k − µij,k) (xj − xi)

(
θni,k + θnj,k

)
−8µij,k

(xj − xi)⊗ (xj − xi)
|xj − xi|2

·
(
unj,k − uni,k

))
ω̃n−1j,i,k

+

(
−2 (λij,k − µij,k) (xj − xi)− 4(λij,k + 2µij,k)nn−1i,k

[(xj − xi) · nn−1i,k ][(xj − xi) · pn−1i,k ]2

|xj − xi|2

+4λij,kn
n
i,k

[(xj − xi) · nni,k]3

|xj − xi|2

)
θni,kω̂

n−1
j,i,k

]
= f(xi), (3.21)

θni,k =
∑

xj∈χh∩Bδ(xi)

Kij (xj − xi) ·Mn
i,k ·

(
unj,k − uni,k

)
ω̃n−1j,i,k , (3.22)

where λij,k := λ(xi,xj , ξk), µij,k := µ(xi,xj , ξk),

Mn
i,k :=

 ∑
xj∈χh∩Bδ(xi)

Kij(xj − xi)⊗ (xj − xi)ω̃n−1j,i,k

−1 , (3.23)
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the normal vector n(x) on free surfaces is numerically approximated and updated as

nni,k = −

∑
xj∈χh∩Bδ(xi)

(xj − xi)ω̃n−1j,i,k∣∣∣∣∣
∣∣∣∣∣ ∑
xj∈χh∩Bδ(xi)

(xj − xi)ω̃n−1j,i,k

∣∣∣∣∣
∣∣∣∣∣
, (3.24)

and the tangential vector pni,k is calculated as the orthogonal direction to nni,k. The correction tensor should

be invertible to ensure that the correction dilitation can be computed. This holds as long as the bonds in

the horizon are non-colinear. For fracture case resulting in bond break, leaving an isolated particle, the

matrix inverse may be replaced with the pseudo-inverse to improve the robustness. To postprocess fracture

evolution and identify cracks, the damage field φni,k ≈ φ(xi, t
n, ξk) can then be defined as

φni,k =

∑
xj∈χh∩Bδ(xi)\xi

(1− γnj,i,k)∑
xj∈χh∩Bδ(xi)\xi

1
, (3.25)

which indicates the weakening of material through the percentage of broken bonds in the neighborhood of

xi.

4. Numerical Verification of Convergences

In this section, we will investigate the asymptotic compatibility of the proposed method by testing the

convergence of the numerical solution to the local limit. Three test problems are considered: a material

deformation problem featuring smooth local limit for its displacement, a composite material deformation

problem featuring discontinuous material properties, and an interfacial crack problem with in-plane extension

of two dissimilar materials. In each test we study the L2 errors for the mean and standard deviation of

the solution. Let uh,Qδ represent the numerical solution with spatial grid size h in meshfree methods and

Q samples in PCM, u0 stands for the analytical local limit. We investigate the convergence of numerical

solutions to the local limit asQ increases and δ, h→ 0 simultaneously with fixed ratio under the δ-convergence

limit. In particular we calculate the expectation E and standard derivation σ

‖E(uh,Qδ )− E(u0)‖L2(Ω), and ‖σ(uh,Qδ )− σ(u0)‖L2(Ω). (4.1)

In the stochastic problem, the Young’s modulus E(x, ξ) is set as a random field to represent the uncer-

tainty in material microstructure, while Poisson ratio ν is taken as a constant in the whole domain. Moreover,

we assume that the material model satisfies the plane strain assumption:

λ(x, ξ) = E(x, ξ)ν/((1 + ν)(1− 2ν)), µ(x, ξ) = E(x, ξ)/(2(1 + ν)).
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Following the conventions in [34], we adopt the nonlocal Lamé moduli as the harmonic mean of the local

ones. Similarly, for problems with fracture, the local fracture energy G(x, ξ) is also a random field, with the

nonlocal fracture energy G(x,y, ξ) defined via the arithmetic mean of the local ones. For all the tests in

this section, the dimension N of the parametric spaces is less than 4. Therefore, in PCM the tensor product

strategy is employed to generate the collocation point set ΘN . Moreover, in all numerical examples, we

adopt the following popular scaled kernel for K:

K(r) =


3

πδ3r
, for r ≤ δ;

0, for r > δ.
(4.2)

4.1. Test 1: a LPS problem with smooth local limit

(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 1: Convergence study of Test 1: a LPS problem with smooth local limit on 2D physical domain and 1D parametric
space. Both compressible (ν = 0.3, as denoted by “compressible” cases) and nearly incompressible (ν = 0.495, as denoted by
“near-inc” case) are investigated. Results in (a) are generated with 15 samples. The data points in (b) and (c) are correspond
to 1, 2, ..., 5 samples, respectively.

