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Abstract 

The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless 

method for solving partial differential equations using Moving Least Squares (MLS) 

interpolants and local weak forms. In this paper, a MLPG formulation is proposed for free 

and forced vibration analyses. Local weak forms are developed using weighted residual 

method locally from the dynamic partial differential equation. In the free vibration analysis, 

the essential boundary conditions are implemented through the direct interpolation form 

and imposed using orthogonal transformation techniques. In the forced vibration analysis, 

the penalty method is used in implementation essential boundary conditions. Two different 

time integration methods are used and compared in the forced vibration analyses using the 

present MLPG method. The validity and efficiency of the present MLPG method are 

demonstrated through a number of examples of two-dimensional solids.  
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1. Introduction 

The vibration analysis for structures is a very important field in computational 

mechanics. These dynamic problems are classically described by a linear partial 

differential equation associated with a set of boundary conditions and initial conditions. 

Exact analyses of these dynamic problems are usually very difficult. Analytical solutions 

to these boundary value and initial value problems are only in relatively few cases 

(Meirovitch, 1980). Therefore, numerical techniques with different discretization 

schemes, such as Finite Element Method (FEM), are widely used in these analyses. 

     Meshless methods have become recently attractive alternatives for problems in 

computational mechanics, as it does not require a mesh to discretize the problem domain, 

and the approximate solution is constructed entirely based on a set of scattered nodes. 

Meshless methods may be largely divided into two categories: domain type methods and 

boundary type methods. In these two types meshless methods, the problem domain or 

only the boundary of the problem domain is discretized by properly scattered nodes. 

Several domain type meshless methods, such as, Diffuse Element Method (DEM) 

(Nayroles et al., 1992), Element Free Galerkin (EFG) method (Belytschko et al, 1994), 

Reproducing Kernel Particle Method (RKPM) (Liu et al, 1995), Point Interpolation 

Method (PIM) (Liu and Gu, 2001), Point Assembly Method (PAM)( Liu,1999) have been 

proposed and achieved remarkable progress in solving a wide range of static and dynamic 

problems. The boundary type meshless methods proposed include Boundary Node 

Method (BNM) (Mukherjee and Mukherjee, 1997; Chati and Mukherjee,2000) and 

Boundary Point Interpolation Method (BPIM) (Gu and Liu, 2000a). In addition, 

techniques of coupling meshless methods with other established numerical methods have 
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also been proposed, such as coupled EFG/FEM (Belytschko and Organ, 1995), 

EFG/Boundary Element Method (BEM) (Gu and Liu, 2000b; Liu and Gu, 2000a). 

     In particular, the above-mentioned meshless methods are “meshless” only in terms of 

the interpolation of the field or boundary variables, as compared to the usual Finite 

Element Method (FEM) or Boundary Element Method (BEM). Most of meshless 

methods have to use background cells to integrate a weak form over the problem domain 

or boundary. The requirement of background cells for integration makes the method 

being not “truly” meshless. 

      Three truly meshless methods, called the Meshless Local Petrov-Galerkin (MLPG) 

method, the Local Boundary Integral Equation (LBIE) method, and the Local Point 

Interpolation Method (LPIM), have been developed by Atluri and Zhu (1998,2000a,b), 

Atluri et al. (1999a,b), Zhu et al. (1998), Liu and Gu (2000b). The MLPG method is 

based on a local weak form and Moving Least Squares (MLS) approximation. In the 

MLPG, an integration method in a regular-shaped local domain (such as spheres, 

rectangular, and ellipsoids) is used. The MLPG method does not need any  “element” or 

“mesh” for both field interpolation and background integration. Therefore, it is a “truly” 

meshless method. Up to now, the MLPG method has been formulated only in static 

analyses of solids. For example, the MLPG method has been used for two-dimensional 

elasto-statics (Atluri and Zhu 2000b) and one-dimensional 4th order thin beam static 

analysis (Atluri et al. 1999a). Very good results have been obtained. 

     However, it is difficult to implement essential boundary conditions in MLPG, because 

shape functions, which constructed by MLS approximation, lack the delta function 

property. Some special techniques have to be used to overcome above-mentioned 
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problems in using MLPG to static analyses. For example, the Lagrange multiplier 

method, the penalty method (Atluri and Zhu 2000a), the orthogonal transformation 

technique (Atluri et al. 1999b; Ouatouati and Johnson, 1999), and the direct interpolation 

method (Liu and Yan 2000) have been used to deal with essential boundary conditions.  

