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Abstract

Purpose Previous studies have found biochar-induced effects on native soil organic carbon (NSOC) decomposition, with a range

of positive, negative and no priming reported. However, many uncertainties still exist regarding which parameters drive the

amplitude and the direction of the biochar priming.

Materials and methods We conducted a quantitative analysis of 1170 groups of data from 27 incubation studies using boosted

regression trees (BRTs). BRT is a machine learning method combining regression trees and a boosting algorithm, which can

effectively partition independent influences of various factors on the target variable in the complex ecological processes.

Results and discussion The BRT model explained a total of 72.4% of the variation in soil carbon (C) priming following biochar

amendment, in which incubation conditions (36.5%) and biochar properties (33.7%) explained a larger proportion than soil properties

(29.8%). The predictors that substantially accounted for the explained variation included incubation time (27.1%) and soil moisture

(5.0%), biochar C/N ratio (6.2%), nitrogen content (5.5%), pyrolysis time during biochar production (5.1%), biochar pH (4.5%), soil C

content (5.2%), sand (4.7%) and clay content (4.1%). In contrast, other incubation conditions (temperature, biochar dose, whether

nutrient was added), biochar properties (biochar C, feedstock type, ash content, pyrolysis temperature, whether biochar was activated)

and soil properties (nitrogen content, silt content, C/N ratio, pH, land use type) had small contribution (each < 4%). Positive priming

occurred within the first 2 years of incubations, with a change to negative priming afterwards. The priming was negative for low N

biochar or in high-moisture soils but positive on their reverse sides. The size of negative priming increased with rising biochar C/N

ratio, pyrolysis time and soil clay content, but deceased with soil C/N ratio.

Conclusions We determine the critical drivers for biochar effect on native soil organic C cycling, which can help us to better

predict soil C sequestration following biochar amendment.
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1 Introduction

During the last decade, biochar has rapidly gained attention

not only from the scientific community but also from

policymakers and farmers, due to its multifaceted benefits to

agriculture and the environment (Lehmann 2007). Biochar is a

carbon (C)-rich product obtained when biomass, such as

wood, manure or crop residue, is pyrolysed with little or no

available oxygen (Lehmann and Joseph 2009). It has also

been referred to as pyrogenic organic matter (Maestrini et al.

2014a) or charcoal (Wardle et al. 2008). Here, we define bio-

char as a collective group of pyrogenic organic matter applied

as a soil amendment. Due to the aromatic nature of C in bio-

char, it possesses a degree of recalcitrance in soil with mean

residence times reported between hundreds to thousands of

years (Schmidt et al. 2002; Kuzyakov et al. 2009). This prop-

ertymakes it a valuable tool for soil C sequestration (Lehmann

et al. 2006; Woolf et al. 2010; Ciais et al. 2013).

However, the amendment of soil with biochar may also

affect the decomposition of native soil organic carbon

(NSOC). When biochar addition stimulates NSOC decompo-

sition (i.e. positive priming), its benefit to C sequestration will

be partially compromised (Wardle et al. 2008). When biochar

reduces NSOC decomposition (i.e. negative priming), its C

sequestration potential will be greater than expected (Woolf

and Lehmann 2012). Many incubation studies have tested the

impacts of biochar on NSOC decomposition, but results have

been inconsistent. Positive priming of NSOC (Wardle et al.

2008; Luo et al. 2011), negative priming (Jones et al. 2011; Lu

et al. 2014b), and no effect (Santos et al. 2012; Nguyen et al.

2014) have been reported. Previous incubation studies report-

ed that biochar priming was affected by factors including bio-

char properties such as pyrolysis temperature and feedstock

type (Zimmerman et al. 2011; Singh and Cowie 2014), soil

properties such as pH (Luo et al. 2011) and C content (Stewart

et al. 2013) and incubation conditions including soil moisture

(Yu et al. 2013) and soil temperature (Fang et al. 2015).

However, many uncertainties still exist on the parameters

driving the amplitude and the direction of the biochar priming

(Maestrini et al. 2014a). Apparently, a synthesis of the data

from published papers and a comprehensive understanding of

the relation between biochar-induced soil C priming and its

determining factors are needed. Although two recent meta-

analyses have summarized the influencing factors for biochar

effect on NSOC decomposition (Maestrini et al. 2014a; Wang

et al. 2015), they neither included incubation conditions (e.g.

incubation temperature and moisture) nor compared the im-

portance of the factors for driving the biochar-induced C

priming. Moreover, there are many new empirical papers pub-

lished in recent years that need to be incorporated to the data-

base to give an updated result.

