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Abstract

The Meshless Local Petrov-Galerkin (MLPG) methodais effective truly meshless
method for solving partial differential equationsing Moving Least Squares (MLS)
interpolants and local weak forms. In this papev|l&G formulation is proposed for free
and forced vibration analyses. Local weak formsdeeeloped using weighted residual
method locally from the dynamic partial differehgguation. In the free vibration analysis,
the essential boundary conditions are implemerttesligh the direct interpolation form
and imposed using orthogonal transformation teclesqin the forced vibration analysis,
the penalty method is used in implementation esddigundary conditions. Two different
time integration methods are used and compardukiforced vibration analyses using the
present MLPG method. The validity and efficiencytbé present MLPG method are

demonstrated through a number of examples of tweedsional solids.
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1. Introduction

The vibration analysis for structures is a very amiant field in computational
mechanics. These dynamic problems are classicadlgcribed by a linear partial
differential equation associated with a set of latang conditions and initial conditions.
Exact analyses of these dynamic problems are yswaty difficult. Analytical solutions
to these boundary value and initial value probleans only in relatively few cases
(Meirovitch, 1980). Therefore, numerical techniquesth different discretization
schemes, such as Finite Element Method (FEM), atelywused in these analyses.
Meshless methods have become recently atteaclternatives for problems in
computational mechanics, as it does not requireshno discretize the problem domain,
and the approximate solution is constructed emtibalsed on a set of scattered nodes.
Meshless methods may be largely divided into twegaries: domain type methods and
boundary type methods. In these two types mesimetbods, the problem domain or
only the boundary of the problem domain is diseesti by properly scattered nodes.
Several domain type meshless methods, such asusBifElement Method (DEM)
(Nayroles et al., 1992), Element Free Galerkin (ER@thod (Belytschko et al, 1994),
Reproducing Kernel Particle Method (RKPM) (Liu dt 4995), Point Interpolation
Method (PIM) (Liu and Gu, 2001), Point Assembly ket (PAM)( Liu,1999) have been
proposed and achieved remarkable progress in golimide range of static and dynamic
problems. The boundary type meshless methods pedpoxlude Boundary Node
Method (BNM) (Mukherjee and Mukherjee, 1997; Chatid Mukherjee,2000) and
Boundary Point Interpolation Method (BPIM) (Gu arkdu, 2000a). In addition,

techniques of coupling meshless methods with agkblished numerical methods have
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also been proposed, such as coupled EFG/FEM (Bbkas and Organ, 1995),
EFG/Boundary Element Method (BEM) (Gu and Liu, 2000iu and Gu, 2000a).

In particular, the above-mentioned meshlesthaus are “meshless” only in terms of
the interpolation of the field or boundary variahles compared to the usual Finite
Element Method (FEM) or Boundary Element Method MBE Most of meshless
methods have to use background cells to integrateak form over the problem domain
or boundary. The requirement of background cellsifitegration makes the method
being not “truly” meshless.

Three truly meshless methods, called the MsshLocal Petrov-Galerkin (MLPG)
method, the Local Boundary Integral Equation (LBiB¥thod, and the Local Point
Interpolation Method (LPIM), have been developedAtlri and Zhu (1998,2000a,b),
Atluri et al. (1999a,b), Zhu et al. (1998), Liu atl (2000b). The MLPG method is
based on a local weak form and Moving Least SquéylsS) approximation. In the
MLPG, an integration method in a regular-shapedalladomain (such as spheres,
rectangular, and ellipsoids) is used. The MLPG wetftioes not need any “element” or
“mesh” for both field interpolation and backgrouimtiegration. Therefore, it is a “truly”
meshless method. Up to now, the MLPG method has be@nulated only in static
analyses of solids. For example, the MLPG methalldeen used for two-dimensional
elasto-statics (Atluri and Zhu 2000b) and one-disn@mal 4th order thin beam static
analysis (Atluri et al. 1999a). Very good resulésé been obtained.