MLPG formulations for free vibration and forced vibration analyses of two-

dimensional solids and structures are proposed in this paper to extend the MLPG method 

to dynamic analyses.  Local weak forms are developed using weighted residual method 

locally from the dynamic partial differential equation. The MLS approximation is used to 

obtain the shape functions. In free vibration analysis, the essential boundary conditions 

are formulated separately through a direct interpolation form. The boundary conditions 

are then imposed utilizing orthogonal transform techniques to eliminate the independent 

modes. Frequencies and eigenmodes of free vibration are obtained by solving an 

eigenvalue equation. In the forced vibration analysis, the penalty method is used to 

implement the essential conditions.  Both explicit time integration method (the central 

difference method) and implicit time integration method (the Newmark method) are used 

to solve the forced vibration system equations.   

Programs of the MLPG method have been developed in FORTRAN, and a number of 

numerical examples of free vibration and forced vibration analyses are presented to 

demonstrate the convergence, validity and efficiency of the present methods. Some 

important parameters on the performance of the present method are also investigated 

thoroughly in this paper.  

2. Moving Least Square (MLS) approximation 
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In this section a briefing of MLS approximation is given. More details can be found in a 

paper by Lancaster and Salkauskas (1981) . 

     Consider a problem domain Ω. To approximate a function u(x) in Ω, a finite set of 

p(x) called basis functions is considered in the space coordinates xT=[x, y]. The basis 

functions in two-dimension is given by 

 pT(x)=[1, x, y, x2, xy, y2…] (1) 

The MLS interpolant uh(x) is defined in the domain Ω by 

 
∑

=
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m

j
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h apu
1

T )()()()()( xaxpxxx  (2) 

where m is the number of basis functions, the coefficient aj(x) in equation (2) is also 

functions of x; a(x) is obtained at any point x by minimizing a weighted discrete L2 norm 

of: 
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where n is the number of points in the neighborhood of x for which the weight function 

υ(x-xi)≠0, and ui is the nodal value of u at x=xi .  

The stationarity of J with respect to a(x) leads to the following linear relation between 

a(x) and ui: 

 A(x)a(x)=B(x)u (4) 

Solving a(x) from equation (4) and substituting it into equation (2), we have 
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where the MLS shape function φi(x) is defined by  
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where A(x) and B(x) are the matrices defined by 
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 B(x)=[ υ1(x)p(x1), υ2(x)p(x2),…, υn(x)p(xn)] (8) 

    It can be found from above discussion that the MLS approximation does not pass 

through the nodal parameter values. Therefore the MLS shape functions given in 

equation (6) do not, in general, satisfy the Kronecker delta condition. Thus, 
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    The choice of weight function plays an important role in the performance of the MLS 

interpolation. Many kinds of weight functions can be chosen (Belytscko et al.,1994). In 

this paper, the following 4-orders spline function is used: 
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Where di=|xQ-xi| is the distance from node xi to the sampling point xQ, rυ is the size of the 

support for the weight function. 

   In MLS approximation, the number of nodes, n, chosen in the influence domain should 

ensure matrix A in equation (6) invertible and the interpolation accurate. The reasonable n 

depends on the problem and the number of basis function, m.  It has been found (Chati and 

Mukherjee, 2000) that n~15-30 leads to acceptable results for 2-D problem and m~3-6. 

3.Basic equations of elastodynamics 

The strong form of the initial/boundary value problem for small displacement 

elastodynamics is as follows: 
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iiijij ucumb ɺɺɺ +=+,σ  (11) 

where m is the mass density, c is the damping coefficient, 
2

2
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u
u i

i ∂
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=ɺɺ  is the acceleration, 

t

u
u i

i ∂
∂

=ɺ  the velocity, σij the stress tensor, which corresponds to the displacement field 

ui, bi the body force tensor, and ( ),j denotes
jx∂

∂
.  The auxiliary conditions are given as 

follows: 

 Natural boundary condition:        ijij tn =σ             on  Γt (12a) 

 Essential boundary condition:           ii uu =            on  Γu (12b) 

 Displacement initial condition:  )(),( 00 xuxu =t       x∈Ω (12c) 

 Velocity initial condition:         )(),( 00 xvxu =tɺ       x∈Ω (12d) 

 

in which the  iu  , it , u0 and v0 denote the prescribed displacements, tractions, initial 

displacements and velocities, respectively,  and nj is the unit outward normal to domain Ω.  