We first demonstrate the convergence rates on a Dirichlet-type LPS problem without fracture. In par-

ticular, we consider a case with 2D physical domain Ω = [−0.5, 0.5] × [−0.5, 0.5] depending on a random
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variable ξ following a Gaussian distribution ξ ∼ N (0, 0.12). The analytical local solution of displacement is

given by

u0(x, ξ) = u0(x, y, ξ) = [sin(x) sin(y)/(2 + sin(5ξ)),− cos(x) cos(y)/(2 + sin(5ξ))] ,

with Young’s modulus

E(x, ξ) = E(x, y, ξ) = (2 + sin(x) sin(y))(2 + sin(5ξ)),

and fixed loading

f(x) = f(x, y) =

 (C1 + C2)(−4 sin(x) sin(y) + 2 cos(2x) sin2(y)) + C2(−4 sin(x) sin(y) + 2 cos(2y) sin2(x))

(C1 + 2C2)(4 cos(x) cos(y) + sin(2x) sin(2y))

T ,
where C1 := ν/((1+ν)(1−2ν)), C2 := 1/(2(1+ν)). In this problem we consider full Dirichlet-type boundary

condition on ∂Ω, and Dirichlet-type boundary conditions are applied on BBΩ as uD(x, y, ξ) = u0(x, y, ξ).

Two values of Poisson ratio, ν = 0.3 and 0.495, are investigated which correspond to compressible (as denoted

by “compressible”) and nearly-incompressible (as denoted by “near-inc”) materials, respectively. Here we

notice that when ν = 0.3, Assumption 1 is satisfied and we therefore have the O(δ2) convergence to the local

limit guaranteed by Theorem 3. However, when the material is nearly-incompressible, Assumption 1 is not

satisfied.

Numerical results are provided in Figure 1. With fixed ratio δ/h = 3.0 and Q = 15 samples, in Figure

1(a) we show the error of numerical solution with respect to the analytical local limit for grid sizes h =

{1/8, 1/16, 1/32, 1/64, 1/128, 1/256}. The optimal second-order convergence O(δ2) is observed, which is

consistent with Corollary 1 and the results in [34]. In Figures 1(b) and 1(c) we fix h = 1/256 and δ = 3.0h, and

show the convergence of solution error with increasing number of samples Q ∈ {1, . . . , 5} in the parametric

space. In Figure 1(b), the horizontal axis is taken as $ (notice that we have $ = Q, the number of samples,

in this 1D case) in the logarithm scale to investigate if the solution error has algebraic convergence or not,

while in Figure 1(c), the horizontal axis is taken as the polynomial order $ in the linear scale to investigate

the exponential convergence. Almost exponential convergence is observed empirically, verifying the analysis

of Remark 4. Similar convergence rates are observed in the compressible and nearly incompressible cases,

which indicates that the conditions in Assumption 1 is a sufficient condition for the compatibility property

but not a necessity.

4.2. Test 2: composite material with discontinuous material properties

We now investigate composite materials with discontinuous material properties. A 2D physical domain

Ω = [−π/2, π/2] × [−π/2, π/2] and 2D parametric space ξ = (ξ(1), ξ(2)) are considered, where ξ(1), ξ(2) are

i.i.d. standard Gaussian random variables, i.e. ξ(k) ∼ N (0, 1), k = 1, 2. Denoting the left half of the physical

domain as Ω1 := [−π2 , 0]× [−π2 ,
π
2 ] and the right half as Ω2 := [0, π2 ]× [−π2 ,

π
2 ], the analytical local solution
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(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 2: Convergence study of Test 2: composite material with discontinuous material properties on 2D physical domain and
2D parametric space. Both compressible (ν = 0.3, as denoted by “compressible” cases) and nearly incompressible (ν = 0.495,
as denoted by “near-inc” cases) are investigated. Results in (a) are generated with 152 = 225 samples. The data points in (b)
and (c) are correspond to 12, 22, ..., 62 samples, respectively.

of displacement is given by

u0(x, ξ) =


[
3x/(3 + sin(ξ(1)) + sin(ξ(2))),−x/(3 + sin(ξ(1)) + sin(ξ(2))

]
, for (x, y) ∈ Ω1[

1.5x/(3 + sin(ξ(1)) + sin(ξ(2))),−0.5x/(3 + sin(ξ(1)) + sin(ξ(2)))
]
, for (x, y) ∈ Ω2

with Young’s modulus

E(x, ξ) =

3 + sin(ξ(1)) + sin(ξ(2)), for (x, y) ∈ Ω1

2(3 + sin(ξ(1)) + sin(ξ(2))), for (x, y) ∈ Ω2

and zero loading forces f . In this example we also consider the LPS formulation with full Dirichlet-type

boundary condition and without fracture. For x ∈ BBΩ, Dirichlet-type boundary conditions are applied

as the analytical local solution. Similar as in Test 1, two values of Poisson ratio, ν = 0.3 and 0.495, are
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investigated. Assumption 1 is satisfied when ν = 0.3, but not for ν = 0.495. Here we notice that with

discontinuous material properties, the conditions in our compatibility Theorem 2 is no longer satisfied.