However, it is difficult to implement essehteundary conditions in MLPG, because
shape functions, which constructed by MLS approtiona lack the delta function

property. Some special techniques have to be usedvércome above-mentioned
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problems in using MLPG to static analyses. For edamthe Lagrange multiplier
method, the penalty method (Atluri and Zhu 200G&g orthogonal transformation
technique (Atluri et al. 1999b; Ouatouati and Jam<.999), and the direct interpolation
method (Liu and Yan 2000) have been used to dehlegisential boundary conditions.

MLPG formulations for free vibration and forced rakion analyses of two-
dimensional solids and structures are proposehisnpaper to extend the MLPG method
to dynamic analyses. Local weak forms are develaygng weighted residual method
locally from the dynamic partial differential eqicat. The MLS approximation is used to
obtain the shape functions. In free vibration asiglythe essential boundary conditions
are formulated separately through a direct intefpah form. The boundary conditions
are then imposed utilizing orthogonal transformhtegues to eliminate the independent
modes. Frequencies and eigenmodes of free vibraien obtained by solving an
eigenvalue equation. In the forced vibration analythe penalty method is used to
implement the essential conditions. Both expliciie integration method (the central
difference method) and implicit time integrationtired (the Newmark method) are used
to solve the forced vibration system equations.

Programs of the MLPG method have been develop&@®RTRAN, and a number of
numerical examples of free vibration and forcedrafiion analyses are presented to
demonstrate the convergence, validity and effiglen€ the present methods. Some
important parameters on the performance of theeptesiethod are also investigated

thoroughly in this paper.

2. Moving Least Square (ML S) approximation



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag

In this section a briefing of MLS approximationgwen. More details can be found in a
paper by Lancaster and Salkauskas (1981) .

Consider a problem domaid. To approximate a function(x) in Q, a finite set of
p(x) called basis functions is considered in the spam®dinates<'=[x, y]. The basis

functions in two-dimension is given by

P ()=[L, % ¥, ¢, %y, V.. ] @)
The MLS interpolant(x) is defined in the domai@ by

u"(x) =Y p; ()3, (x) = p (x)a(x) (2)
i=1
wherem is the number of basis functions, the coefficigfix) in equation (2) is also

functions ofx; a(x) is obtained at any pointby minimizing a weightedliscretel , norm

of:

I = iU(X -x)[P" (x)a(x) ~u]? 3)

wheren is the number of points in the neighborhood dbr which the weight function
U(x-xj)z0, andu; is the nodal value af atx=x; .

The stationarity o with respect t@(x) leads to the following linear relation between
a(x) andu;:

A(X)a(x)=B(x)u 4)

Solvinga(x) from equation (4) and substituting it into eqaat(2), we have

u"(x) = @ ()u; (5)
i=1
where the MLS shape functiag(x) is defined by

A0 =3 p, (A OBE)); ©)

whereA(x) andB(x) are the matrices defined by



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag

n 7
A =30 00PT()P(G), U= LX) (7)
i=1
B=[ 02 (PX1), GNP, UX)P(D)] ®)

It can be found from above discussion that MieS approximation does not pass
through the nodal parameter values. Therefore theS Mhape functions given in
equation (6) do not, in general, satisfy the Krdweedelta condition. Thus,

¢f.(xj)¢5u={é :: ©)

The choice of weight function plays an importarienm the performance of the MLS
interpolation. Many kinds of weight functions caa thosen (Belytscko et al.,1994). In

this paper, the following 4-orders spline functisrused:

d) (d) (d)
U.(X) = kG(EJ H{EJ _{Cj 0<d <r, (10)

0 d=>r

Wheredi=[xo-xi| is the distance from noadeto the sampling poing, r, is the size of the

support for the weight function.