4. Free vibration analysis 

4.1 Local weak form 

The governing equation for no damping free vibration is as follows: 

 
ijij um ɺɺ=,σ  (13) 

The boundary conditions are usually the same form of equations (12a) and (12b), but the 

traction 0=t . In the free vibration analysis, u(x,t) can be written as 
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 )sin()(),( ϕω += tt xuxu  (14) 

where ω is the frequency. Substituting equation (14) into equation (13) leads to the 

following equations 

 02
, =+ ijij muωσ   (15) 

It should be noted that the stresses, σσσσ, and displacements, u, in equation (15) are only the 

function of coordinator x. 

     A local weak form of equation (15), over a local sub-domain Ωs bounded by Γs, can be 

obtained using the weighted residual method 

 0d)( 2
, =Ω+∫Ω s

ijiji muw ωσ  (16) 

where wi is the weight function.  

    The first term on the left hand side of equation (16) can be integrated by parts to become 

 0d)(d 2
, =Ω−−Γ ∫∫ ΩΓ ss

iiijjijiji muwwnw ωσσ  (17) 

The support sub-domain Ωs of a node xi is a domain in which wi(x)≠0. A arbitrary shape 

support domain can be used (Atluri et al 1999b). A circle or rectangular support domain 

is used in this paper for convenience. From Figure 1, it can be found that the boundary Γs 

for the support domain Ωs is usually composed by three parts: the internal boundary Γsi, 

the boundaries Γsu and Γst, over which the essential and natural boundary conditions are 

specified. Imposing the natural boundary condition and noticing that ijij t
n

u
n ≡

∂
∂=σ in 

equation (17), we obtain: 

 0d)(ddd 2
, =Ω−−Γ+Γ+Γ ∫∫∫∫ ΩΓΓΓ sstsusi

iiijjiiiiiii muwwtwtwtw ωσ  (18) 
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For a support domain located entirely within the global domain, there is no intersection 

between Γs and the global boundary Γ, Γsi=Γs , and the integrals over Γsu and Γst vanish. 

Because of 0=t  on Γt, the integrals over Γst vanish for all nodes in the free vibration 

analysis. 

     With equation (18) for any node xi, instead of dealing with a global problem equation 

(15), the problem becomes to deal with a localized problem over a local support domain. 

     The problem domain Ω is represented by properly scattered nodes. The MLS  

approximation (5) is used to approximate the value of a point xQ. Substituting equation 

(5) into the local weak form (18) for all nodes leads to the following discrete system 

equations 

 02 =− MuKu ω  (19) 

where the “stiffness” matrix K and  “mass” matrix M are defined by 

 ∫∫∫
ΓΓΩ

Γ−Γ−Ω=
susis

jijijiij dddT
(MLPG) NDBwNDBwDBvK  (20a) 

 ∫
Ω

Ω=
s

jiij m dΦwM  (20b) 

with w being the value of the weight function matrix, Φ  being the shape function matrix, 

corresponding to node i, evaluated at the point x, and 
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     For free vibration analyses, equation (19) can also be written as: 

      0)( 2 =− qMK ω  (21) 

where q is the eigenvector. Equation (21) is the MLPG local weak formulation for free 

vibration analysis. In order to determine the frequencies, ω, and free vibration modes, it 

is necessary to solve the linear eigenvalue equation. However, It remains the essential 

boundary condition equation (12b) need be satisfied. 

4.3 Imposition of essential boundary conditions 

In the MLPG method, it is difficult to implement essential boundary conditions, because 

the shape functions constructed by MLS approximation lack the delta function property. 

In static analyses, strategies have been developed for alleviating the above problem, such 

as using the Lagrange multiplier method, the penalty method (Atluri and Zhu, 1998), and 

the direct interpolation method (Liu and Yan, 2000). In free vibration analyses using the 

MLPG method, orthogonal transform techniques (Atluri et al., 1999b; Ouatouati and 

Johnson, 1999) are utilized in order to eliminate the independent modes.  

     For free vibration analysis, the essential boundary conditions are always 

homogeneous, therefore, we have 0=iu  in equation (12b). Substituting equation (5) into 

the equation (12b), we find a set of algebraic linear constraint equations 

for plane stress 
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      0=Cq  (22) 

Using singular value decomposition (Strang, 1976), C can be decomposed as:  

      TVUC ∑=  (23) 

where U and V are orthogonal matrices, ΣΣΣΣ has diagonal form which diagonal elements are 

equal to singular values of C.  The matrix V can be written as: 

      { }T
)(, rnnrn

T
−××= VVV  (24) 

where r is the rank of C, namely the number of independent constraints.  