Therefore, with this example we aim to investigate the numerical stability and AC convergence rates that

the theoretical analysis in Section 2.1 does not cover. On the other hand, with the smoothness of u0 in the

parametric space, it satisfies Assumption 2. Therefore, as we increase $ in PCM, an exponential convergence

is expected from Remark 4.

Numerical results are provided in Figure 2. With fixed ratio δ/h = 3.0 and Q = 225 samples, in

Figure 2(a) we show the error of numerical solution with respect to the analytical local limit for grid sizes

h = {π/8, π/16, π/32, π/64, π/128}. First-order convergence O(δ) is observed, which is consistent with the

numerical observations in [34]. In Figures 2(b) and 2(c) we fix h = π/256 and δ = 3.0h, and show the

convergence of solution error with increasing number of samples Q ∈ {12, · · · , 62} in the parametric space.

Similar as in test 1, in Figure 2(b), the horizontal axis is taken as $ (notice that we have Q = $2 in this

case, since the tensor product formula is employed in PCM) in the logarithm scale while in Figure 2(c), the

horizontal axis is taken as $ in the linear scale to investigate the exponential convergence. An exponential

convergence is observed empirically, verified the analysis in Remark 4.

4.3. Test 3: material fracture on a bimaterial interface

In this example we proceed to consider the fracture problem. As shown in Figure 3, we consider the

in-plane extension of two dissimilar materials with cracks along their interface. A physical domain Ω =

[−π/2, π/2] × [−π/2, π/2] is employed. The material property depends on a two i.i.d. random variables

ξ(1) and ξ(2), where ξ(1) ∼ N (0, 1) satisfies a Gaussian distribution and ξ(2) ∼ U [−1, 1] satisfies a uniform

distribution. The Young’s modulus of the two materials, on the upper half plane and the lower half plane

respectively, are denoted as E1(ξ) and E2(ξ). In particular, we take E1(ξ) = 2 + sin(ξ(1)) and E2(ξ) =

2 + sin(ξ(2)). Both compressible (ν = 0.3) and nearly incompressible (ν = 0.495) will be investigated. Again,

Assumption 1 is satisfied when ν = 0.3, but not for ν = 0.495. For this problem the Cartesian component

of the analytical local displacement field u is given by [102]:

u0(x, ξ) =

 u(x, ξ)

v(x, ξ)

T =

√
r(x)

2π

Re(r(x)iε(ξ))

 uI(ψ(x), ξ)

vI(ψ(x), ξ)

+ Im(r(x)iε(ξ))

 uII(ψ(x), ξ)

vII(ψ(x), ξ)

T

(4.3)

where (r(x), ψ(x)) correspond to the local polar coordinate system of x with origin at the crack tip, Re(·) and

Im(·) denote the real and imaginary parts of a complex number, respectively. Notice that in this example we

follow [102] and take the complex stress intensity factor (SIF) as 1.0. The bimaterial constant ε(ξ) depends

on the material properties of both materials and leads to oscillation of near-tip displacements and stresses:

ε(ξ) =
1

2π
log

µ2(ξ)κ1 + µ1(ξ)

µ1(ξ)κ2 + µ2(ξ)
, µm(ξ) =

Em(ξ)

2(1 + ν)
, κm = 3− 4ν, for m = 1, 2. (4.4)
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(a) Problem setting, where crack lies on a bi-
material interface subjected to remote load-
ing.

(b) Analytical damage field.

(c) Analytical displacement on the x-direction. (d) Analytical displacement on the y-direction.

Figure 3: Problem setting and analytical solutions in Test 3: material fracture on a bimaterial interface.

We set the material properties µ(x, ξ) = µ1(ξ), κ(x) = κ1 when x is in the upper half-plan, and µ(x, ξ) =

µ2(ξ), κ(x) = κ2 when x is in the lower half-plan. (uI , vI) and (uII , vII) are then functions of the angular
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ψ(x) and ξ:

uI(ψ(x), ξ) :=− 1

2µ(x, ξ)(1 + 4ε(ξ)2) cosh(πε(ξ))

{
[eε(ξ)(Π(x)−ψ(x)) − κ(x)e−ε(ξ)(Π(x)−ψ(x))] cos(ψ(x)/2)

− (1 + 4ε(ξ)2)e−ε(ξ)(Π(x)−ψ(x)) sinψ(x) sin(ψ(x)/2)