In MLS approximation, the number of nodaschosen in the influence domain should
ensure matriA in equation (6) invertible and the interpolatiatarate. The reasonabie
depends on the problem and the number of basisidanm. It has been found (Chati and

Mukherjee, 2000) thai~15-30 leads to acceptable results for 2-D protdagm~3-6.
3.Basic equations of elastodynamics

The strong form of the initial/boundary value pmabl for small displacement

elastodynamics is as follows:
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g+ = mi +cu (11)

2
i

e is the acceleration,

wherem is the mass densitg,is the damping coefficientj; =

oy, . . . ,
u; =—- the velocity,g; the stress tensor, which corresponds to the dispiant field

u;, b the body force tensor, and,j(()enotesaa—. The auxiliary conditions are given as

XJ
follows:
Natural boundary condition:  o;n, =t, onrl (12a)
Essential boundary condition:  u, =T, only (12b)
Displacement initial conditionu(x,t,) =uy(x ) x0Q (12¢)
Velocity initial condition: u(x,ty) =vo(x ) x0OQ (12d)

in which the U, , t;, up andvy denote the prescribed displacements, tractiorisalin

displacements and velocities, respectively, rmsithe unit outward normal to domdh
4. Freevibration analysis

4.1 L ocal weak form
The governing equation for no damping free vibraigas follows:

gyj,j =M, (13)

The boundary conditions are usually the same fdreqaations (12a) and (12b), but the

tractiont = 0. In the free vibration analysig(x,t) can be written as



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag

u(x,t) =u(x)sin(at + @) (14)
where w is the frequency. Substituting equation (14) ietguation (13) leads to the
following equations

gy +w'my =0 (15)

It should be noted that the stressesand displacements, in equation (15) are only the

function of coordinatokr.

A local weak form of equation (15), over adbsub-domai2sbounded by, can be

obtained using the weighted residual method
fo, W (g5 + Pmu)dQ = 0 (16)
wherew; is the weight function.

The first term on the left hand side of equafib6) can be integrated by parts to become

jrsw,aijnjdl’—J'Qs(vvi’jaij - ww’my, )dQ =0 17)

The support sub-domaf@s of a nodex; is a domain in whichwv;(x)£0. A arbitrary shape
support domain can be used (Atluri et al 1999btirale or rectangular support domain
is used in this paper for convenience. From Fidurné can be found that the boundary
for the support domaifs is usually composed by three parts: the interoahidaryrl g,

the boundarie§ s, andl'y, over which the essential and natural boundaryitioms are
specified. Imposing the natural boundary conditeard noticing thato;; n; :% =t.in
n

equation (17), we obtain:

jrg wt.dr + .[rsu witdl + jrs witdr —.[QS(V\/H-Jij - ww’mu, )dQ =0 (18)
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For a support domain located entirely within thebgl domain, there is no intersection
betweenl s and the global boundaify, I's=I's and the integrals ovdrg, and ' vanish.
Because oft =0 on 'y, the integrals oveF« vanish for all nodes in the free vibration

analysis.

With equation (18) for any nodg instead of dealing with a global problem equation

(15), the problem becomes to deal with a localfzedblem over a local support domain.

The problem domaiQ is represented by properly scattered nodes. Thes ML
approximation (5) is used to approximate the vaitia pointxq. Substituting equation
(5) into the local weak form (18) for all nodesdsato the following discrete system

equations

Ku-w’Mu =0 (19)

where the “stiffness” matrik and “mass” matriM are defined by

K ey = [ Vi DB;dQ~ [w;NDB dr - [w;NDBd" (20a)

S Sl su

QS

with w being the value of the weight function matri, being the shape function matrix,

corresponding to nodeevaluated at the poirf and

N = n, 0 n, (20c)
0 n, n
] 0
. - ¢6X (20d)
i ¢)1 y
by Pix
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w, O
' (20e)
vi=l 0 w,
Wiy Wiy
1 v 0
D=lvu 1 0 for plane stress (20f)
0 0 A-v)I2

For free vibration analyses, equation (19) @ao be written as:

(K —w*M)q=0 (21)
whereq is the eigenvector. Equation (21) is the MLPG lagaak formulation for free
vibration analysis. In order to determine the frengies,«, and free vibration modes, it
is necessary to solve the linear eigenvalue equaki@wever, It remains the essential

boundary condition equation (12b) need be satisfied
4.3 Imposition of essential boundary conditions

In the MLPG method, it is difficult to implementsential boundary conditions, because
the shape functions constructed by MLS approximaliéak the delta function property.
In static analyses, strategies have been developedieviating the above problem, such
as using the Lagrange multiplier method, the pgmakthod (Atluri and Zhu, 1998), and
the direct interpolation method (Liu and Yan, 2000)free vibration analyses using the
MLPG method, orthogonal transform techniques (Atkir al., 1999b; Ouatouati and

Johnson, 1999) are utilized in order to elimin&eihdependent modes.