     Performing coordinate transformation: 

      qVq ~
)( rnn −×=  (25) 

The change of co-ordinates satisfies the constrain equation (22). Substituting equation 

(25) into equation (21), leads to: 

      0qMωK =− ~)
~~

( 2  (26) 

where )()()()(
~

rnnnn
T

nrnrnrn −×××−−×− = VKVK  and )()()()(
~

rnnnn
T

nrnrnrn −×××−−×− = VMVM  are the 

dimension reduced stiffness and mass matrices. After the above discussed orthogonal 

transform, essential boundary conditions have been satisfied and independent modes have 

been eliminated in equation (26). 

4.3 Numerical implementation of the MLPG method 

 Theoretically, as long as the union of all local domains, Ωs, covers the global domain Ω, 

the equilibrium equation and the boundary conditions will be satisfied in the global 

domain Ω and in its boundary Γ by using above discussed MLPG formulation.  However, 

the support domain used will affect the solution, especially in dynamic analyses. The 
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influence on of the choice of local support domain will be studied in the following 

numerical examples.  

      As the MLPG is regarded as a weighted residual method, the weight function plays an 

important role in the performance of the method. Theoretically, as long as the condition 

of continuity is satisfied, any weight function is acceptable. However, the local weak 

form is based on the local sub-domains centered by nodes. It can be found that the weight 

function with the local property, which should decrease in magnitude as the distance from 

a point xQ to the node xi increases, yields better results. Therefore, we will consider 

weight functions, which only depend on the distance between two points, such as the 

spline weight functions equation (10). It can be easily seen that the system stiffness 

matrix K in the present method is banded but usually asymmetric. However, similarly as 

Galerkin FE methods, the weight function, w, can be take as the same formulation as 

equation (5). In this case K becomes symmetrical (Atluri et al., 1999b). This symmetrical 

stiffness matrix can be an added advantage in applying the present MLPG method.  

A numerical integration is needed to evaluate the integration in equation (20). The 

Gauss quadrature is used in the MLPG method. For a node xi, a local integration cell is 

needed to employ Gauss quadrature. For each Gauss quadrature point xQ, the MLS 

interpolation is performed to obtain the integrand. Therefore, as shown in Figure 1, for a 

node xi, there exist three local domains: local integration domain ΩQ (size rq), weight 

function domain Ωw (same as Ωs) for wi≠0 (size rw), and interpolation domain Ωi for xQ 

(size ri). These three local domains are independent as long as the condition rq≤rw is 

satisfied. It should be noted that when the weight function is used in the form of equation 

(10), the weight function w will be zero along the boundary of integration domain if the 
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integration domain and weight domain are same(rq=rw). Hence, the equation (20b) can be 

simplified because the integration along the internal boundary Γsi vanishes. Because the 

problem domains in following examples are rectangle domains, rectangle sub-domains 

are used for establishing weight function. The size of the sub-domain for node i is defined  

 rw=α di (27) 

where, α is a coefficient chosen. The di is the shortest distance between the node i and 

neighbor nodes. It has been found in the static analyses that α=1.0~3.0 can obtain an 

acceptable result (Liu and Yan 2000). 

       There exit difficulties to obtain the exact numerical integration in meshless methods 

(Atluri et al., 1999b; Dollow and Belytschko, 1994; Liu and Yan, 1999).  Insufficiently 

accurate numerical integration may cause a deterioration and a rank-deficiency in the 

numerical solution. The numerical integration errors are results from the complexities of 

the integrand. First, the shape functions constructed using the MLS approximation have a 

complex feature. The shape functions have different form in each small integration 

region. The derivatives of shape functions might have an oscillation. Second, the 

overlapping of interpolation domains makes the integrand in the overlapping domain is 

very complicated. In order to guarantee the accuracy of the numerical integration, the ΩQ 

should be divided into small regular partitions. In each small partition, more Gauss 

quadrature points should be used (Atluri et al. 1999b).  

4.4 Numerical results  

The MLPG method is used for free vibration analysis of 2-D structures. Except special 

mentioned, the units are taken as standard international (SI) units in following examples. 