+ 2ε(ξ)[eε(ξ)(Π(x)−ψ(x)) + κ(x)e−ε(ξ)(Π(x)−ψ(x))] sin(ψ(x)/2)
}
,

vI(ψ(x), ξ) :=
1

2µ(x, ξ)(1 + 4ε(ξ)2) cosh(πε(ξ))

{
[eε(ξ)(Π(x)−ψ(x)) + κ(x)e−ε(ξ)(Π(x)−ψ(x))] sin (ψ(x)/2)

− (1 + 4ε(ξ)2)e−ε(ξ)(Π(x)−ψ(x)) sinψ(x) cos(ψ(x)/2)

− 2ε(ξ)[eε(ξ)(Π(x)−ψ(x)) − κ(x)e−ε(ξ)(Π(x)−ψ(x))] cos(ψ(x)/2)
}
,

uII(ψ(x), ξ) :=
1

2µ(x, ξ)(1 + 4ε(ξ)2) cosh(πε(ξ))

{
[eε(ξ)(Π(x)−ψ(x)) + κ(x)e−ε(ξ)(Π(x)−ψ(x))] sin (ψ(x)/2)

+ (1 + 4ε(ξ)2)e−ε(ξ)(Π(x)−ψ(x)) sinψ(x) cos(ψ(x)/2)

− 2ε(ξ)[eε(ξ)(Π(x)−ψ(x)) − κ(x)e−ε(ξ)(Π(x)−ψ(x))] cos(ψ(x)/2)
}
,

vII(ψ(x), ξ) :=
1

2µ(x, ξ)(1 + 4ε(ξ)2) cosh(πε(ξ))

{
[eε(ξ)(Π(x)−ψ(x)) − κ(x)e−ε(ξ)(Π(x)−ψ(x))] cos(ψ(x)/2)

+ (1 + 4ε(ξ)2)e−ε(ξ)(Π(x)−ψ(x)) sinψ(x) sin(ψ(x)/2)

+ 2ε(ξ)[eε(ξ)(Π(x)−ψ(x)) + κ(x)e−ε(ξ)(Π(x)−ψ(x))] sin(ψ(x)/2)
}
.

(4.5)

Here the value of Π(x) also depends on the location of x: Π(x) = π for x on the upper half-plane, whereas

Π(x) = −π for the lower half-plane. In Figure 3 we plot the analytical local solution for the damage field

and the displacement fields for illustration. In particular, the crack is represented by breaking the bonds

across the segment between (−π2 , 0) and (0, 0). On the crack surface, free surface conditions are imposed,

while full Dirichlet-type boundary conditions are applied on all four sides of the plate. Similar as in Test 2,

in this example the Young’s modulus E(x, ξ) is (spatially) discontinuous across the interface, and therefore

the conditions in our compatibility Theorem 2 is no longer satisfied.

Numerical results for compressible and nearly incompressible cases are provided in Figure 4 and Fig-

ure 5, respectively. With fixed ratio δ/h = 3.0 and Q = 400 samples, in Figure 4(a) and Figure 5(a)

we show the error of numerical solution with respect to the analytical local limit for grid sizes h =

{π/8, π/16, π/32, π/64, π/128, π/256}. First-order convergence O(δ) is observed. In Figures 4(b), 4(c), 5(b)

and 5(c), using fixed grid size h = π/256 and δ = 3.0h, we demonstrate the convergence of solution errors

with increasing number of samples Q = {12, · · · , 92} in the parametric space. Similar as in tests 1 and 2, in

Figures 4(b) and 5(b), the error is plotted versus $ in the logarithm scale while in Figures 4(c) and 5(c) the

horizontal axis is taken as $ in the linear scale. A roughly algebraic convergence rate is observed. We notice

that the convergence curve seems more oscillatory comparing with the previous two tests, possibly due to

the solution nonlinearity induced by the spatial discontinuity and the reduced regularity in the parametric
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(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 4: Convergence study of Test 3: material fracture on a bimaterial interface, for compressible materials (ν=0.3).
Here we use “PCM” to denote the cases using our proposed probabilistic collocation method approach, and “MC” to denote
the cases using the Monte Carlo method. Results in (a) are generated with 202 = 400 samples. The data points in (b) and (c)
are corresponding to 12, · · · , 92 samples.

space. In fact, in [103–105], a similar phenomenon of oscillatory convergence curve was observed, when the

solution has discontinuity or reduced regularity in the parametric space (see, e.g., Figure 6 of [106]). To fur-

ther demonstrate the sample efficiency of the proposed approach, we also plot the convergence of numerical

solutions obtained from Monte Carlo (MC) simulations. The results indicate that to achieve a similar level

of accuracy, our proposed approach requires a much smaller number of samples compared to MC.