For free vibration analysis, the essential naawy conditions are always

homogeneous, therefore, we haye= 0 in equation (12b). Substituting equation (5) into

the equation (12b), we find a set of algebraicdmsonstraint equations

10
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Cq=0 (22)

Using singular value decomposition (Strang, 19063an be decomposed as:

c=uxVv' (23)
whereU andV are orthogonal matricex,has diagonal form which diagonal elements are

equal to singular values @. The matrixV can be written as:

VARESS \VARR VAN 4 (24)

nxr 1

wherer is the rank ofZ, namely the number of independent constraints.

Performing coordinate transformation:

a4 =Voen-nd (25)
The change of co-ordinates satisfies the consegumtion (22). Substituting equation
(25) into equation (21), leads to:

(K -0®M)§ =0 (26)
where K () = VinroK ma Vi @M @ onen = VineroM o Vs are the
dimension reduced stiffness and mass matrices.r Alfte above discussed orthogonal
transform, essential boundary conditions have Isaéisfied and independent modes have
been eliminated in equation (26).

4.3 Numerical implementation of the MLPG method

Theoretically, as long as the union of all locathins,Q., covers the global domai,
the equilibrium equation and the boundary conddiamill be satisfied in the global
domainQ and in its boundarl by using above discussed MLPG formulation. Howgve

the support domain used will affect the solutiogpexially in dynamic analyses. The

11
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influence on of the choice of local support domaiil be studied in the following

numerical examples.

As the MLPG is regarded as a weighted resichgthod, the weight function plays an
important role in the performance of the methodedrktically, as long as the condition
of continuity is satisfied, any weight function a&ceptable. However, the local weak
form is based on the local sub-domains centeraubblgs. It can be found that the weight
function with the local property, which should degse in magnitude as the distance from
a pointxq to the nodex; increases, yields better results. Therefore, wé eahsider
weight functions, which only depend on the distabeéveen two points, such as the
spline weight functions equation (10). It can beilgaseen that the system stiffness
matrix K in the present method is banded but usually asynunélowever, similarly as
Galerkin FE methods, the weight functiom, can be take as the same formulation as
equation (5). In this cad€ becomes symmetrical (Atluri et al., 1999b). Thimmetrical

stiffness matrix can be an added advantage in aqptiie present MLPG method.

A numerical integration is needed to evaluate ttiegration in equation (20). The
Gauss quadrature is used in the MLPG method. Fardax;, a local integration cell is
needed to employ Gauss quadrature. For each Gassature poinixg, the MLS
interpolation is performed to obtain the integrahberefore, as shown in Figure 1, for a
nodex;, there exist three local domains: local integrattmmainQq (sizerg), weight
function domainQ,, (same a%)s) for wiz0 (sizery), and interpolation domai€®; for xq
(sizer;). These three local domains are independent ag dsnthe conditiomgsr,, is
satisfied. It should be noted that when the wefghttion is used in the form of equation

(10), the weight functiomv will be zero along the boundary of integration @éomif the

12
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integration domain and weight domain are sagweg). Hence, the equation (20b) can be
simplified because the integration along the iraeboundaryl” 4 vanishes. Because the
problem domains in following examples are rectardgenains, rectangle sub-domains

are used for establishing weight function. The sizthe sub-domain for nodas defined
rw=ad (27)

where, g is a coefficient chosen. Thik is the shortest distance between the nioded
neighbor nodes. It has been found in the statityses thata=1.0~3.0 can obtain an

acceptable result (Liu and Yan 2000).