Computational Mechanics, 27 (2001) 188-198, Springer-Verlag 

 14 

Example 1: A cantilever beam 

The MLPG method is applied to analyze free vibration of a cantilever beam as shown in 

Figure 2. The problem has been analyzed by Nagashima (1999) using Node-By-Node 

Meshless (NBNM) method. A plane stress problem is considered. The parameters are 

taken as length L=100mm, height D=10mm, thickness t=1.0mm, Young’s modulus 

E=2.1×104kgf/mm2, Poisson ration ν=0.3, mass density m=8.0×10-10 kgfs2/mm4. Figure 3 

shows two kinds of nodal arrangements, coarse (63 nodes) arrangement and fine 

arrangement (306 nodes). Different sizes of sub-domains are investigated with different α 

in equation (27). It can be found that α=1.5~2.5 can obtain almost identical results in the 

free vibration analyses. Therefore, α=1.5 is used in following free vibration analyses. 

Frequency results of these two nodal arrangements obtained by MLPG are listed in Table 

1. The results obtained by FEM software, ABAQUS, and NBNM method (Nagashima, 

1999) are listed in the same table.  From this table, one can observe that the results by the 

present MLPG method is in good agreement with those obtained using FE and NBNM 

methods. The convergence of the present method is also demonstrated in this table. As 

the number of nodes increases, results obtained by the present MLPG approach to the 

FEM results (if we consider the FEM results as a reference). The first ten eigenmodes 

obtained by MLPG method are plotted in Figure 4. Comparing with FEM results and 

Nagashima’s(1999) results, almost identical results are obtained. 

      In Timoshenko beam theory, the slenderness of a beam is expressed by the 

slenderness ratio, Lr / , where AIr /=  is the radius of gyration of the cross-section, I 

the moment of inertia, and L the length of the beam. Beams with two slenderness ratios, 

r/L=0.029(L=100,D=10,t=1.0) and 0.144(L=100,D=50,t=1.0), are analyzed.  The 
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frequency results are list in table 2. Comparing with the Euler-Bernoulli beam results, as 

the slenderness ratio r/L decreases, it can be found that the natural frequencies of this 

two-dimensional beam approach the values for an Euler-Bernoulli model.  

Example 2: A variable cross-section beam 

In this example the present MLPG method is used in free vibration analysis of cantilever 

beam with variable cross-section, shown in Figure 5. Results are obtained for following 

numerical parameters: the length L=10, the height h(0)=5, h(L)=3, the thickness t=1.0, E 

=3.0×107, ν=0.3 and m=1.0. The nodal arrangement is shown in Figure 5.  Results 

obtained by the presented MLPG method and the FEM software, ABAQUS, are listed 

and compared in Table 3. Results obtained by these two methods are in very good 

agreement. 

Example 3: A shear wall   

Figure 6 shows a shear wall with four openings, which has been solved using Boundary 

Element Method by some researchers (Brebbia et al., 1984). The problem is solved for the 

plane stress case with E=1000, ν=0.2,t=1.0 and m=1.0. 574 uniformed nodes are used to 

discretize the problem domain. The problem is also analyzed by FEM software ABAQUS. 

Natural frequencies of the first 8 modes are calculated and listed in Table 4. Results 

obtained by BEM and FEM are listed in the same table. Results obtained by the present 

MLPG method are in very good agreement with those obtained using BEM and FEM.  

5. Forced vibration analysis 

5.1 Local weak form 

      The governing equation for forced vibration of 2-D solids is equation (11). The 

boundary conditions and initial conditions are given in equation (12). The penalty method 
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is used to enforce the essential boundary conditions. A local weak form of the partial 

differential equation (11), over a local domain Ωs bounded by Γs, can be obtained using 

the weighted residual method locally 

 0d)(d)( , =Γ−−Ω−−+ ∫∫
ΓΩ us

iiiiiijiji uuwucumbw ασ ɺɺɺ  (28) 

The third term on the left hand side of equation (28) can be integrated by parts, and 

imposed the natural boundary condition (12a), we obtain:  

 ∫ ∫∫∫Ω ΓΓΓ
Γ+Γ−Γ−++

s sususi
iiiiiiijjiiiii uwtwtwxwucwumw dddd)( , ασɺɺɺ  

Ω+Γ+Γ= ∫∫∫ ΩΓΓ
ddd

ssust
iiiiii bwuwtw α  

(29) 

In the forced vibration analysis, u is the function both of space co-ordinate and time. 

