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Abstract 

A novel meshfree weak-strong (MWS) form method is proposed based on a 
combined formulation of both the local weak form and the strong form. In the 
MWS method, the problem domain and its boundary is represented by a set of 
distributed nodes. The strong form or the collocation method is used for all 
internal nodes and the nodes on the essential boundaries. The local weak form 
(Petrov-Galerlun weak form) is used for nodes on or near the natural boundaries. 
The natural boundary conditions can then be easily imposed to produce stable 
and accurate solutions. The MWS method has advantages of both meshfree 
methods based on strong forms and weak forms. In the entire problem, only local 
integration "meshes" for nodes on or near the natural boundary are required. 

1 Introduction 

More and more researchers are devoting themselves to the research of the 
meshfree methods, due to the fact that there are still many difficult issues to be 
solved to fully realize the dream of the meshless method. Detailed descriptions of 
many meshfree methods can be found in the recent monograph by Liu [l]. 
Meshfree methods can be largely categorized into two major categories: 
meshfree methods based on strong forms (or short for meshfree strong-form 
methods) and meshfree methods based on weak forms (or short for meshfree 
weak-form methods), such as the element-free Galerkin (EFG) method[2], the 
point interpolation method (PIM)[3][4], etc. A software package, MFree 2 ~ @ ,  
has also been developed based on these three meshfree weak-form methods [l]. 
There are also meshfree methods based on the integral representation method for 
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340 Boutrdarv Elcmatrl~ XXV 

functional approximations, such as the particle methods, many of which are 
briefly introduced in the book of Liu and Liu[5]. 

The meshfree strong-form methods have a relatively longer history of 
development. A typical meshfree strong-form method is the meshfree collocation 
method [6] .  Compared with meshfree weak-form methods, meshfree strong-form 
methods have following attractive advantages: 

The algorithms are simple. 
They are cornputationally efficient. 
They are truly meshless methods without using any mesh for both field 
variable approximation and integration. 

Because of the above advantages, meshfree strong-form methods have been 
successfully used in fluid mechanics. However, they are often unstable and less 
accurate for problems governed by ~art ial  differential equations with Neumann 
(derivative) boundary conditions, especially for solid mechanics problems with 
stress (natural) boundary conditions. In the direct meshfree collocation methods, 
Neumann boundary conditions are implemented using a series of separate 
equations, which are different from the governing equations. The error induced 
from the boundaries, therefore, cannot be efficiently controlled. 

Meshfree weak-form methods, such as the EFG method [2], have following 
advantages: 

1) They have very good stability and excellent accuracy. 
2) The Neumann boundary conditions can be naturally satisfied through 

the use of the weak form. 
Therefore, meshfree weak-form methods have been successfully applied in 

problems of solid mechanics. However, the numerical integration makes them 
computationally expensive, and the background mesh used for the integration of 
the weak form is responsible for not being "truly" meshless. In order to alleviate 
the global integration background mesh, meshfree methods based on the local 
Petrov-Galerkin weak forms have been developed, such as the meshless local 
Petrov-Galerkin (MLPG) method originated by Atluri et a1.[7], and the local 
point interpolation method (LPIM)[8][9]. In these local meshfree methods, local 
weak forms integrated in a regular-shaped local domain are used. However, the 
local numerical integration could still be a burden, especially for nodes close to 
the boundary of complex shapes. 

The meshfree strong-form methods and meshfree weak-form methods have 
their own advantages and shortcomings, and they are complementary. The 
question is "can we couple the week form with the strong form together in a 
proper manner to fully take their advantages and avoid their disadvantages and 
how?". Liu and Gu [l01 have tried to find a answer to this question. This paper 
addresses the same question in a greater detail. 