There exit difficulties to obtain the exaxtmerical integration in meshless methods
(Atluri et al., 1999b; Dollow and Belytschko, 1994y and Yan, 1999). Insufficiently
accurate numerical integration may cause a de&dioor and a rank-deficiency in the
numerical solution. The numerical integration esrare results from the complexities of
the integrand. First, the shape functions constdiasing the MLS approximation have a
complex feature. The shape functions have diffefentn in each small integration
region. The derivatives of shape functions mightvehan oscillation. Second, the
overlapping of interpolation domains makes thegrdad in the overlapping domain is
very complicated. In order to guarantee the acquohthe numerical integration, tieg
should be divided into small regular partitions. dach small partition, more Gauss

guadrature points should be used (Atluri et al.9)9

4.4 Numerical results
The MLPG method is used for free vibration analysi®-D structures. Except special

mentioned, the units are taken as standard inten@{(Sl) units in following examples

13
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Example 1: A cantilever beam

The MLPG method is applied to analyze free vibratd a cantilever beam as shown in
Figure 2. The problem has been analyzed by Nagasll®99) using Node-By-Node
Meshless (NBNM) method. A plane stress problemoissered. The parameters are
taken as length=100mm, heightD=10mm, thicknesst=1.0mm, Young’'s modulus
E=2.1x10%gf/mn?, Poisson ration=0.3, mass density=8.0x10"°kgfs’mm*. Figure 3
shows two kinds of nodal arrangements, coarse (@®es) arrangement and fine
arrangement (306 nodes). Different sizes of subalosnare investigated with differeat

in equation (27). It can be found th&t1.5~2.5 can obtain almost identical results in the
free vibration analyses. Therefores1.5 is used in following free vibration analyses.
Frequency results of these two nodal arrangemdnéned by MLPG are listed in Table
1. The results obtained by FEM software, ABAQUS] &BNM method (Nagashima,
1999) are listed in the same table. From thisetadmhe can observe that the results by the
present MLPG method is in good agreement with thaigained using FE and NBNM
methods. The convergence of the present metholdasde@monstrated in this table. As
the number of nodes increases, results obtainethdyresent MLPG approach to the
FEM results (if we consider the FEM results as faresnce). The first ten eigenmodes
obtained by MLPG method are plotted in Figure 4mParing with FEM results and
Nagashima’s(1999) results, almost identical resarksobtained.

In Timoshenko beam theory, the slendernessa dbeam is expressed by the

slenderness ratia,/L, wherer =+/1/ A is the radius of gyration of the cross-section,
the moment of inertia, and the length of the beam. Beams with two slenderrasss,

r/L=0.029(=100D=10{=1.0) and 0.144(=100D=504=1.0), are analyzed. The

14
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frequency results are list in table 2. Comparinthwine Euler-Bernoulli beam results, as
the slenderness ratidL decreases, it can be found that the natural frezjeg of this
two-dimensional beam approach the values for asrERérnoulli model.

Example 2: A variable cross-section beam

In this example the present MLPG method is usddem vibration analysis of cantilever
beam with variable cross-section, shown in Figur&&sults are obtained for following
numerical parameters: the lendth10, the heighh(0)=5, h(L)=3, the thicknest=1.0,E
=3.0x10", 1=0.3 andm=1.0. The nodal arrangement is shown in Figure Results
obtained by the presented MLPG method and the F&Mivare, ABAQUS, are listed
and compared in Table 3. Results obtained by tihsemethods are in very good
agreement.

Example 3: A shear wall

Figure 6 shows a shear wall with four openings,cwhias been solved using Boundary
Element Method by some researchers (Brebbia €1384). The problem is solved for the
plane stress case wi=1000, v=0.2t=1.0 andm=1.0. 574 uniformed nodes are used to
discretize the problem domain. The problem is alsalyzed by FEM software ABAQUS.
Natural frequencies of the first 8 modes are catedl and listed in Table 4. Results
obtained by BEM and FEM are listed in the sameetaBesults obtained by the present

MLPG method are in very good agreement with thdgained using BEM and FEM.