Only space domain is discretized. Equations (5) can be re-written as 

 
∑
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=
n
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h tutu
1

)()(),( xx φ  (30) 

Substituting equations (30) into the local weak form (29) for all nodes leads to the 

following discrete equations 

     )()()()( tttt fKuuCuM =++ ɺɺɺ  (31) 

where the mass matrix M is  given by equation (20b), K, C and f are defined as 

 Γ+Γ−Γ−Ω= ∫∫∫∫
ΓΓΓΩ

djijijijiij

sususis

ΦwNDBwNDBwDBvK αdddT  (32a) 

 ∫
Ω

Ω=
s

jiij c dΦwC  (32b) 

 ∫∫∫ ΩΓΓ
Ω+Γ+Γ=

s
ttt iiii d)(dd)()(

sust
bwuwtwf α  (32c) 

5.2 Direct analysis of forced vibration 

      The methods of solving equation (31) can be largely divided into two categories:  the 

modal analysis and the direct analysis. The direct analysis methods are utilized in this 

paper.  Several direct analysis methods have been developed to solve the dynamic 
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equation (31), such as central difference method and Newmark method ( see, eg., Petyt, 

1990).  The central difference and Newmark methods are used in this paper.  

(a) The central Difference Method 

 The central difference method (CDM) consists of expressing the velocity and 

acceleration at time t in terms of the displacement at time t-∆t, t and t+∆t using central 

finite difference formulation: 

     
))()(2)((

1
)(

2
ttttt

t
t ∆++−∆−

∆
= uuuuɺɺ  

(33a) 

     
))()((

2

1
)( tttt

t
t ∆++∆−−

∆
= uuuɺ  

(33b) 

where ∆t is time step. The response at time t+∆t is obtained by evaluating the equation of 

motion at time t. The Central Difference Method is, therefore, an explicit method. 

    The CDM is conditionally stable. The stable critical time step for CDM can be 

obtained from the maximum frequencies based on the dispersion relation using 

(Belytschko et al., 2000) 

     
)1(

2
max 2crit

ii
ii

t ξξ
ω

−+=∆  (34) 

where ωi is the frequency and ξi the fraction of critical damping in this mode. For non-

uniform arrangements of the nodes, the critical time step can be obtained by the 

eigenvalue inequality. 

     
2/1

max

crit

)(max

2
min

Q
Q

t
λ

=∆  (35) 

where Q
maxλ  is the maximum eigenvalue at the quadrature point xQ. The value of Q

maxλ  

depends on the size of local integration cell and the size of the interpolation domain 

(Belytschko et al., 2000).  
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(b) The Newmark method 

The Newmark method is a generalization of the linear acceleration method. This latter 

method assumes that the acceleration varies linearly within the interval (t, t+∆t). This 

gives 

     τ)(
1

tttt t
uuuu ɺɺɺɺɺɺɺɺ −

∆
+= ∆+  

(36) 

and  

     ttttttt ∆+−+= ∆+∆+ ])1[( uuuu δδ ɺɺɺɺ  (37a) 

     2])
2

1
[( tt tttttt ∆+−+∆+= ∆+∆+ uuuuu ɺɺɺɺɺ ββ  

(37b) 

The response at time t+∆t is obtained by evaluating the equation of motion at time t+∆t. 

The Newmark method is, therefore, an implicit method. 

    The Newmark method is a unconditionally stable provided  

     
5.0≥δ   and  2)5.0(

4

1 +≥ δβ  
(38) 

One can find that 5.0=δ  and 25.0=β leads to acceptable results for most of problems. 

5.0=δ  and 25.0=β are always used in this paper for simplification. 

5.3 Numerical results  

The forced vibration for a 2-D structures, a cantilever beam, as shown in Figure 7, is 

analyzed. The problem is solved for the plane stress case with E=3×107, ν=0.3 and 

thickness t=1.0.  In this numerical example for the forced vibration analysis, the beam 

subjected to a parabolic traction at the free end, P=1000g(t). g(t) is the function of time. 

As shown in Figure 7 (b), 55 uniformed nodes are used to discretize the problem domain. 

For simplification, m=1.0 is considered and the units are taken as standard international 

(SI) units. Displacements and stresses for all nodes are obtained. Detailed results of 
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vertical displacement, uy, on the middle node, A, of the free end of the beam are 

presented. For comparison, solutions for this problem are also obtained using the Finite 

Element software, ABAQUS/ Explicit.  

a. Simple harmonic loading  

      Consider first )sin()( ttg fω= , where ωf is the frequency of the dynamic load. ωf=27 

is used in this example. The parameter, α in equation (27), on the performance of the 

method is firstly investigated. 