Close examination of the meshfree methods based on strong forms and local 
weak forms, reviews the following facts. The implementation scheme of these 
two types of meshfree methods is, in fact, very similar. If the delta function is 
used as the weight function, the meshfree method based on local weak forms 
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becomes a meshfree strong-form method. In meshfree strong-form methods, the 
instability and computational error is mainly induced by the presence of the 
natural boundary condition. On the contrary, the natural boundary condition can 
be easily and exactly enforced using the local weak form. 

The above observations provide us a possibility to combine the local weak 
form and the strong form together to fully take their advantages and avoid their 
disadvantages. In this paper, a novel meshfree method, the meshfree weak-strong 
(MWS) form method, is proposed based on a combined formulation of both the 
local weak form and the strong form. In the MWS method, the strong form or 
collocation method is used for all internal nodes and the nodes on the essential 
boundaries. The local weak form is only used for nodes on or near the natural 
boundaries. There is no need at all for numerical integrations for all the internal 
nodes and the nodes on the essential boundaries due to the use of the strong form. 
The natural boundary conditions can also be easily imposed to produce stable 
and accurate solutions due to the use of the local weak form. 

2 The idea of the Meshfree Weak-Strong (MWS) form method 

Consider a 2-D solid mechanics problem with a problem domain Q shown in 
Figure 1. The problem domain and boundaries are represented by a set of 
scattered field nodes. The key idea of the MWS method is that in establishing the 
discrete system equations, both the strong form and the local weak form are used 
for the same problem. In Figure 1, Q, is the local quadrature domain for a filed 
node. If Q, does not intersect with the natural boundaries, the strong form is used 
for this node. Otherwise, the local weak form is used. 

2.1 Strong form 

For an internal node or a node on the essential boundary, whose local quadrature 
domain does not intersect with the natural boundary, the following standard 
strong form of 2D elasticity is used. 

where E and v are Young's modulus and the Poisson ratio. b, and by are body 
forces at X direction and y direction, respectively. The collocation method is used 
directly to discretize equation (1). 

2.2 Local weak form 

A generalized local weak form of 2-D solids , over a local quadrature domain Qq 

bounded by T,, can be obtained using the weighted residual method [7] 
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342 Boutrdary Elcmatr~~ XXV 

where wi is the weight function that can be the 4th-order quartic spline weight 
function or other weight functions [l]. It should note here that the last term in (2) 
is to enforce the essential boundary condition. If radial PIM (RPIM) shape 
functions [l]  (with delta function property) are used, this term is not needed. 
However, if MLS shape functions (no delta function property) are used, this term 
is necessary. The first term on the left hand side of equation (2) can be integrated 
by parts. It can be found that the boundary r, for thc local quadrature domain 
usually comprises three parts: the internal boundary r(,; that is located within the 
problem domain, the essential boundaries rq, that intersects with the global 
essential boundary T,, and the natural boundary r,, that intersects with the global 
natural boundary rp Imposing the natural boundary condition, the local weak 
form is then obtained 

Q,: the local quadrature domain for integration of the weak form 
QJ: the local support domain for field variables interpolation 

Figure l :  A problem domain rcprcsented with a set distributed nodes for 
implementing the MWS method. 

2.3 Discrete formulations 

For a field node, xi, or a quadrature point, X,, the local support domains, Q, , are 
used to construct shape functions. Using radial point interpolation [l]  or the MLS 
approximation into the strong form equation (1) and local weak form equation (3) 
Tor all nodes leads to the following discrete equations 
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KU = F (4) 
where U is the vector of displacements for all nodes in the entire problem 
domain. K and F are defined as 

K . .  = 

IJ l 
with W j  being the value of the weight function matrix, corresponding to node i ,  

evaluated at the point X, Q, is the matrix of shape functions, and 

where (n,, n,) is the unit outward normal to the boundary rq, L is the differential 
operator matrix, D is the matrix of elastic constants of material. 