5. Forced vibration analysis

5.1 L ocal weak form
The governing equation for forced vibratioh 23D solids is equation (11). The

boundary conditions and initial conditions are give equation (12). The penalty method

15
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is used to enforce the essential boundary conditidnlocal weak form of the partial
differential equation (11), over a local dom&g bounded by s, can be obtained using
the weighted residual method locally

[w (0 ; +b —mi, —ct, )dQ ~a [w (U ~T)dr =0 (28)
Qs

My

The third term on the left hand side of equatio8)(2an be integrated by parts, and
imposed the natural boundary condition (12a), wiab
IQS (WM +wct, +w 0y )dx—jrs_ wit;dr —jrsu wit,dr +a'jrsu wudr (29)
= Irg widr +ajrsu widr +IQSVWQdQ
In the forced vibration analysis, is the function both of space co-ordinate and time

Only space domain is discretized. Equations (5)b=are-written as

IEHES WO (30)
Substituting equations (30) into the Ilcglcal weaknfof29) for all nodes leads to the
following discrete equations
M(t) + Cu(t) + Ku(t) =f(t) (32)

where the mass matrM is given by equation (201, C andf are defined as

Ky = [v,"DB;dQ~ [w;NDBdr - [w;NDB;dl +a [w,®dr (32a)
s s Mo Fa
Cy = [ow;@,;dQ (32b)
QS
ft) =] witdr +af wudr + [ wib(t)dQ (32¢)

5.2 Direct analysis of forced vibration
The methods of solving equation (31) candogdly divided into two categories: the
modal analysis and the direct analysis. The dis@etlysis methods are utilized in this

paper. Several direct analysis methods have beselaped to solve the dynamic

16
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equation (31), such as central difference methatiNewmark method ( see, eg., Petyt,
1990). The central difference and Newmark mettawdsused in this paper.

(a) The central Difference Method

The central difference method (CDM) consists ofpressing the velocity and
acceleration at timein terms of the displacement at tiraét, t andt+At using central
finite difference formulation:

a) = A_iz (u(t = At) = 2u(t) +u(t + At)) (33a)

ag) = Z_Zt (=u(t = At) +u(t + At)) (33b)

wherelt is time step. The response at tithAt is obtained by evaluating the equation of
motion at time. The Central Difference Method is, therefore, gplieit method.

The CDM is conditionally stable. The stabletical time step for CDM can be
obtained from the maximum frequencies based on dispersion relation using

(Belytschko et al., 2000)
At = m_axi( E2+1-&) (34)
bW

where a is the frequency and the fraction of critical damping in this mode. Foon-
uniform arrangements of the nodes, the criticaletistep can be obtained by the

eigenvalue inequality.

f_ 2
At = min 35
(max A0 (35)

where A2 is the maximum eigenvalue at the quadrature pajnfThe value ofA%

max
depends on the size of local integration cell amel size of the interpolation domain

(Belytschko et al., 2000).

17
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(b) The Newmark method
The Newmark method is a generalization of the lireeeleration method. This latter

method assumes that the acceleration varies lin@athin the interval {, t+At). This

gives
L 1. N (36)
u=u, +E(ut+m —ur
and
Uppr = Uy +[(1-0)Uy + AUy p AL (373)
(37b)

Upop = Uy +UAL +[(% — B)i, + B,y JA2
The response at tinteAt is obtained by evaluating the equation of motibtime t+At.
The Newmark method is, therefore, an implicit metho
The Newmark method is a unconditionally stabstevided

0205 and B2 %(5+ 05)2 (38)

One can find that = 0.5 and S = 025leads to acceptable results for most of problems.
0 =05 and S = 025are always used in this paper for simplification.

5.3 Numerical results

The forced vibration for a 2-D structures, a cawelr beam, as shown in Figure 7, is
analyzed. The problem is solved for the plane stemse withE=3x10", 1=0.3 and
thicknesst=1.0. In this numerical example for the forcedratibn analysis, the beam
subjected to a parabolic traction at the free &xd,00Q(t). g(t) is the function of time.
As shown in Figure 7 (b), 55 uniformed nodes aetus discretize the problem domain.
For simplification,m=1.0 is considered and the units are taken as atdndternational

(SI) units. Displacements and stresses for all sagie obtained. Detailed results of

18
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vertical displacementyy, on the middle node, A, of the free end of thenbeare
presented. For comparison, solutions for this gnobare also obtained using the Finite

Element software, ABAQUS/ Explicit.
a. Simple harmonic loading
Consider firstg(t) = sin(w;t )wherea is the frequency of the dynamic loag=27

is used in this example. The parametein equation (27), on the performance of the

method is firstly investigated.