    The results of α=0.5, 1.0, 1.5 and 2.0 are obtained. The displacements uy of point A 

are plotted in Figures 8 and 9. From these figures, one can observe that results will be 

unstable for both CDM and Newmark method when 0.1≤α . Increase α is useful to 

increase the accuracy and the stability for both CDM and Newmark method. However, if 

the integration domain is too large (α too big), more sub-cells are needed to obtain 

accurate integrations. It will be computationally more expensive. Our study has found 

that 5.2~5.1=α  works for most of problems. 5.1=α  is used in following calculations. 

    In order to investigate the property of two different direct time integration methods, 

CDM and Newmark method, results of different time steps are obtained and plotted in 

Figure 10.  It can be found that for 4101 −×=∆t  both methods obtain results in very 

agreement with FEM. When crittt ∆≥∆ (from equation 35, 3101 −×≈∆ critt ), CDM will 

become unstable. However, the Newmark method is always stable for any time step. It 

demonstrated that the CDM is a conditionally stable method and the Newmark method is 

an unconditional stable method. A bigger time step can be used in Newmark method. 

Even ∆t=1×10-3 or 1×10-2 is used, very good results can be obtained using Newmark 
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method. However, it should be noted that the computational error would increase with the 

increase of time step in the Newmark method.  The accuracy of Newmark method would 

become unacceptable when the time step is too big (e.g. 2105 −×=∆t ). The 

unconditional stable property of Newmark is very useful for the structural forced 

vibration analysis in engineering applications, especially when responses for a longer 

time are needed. A big time step can be used in the Newmark method, thus considerable 

computations can be saved.  

     Many time steps are calculated to check the stability of the presented MLPG 

formulation.  Newmark method with 3105 −×=∆t  is used, and the damping coefficient, 

c=0.4, is considered. Results until to 20s (about 100 natural vibration periods) are plotted 

in Figure 11. It can be found that a very stable result is obtained. After a long period time, 

the forced vibration under a simple harmonic dynamic loading becomes a stable vibration 

with the forced frequency ωf. From the vibration theory (Meirovitch 1980), a resonance 

will occur when the if ωω = , where ωi is the i-th natural frequency. From Figure 11, one 

can observe that the amplitude of vibration is very big (i.e. about 15 times of static 

displacement) because of 1ωω ≈f .  In addition, a beat vibration with the period Tb 

occurs when 1ωω ≈f .  Tb can be obtained from Figure 11, Tb≈4.3. From the vibration 

theory, 
1

2

ωω
π
−

=
f

bT , the first natural frequency of the system can be computed 

out 3.281 =ω , which is nearly same as the result obtained in the free vibration analysis by 

FEM, 281 =FEMω .  

b. Transient loading  
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    The transient response of the beam subjected to a suddenly loaded and suddenly 

vanished force P=1000g(t) is considered. The function g(t) is shown in Figure 12. The 

present MLPG method is used to obtain the transient response with and without damping. 

The Newmark method is utilized in this analysis. The result for c=0 is plotted in Figure 

13. For comparison, the result obtained by the Finite Element software, ABAQUS/ 

Explicit, is shown in the same figure. Results obtained by the present MLPG method are 

in very good agreement with those obtained using FEM. Many time steps are calculated 

to check the stability of the presented MLPG formulation. The result for c=0.4 is plotted 

in Figure 14. From Figure 14, one can observe that the response is declined with time 

because of damping. A very stable result is obtained again.  

6. Discussion and conclusions 

MLPG formulations for free vibration and forced vibration analyses of two-

dimensional solids and structures have been presented in this paper. Local weak forms 

are developed from the dynamic partial differential equation. The MLS approximation is 

used to obtain the shape functions. The present method is a truly meshless method, which 

does not need any “element” or “mesh” for both field interpolation and background 

integration.  

Some important parameters on the performance of the method have been investigated. 

It has been found that the parameter α, which decides the size of the sub-domain needs to 

be chosen carefully, especially, in the dynamic analyses.  It can be found that 

5.2~5.1=α  leads to acceptable results for most of problems.  