3 Numerical examples 

3.1 Standard patch test 

The first numerical example is the standard patch test. In the patch test, the 
displacements are prescribed on all outside boundaries by a linear function of x 
and y. Satisfaction of the patch test requires that the displacement of any interior 
node should be given by the same linear functions and that the strains and 
stresses should be constant in the patch. It has been found that the MWS method 
can exactly pass all standard patch tests. If RPIM shape functions (with the linear 

polynomial terms) are used[l], the relative displacements error less than 10-15. If 
MLS shape functions are used, the relative displacements error, which is mainly 
affected by the penalty coefficient chosen for the enforcement of the essential 

boundary conditions, is less than 10" . 

3.2 Higher-order patch test 

As shown in Figure 2, a rectangular patch is subjected to two types of loading 
at the right end. 
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1) Case 1: a uniform axial stress of unit intensity is applied on the right 
edge. The exact solution for this problem with E=l and v=0.25 is: 
u;=x;, vi=yi/4. 

2) Case 2: a linearly varying normal stress is applied on the right edge. 
The exact solution for this problem is: u i = 2 4 , v i =  -(X' + 14) / 3 . 

Both regularly and irregularly distributed nodes are used. It can be found that 
Case 1 is passed exactly by the presented MWS method using both RPIM (with 
the linear polynomial terms) and MLS. In Case 1, it demonstrates that the MWS 
method exactly implement the natural (force) boundary condition and lead to an 
exact solution for this problem whose analytical displacement solution is a linear 
function. 

It can be seen that there exist error in solving Case 2 by the MWS method 
using both RPIM and MLS shape functions (Table 1). The error is due to the fact 
that the exact solution of the displacement field is of 2nd order, and the basis 
functions using in the current method do not contain such high order terms. 

Figure 2: High-order patch test. Figure 3: A cantilever beam. 

Table 1: Relative errors (%) of ux at point A for higher-order patch test Case 2 
(using irregular nodes). 

Exact MWS LRPIM Collocation MWS MLPG 
(RPIM) (RPIM) (MLS) 

U -6.00 -6.389 -5.951 -8.786 -5.976 -5.982 

Error / 6.491 % -0.808% 46.6% -0.396% -0.291% 

V -12.19 -13.234 -12.020 -16.202 -12.168 -12.172 

Error I 8.586% -1.408% 49.3% -0.160% -0.159% 

For comparison, results by the local radial point interpolation method 
(LRPIM) and the MLPG method, which are local meshfree methods using local 
weak forms for all nodes, are also obtained. It can be seen that LRPIM and 
MLPG usually lead to more accurate results than the MWS method because the 
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local weak form is used for the entire problem domain. The meshfree collocation 
method that uses strong forms for all nodes is also used to get results for Case 2. 
It has been found that the collocation method can also get satisfactory results for 
Case 1, whose natural boundary condition is simple. However, the error for Case 
2 is as high as 20% for regular nodes and 49% for irregular nodes (Table 1). In 
fact, the solution of the meshfree collocation method is basically not stable. 
Compared with the meshfree collocation method, the present MWS method has 
far better accuracy for this high order patch test. The error and the instability of 
the meshfree collocation method mainly induced by the presence of the complex 
natural boundary condition. The solutions for all the methods that use weak 
forms including the present MWS method are very stable. This is because the use 
of weak forms controls well the possible error from the natural boundaries. 

3.3 Cantilever beam 

A cantilever beam shown in Figure 3 is considered. The analytical solution for 
this problem is available. Both regularly and irregularly distributed nodes are 
employed. For this problem, the MWS method gives very accurate results for 
both regular nodes and irregular nodes. Figure 4 illustrates the comparison 
between the shear stress z, at the cross-section ~ L l 2  calculated analytically and 
using the 

Figure 4: Stress (7,) of the beam the cross-section of along x=L/2 obtained 
using 189 irregular nodes. 