The results or=0.5, 1.0 1.5and 2.0 are obtained. The displacemenjof point A
are plotted in Figures 8 and 9. From these figuneg, can observe that results will be
unstable for both CDM and Newmark method whex 1.0. Increasea is useful to
increase the accuracy and the stability for botiMCdhd Newmark method. However, if
the integration domain is too larger oo big), more sub-cells are needed to obtain
accurate integrations. It will be computationallpna expensive. Our study has found

that a = 1.5~ 25 works for most of problemsr = 1.5 is used in following calculations.

In order to investigate the property of twofeliént direct time integration methods,

CDM and Newmark method, results of different timeps are obtained and plotted in
Figure 10. It can be found that faxt =1x10™ both methods obtain results in very

agreement with FEM. Wheat > At®" (from equation 35At*" =1x107), CDM will

become unstable. However, the Newmark method isydvstable for any time step. It
demonstrated that the CDM is a conditionally stab&thod and the Newmark method is
an unconditional stable method. A bigger time step be used in Newmark method.

Even At=1x10° or 1x10? is used, very good results can be obtained usiegriark

19



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag

method. However, it should be noted that the coatpmrtal error would increase with the
increase of time step in the Newmark method. Tdoeii@cy of Newmark method would
become unacceptable when the time step is too big. (At =5x1072). The
unconditional stable property of Newmark is veryefus for the structural forced
vibration analysis in engineering applications, exsally when responses for a longer
time are needed. A big time step can be used ilNgvemark method, thus considerable

computations can be saved.

Many time steps are calculated to check tlabilgy of the presented MLPG

formulation. Newmark method wittht =5x107 is used, and the damping coefficient,
c=0.4, is considered. Results until to 20s (abo@t A&Xural vibration periods) are plotted
in Figure 11. It can be found that a very stabslteis obtained. After a long period time,
the forced vibration under a simple harmonic dyralmading becomes a stable vibration
with the forced frequencys. From the vibration theory (Meirovitch 1980), aoaance
will occur when thew; = w , wherea is thei-th natural frequency. From Figure 11, one
can observe that the amplitude of vibration is very (i.e. about 15 times of static

displacement) because @; = ;. In addition, a beat vibration with the peridg
occurs whenw; = ;. T, can be obtained from Figure 1M,=4.3. From the vibration

theory, T, - the first natural frequency of the system can coenputed

o ~ )
outw, = 28.3, which is nearly same as the result obtainederfrie vibration analysis by

FEM, wf ™ =28.

b. Transient loading
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The transient response of the beam subjected soddenly loaded and suddenly
vanished forcd®>=100Qy(t) is considered. The functiag(t) is shown in Figure 12. The
present MLPG method is used to obtain the transesgonse with and without damping.
The Newmark method is utilized in this analysiseTlsult forc=0 is plotted in Figure
13. For comparison, the result obtained by thet&ililement software, ABAQUS/
Explicit, is shown in the same figure. Results oi#d by the present MLPG method are
in very good agreement with those obtained usinlylFdany time steps are calculated
to check the stability of the presented MLPG foration. The result foc=0.4 is plotted
in Figure 14. From Figure 14, one can observe tiratresponse is declined with time

because of damping. A very stable result is obthagain.

6. Discussion and conclusions

MLPG formulations for free vibration and forced rabion analyses of two-
dimensional solids and structures have been pregentthis paper. Local weak forms
are developed from the dynamic partial differenéigliation. The MLS approximation is
used to obtain the shape functions. The preseritades a truly meshless method, which
does not need any “element” or “mesh” for bothdiéhterpolation and background
integration.

Some important parameters on the performance ah#tbod have been investigated.
It has been found that the parameatewhich decides the size of the sub-domain needs to
be chosen carefully, especially, in the dynamiclymes. It can be found that
a =15~ 25 leads to acceptable results for most of problems.