5. Application: Brittle Fracture of Glass-Ceramics

Having illustrated the AC convergence convergence to the analytical local limits and verified the theoret-

ical analysis in Sections 2-3, we now consider a problem of brittle fracture in a glass-ceramic material as a

prototypical exemplar, and provide validation against experiment results. The main objective of this section

is to provide a proof-of-principle demonstration that the framework introduced thus far applies to realis-

tic settings, however overall the provided preliminary validation provides good agreement. A glass-ceramic
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(a) Convergence with δ, h→ 0 in the physical space.

(b) Convergence with sample numbers in the log scale. (c) Convergence with sample numbers in the linear scale.

Figure 5: Convergence study of Test 3: material fracture on a bimaterial interface, for nearly incompressible materials
(ν=0.495). Here we use “PCM” to denote the cases using our proposed probabilistic collocation method approach, and “MC”
to denote the cases using the Monte Carlo method. Results in (a) are generated with 202 = 400 samples. The data points in
(b) and (c) are corresponding to 12, · · · , 92 samples.

material is the product of controlled crystallization of a specialized glass composition, which results in the

creation of a microstructure composing of one of more crystalline phases within the residual amorphous glass.

Glass-ceramics have received significant attention due to their enhanced strength and toughness compared to

pure glass [87, 107–110]. A wide range of flexural strength (100 to ≥ 500MPa) and fracture toughness (1.0

to 5.0 MPa.m0.5) are reported in literature [110], with the authors noting that the microstructure and phase

assemblage play a vital role in determining strength and toughness. Therefore, it is important to investigate

the microstructure of these materials and their relation to damage metrics of interests to get fundamental

insight [83]. In particular, we employ the proposed approach to study the fracture toughness of a model

glass-ceramic material (lithium disilicate) as a function of crystal volume fraction [83].

In this example, we consider a pre-notched idealized microstructural realization which is subject to

displacement boundary conditions on its top and bottom boundaries, as demonstrated in Figure 6. A

plate of dimensions 800µm by 400µm is considered, with an initial crack of length 100µm, and a gradually
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Figure 6: Problem setup of pre-cracked glass-ceramics experiment with randomly distributed material property fields, following
[83]. Here light blue represents the crystalline and dark blue represents the glassy matrix.

Young’s modulus Poisson ratio Fracture energy Fracture Toughness
Glass E1 =80 GPa 0.25 G1 =6.59 J/m2 0.75 MPa ·m0.5

Crystal E2 =133 GPa 0.25 G2 =86.35 J/m2 3.5 MPa ·m0.5

Table 1: Material properties used in pre-cracked glass-ceramics experiment [83].

increasing displacement loading UD applied on the top and bottom of the sample. All other boundaries,

including the new boundaries created by cracks, are treated as free surfaces. Each realization is composed

of randomly distributed crystals embedded in a glassy matrix, with the mechanical properties of glass

and crystalline phases listed in Table 1. In particular, we follow [83, 87] and generate the center location

(Cx, Cy) and rotation angle Cψ of each crystal as random variables satisfying Cx ∼ U [0, 800], Cy ∼ U [0, 400],

and Cψ ∼ U [0, 2π]. All crystals are identical ellipses with semi-major and semi-minor axes being 12µm and

7.5µm, respectively, with an aspect ratio of 1.6. This material was studied experimentally in [83] for different

crystallized volume fractions, f . Although the crack pattern varies drastically with different microstructure

realizations, for each crystallized volume fraction f the averaged fracture toughness presents a consistent

pattern. In particular, a total of three samples were tested experimentally for each crystallized volume

fraction and the average of these tests were reported in [83]. It was observed that the averaged fracture

toughness grows linearly with f . Therefore, in this example we aim to reproduce the experimental fracture

toughness in [83] rather than the individual crack pattern with numerical simulations, since the former is

more reproducible and also provides a more direct measure of the material resistance.

To numerically simulate the crack growth in this problem, we consider the plane strain model and employ

the quasi-static LPS model setting as described in Section 3.3. In numerical experiments, we gradually

increase UD from 0µm to 1µm, and simulate the propagation of the crack starting from the pre-crack tip

till it reaches the right boundary of the domain. At each quasi-static step, we increase UD by 4e − 3µm,
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volume=20% 
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Figure 7: Crack pattern (represented by the damage field φ) of glass-ceramics on two sample microstructures. Here light blue
represents the crystalline and dark blue represents the glassy matrix. (a) A sample with crystal volume fraction f = 20%. No
crack bridging nor crystal fracture is observed. (b)(c) Two samples with crystal volume fraction f = 80%. The crack pattern
is dominated by crystal fracture, and crack bridging, deflection and trapping are also observed.

perform subiterations until no new broken bonds are detected, then proceed to the next step. For spatial

discretization, we employ uniform grids with grid size h = 2µm, and the horizon size δ = 3h = 6µm.