The meshfree collocation method that uses strong forms for all nodes is also 
used to get results for this problem. It has been found that the error in the solution 
of the meshfree collocation method is very big. The solution of the meshfree 
collocation method is also unstable. The computation even fails when irregular 
nodes are used. Compared with the meshfree collocation method, the present 
MWS method has far better accuracy and stability for this problem. 
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346 Boutrdary Elcmatr~~ XXV 

A convergence study has also been carried and the results are shown in Figure 
5. For comparison, the convergence curves for LRPIM and MLPG are also 
plotted in the same figure. From Figure 5, we can find: 

1) LRPIM and MLPG have better accuracy than the MWS method. 
2) Using MLS, the MWS method has very good convergence rate and the 

accuracy. 
3) The convergence process of MWS using RPIM is not very good 

although the accuracy is acceptable. It is because that locally supported 
radial basis function (RBF) usually has a bad h convergence due to 
possibly the lack of linear reproducibility of the RBF [l l]. 

Figure 5: Convergence of energy error (R: convergence rate). 

Table 2. CPU time (S)*. 

MWS(RP1M) LRPIM MWS(MLS) MLPG 

55 nodes 43.710 50.060 2.060 2.120 

189 nodes 66.730 310.630 7.270 9.650 

403 nodes 123.160 822.710 13.840 24.760 

* Performed on a DataMini PC with an Intel Pentium 4 CPU 1.80 GHz processor. 

In the efficiency study, regularly distributed 55, 189 and 403 nodes are used. 
The CPU time incurred by the MWS method, LRPIM and MLPG are listed in 
Table 2. Form this table, it can be found that MWS method uses much more less 
CPU time than LRPIM and MLPG, respectively. 
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To be fair, the computational cost must be considered together with the 
accuracy of the results. A successful numerical method should obtain high 
accuracy at a lower computational cost. The performance curves of error vs. 
computation time for the present MWS method, LRPIM and MLPG are obtained 
and plotted in Figure 6. From Figure 6, the following remarks can be made: 

a) The MWS method with MLS and MLPG have better efficiency than 
MWS with RPIM and LRPIM, respectively. It is because the MLS 
approximation has better efficiency than the RPIM interpolation[l]. 

b) For a desired accuracy (such as 10.' error), the cost of MWS methods is 
lower than corresponding local meshfree methods. It is because, in the 
MWS method, a big part numerical integration is saved by the use of the 
strong form. 

c) For a given cost (say 20s or loos), the performance of the MWS method 
is the better than corresponding local meshfree methods. 

Summarizing the above discussions, one can conclude that the efficiency of 
the MWS method is better than corresponding local meshfree methods. 

Figure 6: Comparison of the performance of meshfree methods. 

4 Conclusions 

A novel meshfree method, the meshfree weak-strong (MWS) form method, is 
proposed based on a combined formulation of both local weak forms and strong 
forms. The strong form or collocation method is used for all nodes whose local 
quadrature domains do not intersect with natural boundaries. Therefore, there are 
no numerical integrations for these nodes. The local weak form, which needs the 
local numerical integration, is used for nodes on or near the natural boundaries. 
The natural boundary conditions can be easily imposed to produce stable and 
accurate solutions. Numerical examples demonstrate that the present MWS 
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method is very easy to implement, and very flexible and efficient for calculating 
displacements and stresses in solids. 

In the MWS method, the local weak form and the strong form are combined 
together. It is a stable meshfree method that uses the least mesh in the entire 
simulation. No mesh at all is required for the field variable approximation, and 
only local cells for integration are required for nodes near the natural boundaries. 
The MWS method takes fully advantages of strong forms and weak forms to 
achieve the better efficiency. It is much more accurate and stable than meshfree 
strong-form methods. In the meantime, it is more efficient than meshfree weak- 
form methods for the entire problem domain. 

As an efficient meshfree method, the present MWS method opens an 
alternative avenue to develop adaptive meshfree codes for stress analysis in 
solids and structures. Of course, further research work is needed to improve it. 
For example, the local background cells could give difficulties in the modelling 
when the geometry of the natural boundary is too complex. 
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