Programs of the present MLPG method have been alea@ and a number of

numerical examples of free vibration and forcedration analyses are presented to
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demonstrate the validity and efficiency of the presmethod. The results presented are
encouraging. It is demonstrated that the presathoa is easy to implement, and very

flexible for free vibration and forced vibrationayses in solids and structures.
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Table 1 Natural frequency of a cantilever beam with different nodal distribution

Coarse nodedistribution

Fine nodedistribution

Mode
MLPG Nagashima FEM MLPG Nagashima FEM
(1999)  (ABAQUS) (1999)  (ABAQUS)
1 919.47 926.10 870 824.44 844.19 830
2 5732.42 5484.11 5199 5070.32 5051.21 4979
3 12983.25 12831.88 12830 12894.73 12827.60 12826
4 14808.64 14201.32 13640 13188.12 13258.21 13111
5 26681.81 25290.04 24685  24044.43 23992.82 23818
6 38961.74  37350.18 37477  36596.15 36432.15 36308
7 40216.58  38320.59 38378  38723.90 38436.43 38436
8 55060.24 50818.64 51322 50389.01 49937.19 49958
9 64738.59 63283.70 63584 64413.89 63901.16 63917
10 68681.87 63994.48 65731 64937.83 64085.90 64348
Unit: Hz

Table 2 Natural frequencies of a cantilever beam with different slenderness

r/L=0.144 r/L=0.029
Modes MLPG FEM Euler MLPG FEM Euler
(ABAQUS) beam (ABAQUYS) beam
1 3565.81 3546.1 4138.23 824.44 830.19 827.65
Errorwith ;3 g5 -14.31 / -0.39 0.31 /
Euler
beam(%)
2 13025.06 12864 25933.86 5070.32 4979 5186.77
Error with
Euler 18.56 20.6 / -2.24 -4.01 /
beam(%)
Unit: Hz

Gu and Liu : Table1 &2
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Table 3 Natural frequencies of a variable cross-section cantilever beam

w(rd/s)
Modes
1 2 3 1l S
MLPG method 56321 923.08  953.45 185514  2589.78
FEM(ABAQUS) 26200 01893  951.86 1850.92  2578.63

Table4 Natural frequencies of a shear wall

a(rd/s)
Mode MLPG method FEM (ABAQUS)  Brabbia et al.(1984)

1 2.069 2.073 2.079

2 7.154 7.096 7.181
3 7.742 7.625 7.644

4 12.163 11.938 11.833
5 15.587 15.341 15.947
6 18.731 18.345 18.644
7 20.573 19.876 20.268
8 23.081 22.210 22.765

Gu and Liu : Table3 & 4
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Fig. 1 The support domafds and integration domaif)g for node
i; the interpolation domaif®; for Gauss integration poiRt

Gu and Liu : Fig. 1
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Fig 2. Cantilever beam
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Fig 3(a). Coarse nodal distribution
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Fig. 3(b) Fine nodal distribution

GuandLiu:Fig.2&3
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Gu and Liu : Fig. 4
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Mode 7 Mode 8

Fig. 4 Eigenmodes for the cantilever beam by MLP&hod

Gu and Liu : Fig. 4
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Fig. 6 A Shear wall with four openings

Gu and Liu : Fig. 6
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Fig. 7 (b) The nodal arrangement

Gu and Liu : Fig. 7
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Fig. 8 Displacementsuy at point A using Central Difference Method
(CDM) (9(t)=sin(at))

Gu and Liu : Fig. 8
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Fig. 9 Displacementsuy at point A using Newmark method (J = 0.5
and S = 025, with g(t)=sin(at))

Gu and Liu : Fig. 9
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Fig. 11 Displacementsuy at point A (g(t)=sin(at))

Gu and Liu : Fig. 11

37



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag

4 90

10—

t=0.5s

Fig. 12 The function g(t)

0.02 \ ‘ \
— FE
0015 I  —-- Newmark{Qt=1x10°c=0) |

] ) I\ I
0.01 - i : : : A

0.005

T
-

Displacement uy
o

10,005 | ! V!
0.01 | - [ ! VA F A T

-0.015 - | |/ 1

_002 | | | | | I | | |

Timet

Fig. 13 Transient displacements uy at point A using Newmark
method (6 =05 and £ = 025

Gu and Liu : Fig. 12 & 13
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Gu and Liu : Fig. 14
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