Therefore, the whole computational domain Ω ∪ BBΩ has M = 87969 grid points in total. Four different

crystallized volume fraction values are considered: 20%, 40%, 60% and 80%.
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To demonstrate the performance of our deterministic LPS solver, in Figure 7 we show the crack pattern

of two samples with volume fraction 20% and 80%, respectively. In Figure 7(a), one can observe that the

crack mostly propagates either inside the glassy matrix or along interfaces after crack deflection and avoids

entering the ceramic particles, on account of the fracture toughness of the ceramic phase being much higher.

On the other hand, once we increase the crystallinity, as shown in Figure 7(b)(c) where the crystals occupy

80% of the volume, the crack pattern gets dominated by crystal fracture. In certain cases, where a crack

gets penetrates and gets trapped within a large agglomeration, it results in crack bridging wherein it is

favourable for the crack to re-initiate in a nearby interface rather than fracturing the crystal agglomeration.

Such patterns were also observed and reported in [83], where the authors considered crack deflection, trapping

and bridging as the three main toughening mechanisms in glass-ceramics.

We now proceed to solve the stochastic LPS problem and provide a quantitative validation by comparing

the numerical results on fracture toughness with the experimental measurements in [83]. In this study, the

material microstructure is treated as a random field, and the quantities of interest would be the averaged

fracture toughness of different realizations for each volume fraction f ∈ {20%, 40%, 60%, 80%}. For each

realization, we use R(x, ω) to denote the microstructure, such that for each ω ∈ Ωp,

R(x, ω) =

 0 if the material point x is glass,

1 if the material point x is crystal.
(5.1)

We then notice that the random fields of Young’s modulus E(x, ω) and fracture energy G(x, ω) can be

represented as linear transformations of R:

E(x, ω) = R(x, ω)(E2 − E1) + E1, G(x, ω) = R(x, ω)(G2 −G1) +G1,

where E1, E2 are the Young’s modulus of glass and crystal, respectively, and G1, G2 are their fracture energy.

The material responses and crack propagation in this sample can then be calculated using the LPS solver

(3.21)-(3.22), and the fracture toughness is determined by the mechanisms through which cracks interact

with constituents in microstructures [111]. Based on the final crack pattern, we first calculate the average

energy release rate through

GIC =
G1L1 +G2L2 +GiLi

W
, (5.2)

where W is the total projected crack length along the x-direction and Gi := (G1 + G2)/2 denotes the the

fracture energy for interface debonding. L1, L2 and Li are the crack length within the glass, within the

ceramic and along their interface, calculated through the number of broken bonds per particle. For brittle

materials, one can then obtain the fracture toughness KIC from the critical energy release rate:

KIC =

√
GIC

Eeff
1− ν2

, (5.3)
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where Eeff = (1−f)E1 +fE2 is approximately the effective Young’s modulus of the heterogeneous material

for the volume fraction f . For further details and discussions on the calculation of fracture toughness for

ceramic composites, we refer interested readers to [111].

Figure 8: Averaged fracture toughness for brittle fracture of glass-ceramics with different crystal volume fractions. Error bars
represent standard derivations. Here we use “PCM” to denote the results using our proposed probabilistic collocation method
approach with 41 samples from the truncated sampling space, “MC” to denote the results using the Monte Carlo method with
100 samples from the original space Ωp, and “Exp” denotes the experimental results reported in [83].

Although one can calculate the averaged fracture toughness by sampling R(x, ω) using the Monte Carlo

method, we notice that the sampling space Ωp is of high dimension and therefore would possibly require a

large number of samples. This fact calls for dimensionality reduction for Ωp so as to represent the random

fields of E and G using a limited number of random variables. In this work the principle component analysis

(PCA) approach is employed. In particular, for each crystallized volume fraction value we generate 20, 000

discretized microstrcuture realizations R(xi, ωj), i = 1, · · · ,M , j = 1, · · · , 20000. Equivalently, we represent

each realization by a vector, Rj ∈ RM , such that Rj [i] = R(xi, ωj). We then perform PCA to the data

matrix formed by Rj , j = 1, · · · , 20000, and keep the first 20 principle components for dimensionality

reduction. To this end, each realization Rj can then be approximated by

Rj ≈ R+

20∑
k=1

aj,kVk, i = 1, 2, . . . ,M, (5.4)

where R is the mean of all Rj , Vk denote the k−th eigenvector in PCA, and aj,k is the k-th component

of the j−th realization. Thus, we obtain a truncated representation for the Young’s modulus and fracture

energy fields in glass-ceramics:

E(xi, ξ) = (R+

20∑
k=1

ξ(k)Vk)(E2 − E1) + E1, G(xi, ξ) = (R+

20∑
k=1

ξ(k)Vk)(G2 −G1) +G1. (5.5)
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where ξ(k) is the k-th component of ξ. We further take ξ(k) as i.i.d. random variables satisfying ξ(k) ∼

N (0, λ2k), where λk is the kth eigenvalue in PCA. Noticing that E and G are both affine with respect to ξ,

and therefore PCM can be applied and the parametric space dimension is 20. For this example we employ

the Smolyak formulation with level 2, which consists of 41 samples for each volume fraction value. The

results are demonstrated in Figure 8, together with the experimental measurements from [83]. We also

report the results using Monte Carlo method as a baseline method, where the fracture toughness for each

volume fraction is generated from 100 realizations from the original sampling space Ωp. From the results,

we can observe that the results from both PCA and MC are in good agreement with the experiment data.

Comparing between these two methods, although PCA uses less samples, its predictions are more aligned

with the linear fitted line from experimental measurements, and are with a low error interval estimation. This

validates the applicability of our stochastic LPS solver on providing averaged damage metrics in randomly

heterogeneous material fracture problems.

6. Summary and Discussion

For heterogeneous material modeling problems, different material microstructure, property, interfacial

conditions, and operating environments all cause variability within material, which is tremendously diffi-

cult to be fully quantified. Therefore, without complete detailed measurements for each individual material

sample, it is often non-practical, if not impossible, to provide comprehensive quantitative damage charac-

terization for each sample. This fact calls for stochastic modeling of the variability and characterization of

material failure for uncertainty quantification.

In this work, we propose a state-based peridynamics formulation with spatial variability of material

properties, to capture the high degrees of complexity and heterogeneity in material damage problems. The

well-posedness and convergence to the local problems are studied for the proposed stochastic peridynamics

model, which provide a theoretical foundation for numerical developments. An asymptotically compatible

meshfree discretization formulation is then developed for the peridynamics model. It provides an efficient

representation of interfaces and fracture surfaces. A probabilistic collocation method (PCM) is employed

to sample the stochastic process, which guarantees at least algebraic convergence rate for smooth problems

in the parametric space, and therefore ensures the sampling efficiency. Therefore, this work has presented

a complete workflow demonstrating how quadrature, heterogeneity and fracture can be handled for linearly

elastic materials. In this way, we captures the variability in microstructures and preserves a limit to the

relevant local problem as resolution and number of samples are increased. This is a major contribution to the

field of peridynamics - while numerous works have demonstrated the flexibility of peridynamics in modeling

a diverse set of physical phenomena in a deterministic setting, very few studies have considered the impact

of uncertainty in material properties and microstructures. Last but not least, we demonstrate an application

of the proposed formulation to estimating the fracture toughness of glass-ceramics, quantitatively validating

its applicability in practical engineering problems.
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While the current work has been mainly focusing on the physical processes of material damage with

uncertainty from material heterogeneity, an important next step is to incorporate other types of uncertainties,

such as the variability from interfacial conditions and operating environments. We will additionally consider

the generalization of this approach to other types of damage modes, such as the nonlinear elastoplasticity

governing ductile failure. As the proposed formulations can be easily extended to 3D problems, we notice

that we were unable to perform 3D simulations mainly due to memory limitations of our serial LPS solver.

The numerical framework itself is parallelizable and hence highly scalable, as the meshfree quadrature rule

involves only the local construction and inversion of small matrices. In an upcoming work we will investigate

how the proposed approach extends to 3D and demonstrate its application in 3D realistic problems.
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Appendix A. Truncation Estimates of the Heterogeneous LPS Formulation

In this section we provide detailed truncation estimates for the proposed LPS formulations. We first

consider the heterogeneous LPS formulation with full Dirichlet-type boundary conditions, proposed in (2.5)

and (2.3). In particular, before showing the proof of Lemma 5, we first show that the nonlocal dilatation θ

is consistent with the local dilatation with the following lemma.

Lemma 7. Assume that u ∈ C4(Ω ∪ BBΩ), then there exists δ > 0 such that for any 0 < δ ≤ δ,

θ(x)−∇ · u(x) = D1

(
∂3u1
∂x31

(x) +
∂3u2
∂x32

(x)

)
+ 3D2

(
∂3u1
∂x1∂x22

(x) +
∂3u2
∂x21∂x2

(x)

)
+O(δ3) = O(δ2),

for all x ∈ Ω ∪ BΩ. Here

D1 :=

ˆ
Bδ(x)

K(|y − x|)(y1 − x1)4dy = O(δ2), D2 :=

ˆ
Bδ(x)

K(|y − x|)(y1 − x1)2(y2 − x2)2dy = O(δ2).