Programs of the present MLPG method have been developed, and a number of 

numerical examples of free vibration and forced vibration analyses are presented to 
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demonstrate the validity and efficiency of the present method. The results presented are 

encouraging.  It is demonstrated that the present method is easy to implement, and very 

flexible for free vibration and forced vibration analyses in solids and structures.  
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Table 1 Natural frequency of a cantilever beam with different nodal distribution 

      

Mode 
MLPG Nagashima 

(1999) 
FEM 

(ABAQUS) 
MLPG Nagashima 

(1999) 
FEM 

(ABAQUS) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

919.47 

5732.42 

12983.25 

14808.64 

26681.81 

38961.74 

40216.58 

55060.24 

64738.59 

68681.87 

926.10 

5484.11 

12831.88 

14201.32 

25290.04 

37350.18 

38320.59 

50818.64 

63283.70 

63994.48 

870 

5199 

12830 

13640 

24685 

37477 

38378 

51322 

63584 

    65731 

824.44 

5070.32 

12894.73 

13188.12 

24044.43 

36596.15 

38723.90 

50389.01 

64413.89 

64937.83 

844.19 

5051.21 

12827.60 

13258.21 

23992.82 

36432.15 

38436.43 

49937.19 

63901.16 

64085.90 

830 

4979 

12826 

13111 

23818 

36308 

38436 

49958 

63917 

64348 

Unit: Hz 

Table 2 Natural frequencies of a cantilever beam with different slenderness 

r/L=0.144 r/L=0.029  

Modes 
MLPG  FEM 

(ABAQUS) 

Euler 

beam 
MLPG  FEM 

(ABAQUS) 

Euler 

beam 

1 3565.81 3546.1 4138.23 824.44 830.19 827.65 

Error with 
Euler 

beam(%) 

-13.83 -14.31 / -0.39 0.31 / 

2 13025.06 12864 25933.86 5070.32 4979 5186.77 

Error with 
Euler 

beam(%) 
18.56 20.6 / -2.24 -4.01 / 

   Unit: Hz 

Coarse node distribution Fine node distribution 

Gu and Liu : Table 1 & 2 
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Table 3 Natural frequencies of a variable cross-section cantilever beam 

 

ω(rd/s) 

Modes 
1 2 3 4 5 

MLPG method 263.21 923.03 953.45 1855.14 2589.78 

FEM (ABAQUS) 262.09 918.93 951.86 1850.92 2578.63 

 

Table 4 Natural frequencies of a shear wall 

ω(rd/s)  

Mode MLPG method FEM (ABAQUS) Brabbia et al.(1984) 

1 2.069 2.073 2.079 

2 7.154 7.096        7.181 

3 7.742 7.625 7.644 

4 12.163 11.938 11.833 

5 15.587 15.341 15.947 

6 18.731 18.345 18.644 

7 20.573 19.876 20.268 

8 23.081 22.210 22.765 

 

Gu and Liu : Table 3 & 4 
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Fig. 1  The support domain ΩS and integration domain ΩQ for node 
i; the interpolation domain Ωi for Gauss integration point xQ  

Node i 

Gu and Liu : Fig. 1 
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Fig 2.  Cantilever beam 

Fig 3(a).  Coarse nodal distribution  

Fig. 3(b)  Fine nodal distribution  

Gu and Liu : Fig. 2 & 3 
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Gu and Liu : Fig. 4 
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Fig. 4 Eigenmodes for the cantilever beam by MLPG method 

Mode 7 Mode 8 

Mode 9 Mode 10 

Gu and Liu : Fig. 4 
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Fig. 5 A cantilever beam with variable cross-section 

Gu and Liu : Fig. 5 
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Fig. 6 A Shear wall with four openings 

Gu and Liu : Fig. 6 
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Fig. 7 (a)  A Cantilever beam subjected a parabolic 

traction 
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Fig. 7 (b)  The nodal arrangement 

Gu and Liu : Fig. 7 
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Gu and Liu : Fig. 8 
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Fig. 9  Displacements uy at point  A using Newmark method ( 5.0=δ   
and  25.0=β , with g(t)=sin(ωωωωt)) 
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Gu and Liu : Fig. 9 
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Gu and Liu : Fig. 10 
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Fig. 11   Displacements uy at point A (g(t)=sin(ωωωωt)) 

Gu and Liu : Fig. 11 
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Fig. 13 Transient displacements uy at point  A using Newmark 
method ( 5.0=δ   and  )25.0=β   
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Gu and Liu : Fig. 12 & 13 
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