Proof. Denote x = (x1, x2) where x1 and x2 are the coordinate components along the horizontal and vertical

axis, respectively, and u1, u2 as the displacement components along the x1 and x2 directions, respectively.
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For simplicity, in the following we use K to represent K(|y − x|) when there is no confusion. For u ∈ C4

and x ∈ Ω ∪ BΩ, with the symmetry of Bδ(x) we have

θ(x)−∇ · u(x)

=O(δ3) +

ˆ
Bδ(x)

K(y1 − x1)2
(
∂u1
∂x1

(x) + (y1 − x1)2
∂3u1
∂x31

(x) + 3(y2 − x2)2
∂3u1
∂x1∂x22

(x)

)
dy

+

ˆ
Bδ(x)

K(y2 − x2)2
(
∂u2
∂x2

(x) + (y2 − x2)2
∂3u2
∂x32

(x) + 3(y1 − x1)2
∂3u2
∂x21∂x2

(x)

)
dy − ∂u1

∂x1
(x)− ∂u2

∂x2
(x)

=O(δ3) +D1

(
∂3u1
∂x31

(x) +
∂3u2
∂x21

(x)

)
+ 3D2

(
∂3u1
∂x1∂x22

(x) +
∂3u2
∂x21∂x2

(x)

)
.

We now proceed to the proof of Lemma 5:

Proof. We again adopt the coordinate system as in the proof of Lemma 7 and denote the two components

of u as u1 and u2. We notice that

λ(x,y)− λ(x) =
λ(x)(λ(y)− λ(x))

λ(x) + λ(y)
=

(λ(y)− λ(x))

2

(
1 +

(λ(y)− λ(x))

2λ(x)
+O

(
(λ(y)− λ(x))

2λ(x)

)2
)

=
(λ(y)− λ(x))

2
+O

((
λ(y)− λ(x)

))2
=

1

2
∇λ(x) · (y − x) +O(δ2)

(A.1)

and similarly

µ(x,y)− µ(x) =
1

2
∇µ(x) · (y − x) +O(δ2). (A.2)

The bound of LH0u− LHδu can then be obtained via Lemma 7, Taylor expansion of u and the symmetry

of Bδ(x):

LH0(u)(x)− LHδ(u)(x)

=− 1

2
∇ · [λ(x)tr(∇u(x) + (∇u(x))T )I + 2µ(x)(∇u(x) + (∇u(x))T )]

+

ˆ
Bδ(x)

(λ(x,y)− µ(x,y))K (y − x)

(
∇ · u(x) +∇ · u(y) +D1

(
∂3u1
∂x31

(x) +
∂3u2
∂x32

(x)

+
∂3u1
∂x31

(y) +
∂3u2
∂x32

(y)

)
+ 3D2

(
∂3u1
∂x1∂x22

(x) +
∂3u2
∂x21∂x2

(x) +
∂3u1
∂x1∂x22

(y) +
∂3u2
∂x21∂x2

(y)

))
dy

+ 8

ˆ
Bδ(x)

µ(x,y)K
(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy +O(δ2)

=− 1

2
∇ · [λ(x)tr(∇u(x) + (∇u(x))T )I + 2µ(x)(∇u(x) + (∇u(x))T )]

+

ˆ
Bδ(x)

(λ(x,y)− µ(x,y))K (y − x) (∇ · u(x) +∇ · u(y)) dy

+ 8

ˆ
Bδ(x)

µ(x,y)K
(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy +O(δ2)
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Hence, by using (A.1) and (A.2) and their asymptotic orders in terms of δ, and the symmetry of Bδ(x), we

have

LH0(u)(x)− LHδ(u)(x)

=− 1

2
λ(x)∇ · (tr(∇u(x) + (∇u(x))T )I− µ(x)∇ · (∇u(x) + (∇u(x))T ))

− (∇ · λ(x)I)∇ · u(x)−∇µ(x) · (∇u(x) + (∇u(x))T )

+ (λ(x)− µ(x))

ˆ
Bδ(x)

K (y − x) (∇ · u(x) +∇ · u(y)) dy

+
1

2

ˆ
Bδ(x)

(∇λ(x)−∇µ(x)) · (y − x)K (y − x) (∇ · u(x) +∇ · u(y)) dy

+ 8µ(x)

ˆ
Bδ(x)

K
(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy

+ 4

ˆ
Bδ(x)

(
∇µ(x) · (y − x)

)
K

(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x))dy

=− (∇ · λ(x)I)∇ · u(x)−∇µ(x) · (∇u(x) + (∇u(x))T )

+ (∇λ(x)−∇µ(x)) · (∇ · u(x))

ˆ
Bδ(x)

 K(y1 − x1)2

K(y2 − x2)2

 dy

+ 4

ˆ
Bδ(x)

(
∇µ(x) · (y − x)

)
K

(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy +O(δ2) = O(δ2).
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