In this study, we conducted a synthesis to analyse 1170

groups of data from 27 controlled incubation studies. The data

included NSOC decomposition rates, under the treatments of

biochar amendment and without biochar amendment, and cor-

responding soil properties (land use, clay, silt and sand con-

tent, pH, soil organic C (SOC) and soil total nitrogen (STN)

content and C/N (nitrogen) ratio), biochar properties (feed-

stock type, pyrolysis time and temperature, activation, pH, C

and N contents, C/N ratio, ash content) and incubation condi-

tions (temperature, moisture, incubation time, biochar dose

and mineral nutrient addition). The aim is to determine the

critical factors driving the amplitude and the direction of the

biochar priming on NSOC decomposition in well-controlled

incubation studies.

2 Material and methods

2.1 Data collection

We performed a systematic literature search of peer-reviewed

publications on the effect of biochar addition on NSOC de-

composition using the Web of Science database. The cut-off

date was 15 August 2017. We collected data from studies that

provide NSOC decomposition rates in soils with biochar

amendment and without biochar amendment (control), ac-

cording to the following criteria: (1) We only chose incubation

studies rather than field studies, because in the field, it may

have higher soil moisture or temperature in the biochar treat-

ment than in the control (Lu et al. 2014a; Malghani et al. 2015;

Ventura et al. 2015), impacting observed results for biochar-

induced C priming; (2) C isotope (13C or 14C) of emitted CO2

must be measured, so it can differentiate the quantity of CO2

derived from biochar and from NSOC; (3) the incubated

biochar-amended soil must be without growing plants and

without further organic material addition; (4) when the soil

was incubated with mineral nutrient addition, similar mineral

treatments were required between biochar amendments and

controls; (5) the soil must experience the process of pedogen-

esis, so the data for loess (like soil parent material) in

Kuzyakov et al. (2009) was excluded; (6) biochar must be

unprocessed other than by activation (partial gasification with

steam) and produced under zero or limited oxygen conditions

enabling better understanding and replication of the properties

of the biochar that impact priming. Thus, the data for (1)
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artificially weathered biochar described in Naisse et al.

(2015b), (2) biochar with DOC extracted in Whitman et al.

(2014), (3) hydrothermal biochar in Naisse et al. (2015b)) and

(4) char produced under full atmosphere (enough oxygen) in

Zimmerman et al. (2011) were excluded.

Subsequently, in order to take into account the effect

of incubation time on the biochar-induced priming, we

extracted the paired data of NSOC decomposition rates

of biochar treatment (Xe) and control (Xc) at different

sampling dates from text, tables or figures in the col-

lected studies. The data presented in figures were ob-

tained using OriginPro 7.5 software (OriginLab,

Northampton, MA, USA) with the ‘Digitize. OPK’

plug-in. The procedure may result in the collected data

including more data points from some studies with mul-

tiple sampling times than other studies with a few sam-

pling times. However, it will not bring different weights

between these two types on the relation between the

biochar-induced soil C priming and predictors, since

the points for multiple sampling times in the same treat-

ment have the same property for a given predictor (ex-

pect for incubation time). Moreover, our data collection

could mean that more than one experimental treatment

was compared to the same control. In these instances, it

artificially increased the number of replicates and may

bias the results towards overconfidence (i.e. confidence

intervals may be too narrow). However, the more con-

servative approach of using only a single average mea-

surement for the different measures will sacrifice too

much information (Sagrilo et al. 2014).

Some studies directly provided decomposition rates of

NSOC under biochar amendment and control (Jones et al.

2011; Zimmerman et al. 2011; Santos et al. 2012; Fang et al.

2014; Lu et al. 2014b). However, most of the studies did not

report them directly, so we performed data transformations.

Some studies showed the total CO2 emission in the biochar

treatment and CO2 amount derived from biochar (Kuzyakov

et al. 2009; Keith et al. 2011; Naisse et al. 2015a), and the

decomposition amount of NSOC was calculated by the differ-

ence. Some studies showed the cumulative CO2 emission de-

rived from NSOC under different incubation stages (Cross

and Sohi 2011; Keith et al. 2011; Bruun and El-Zehery

2012; Singh et al. 2012; Maestrini et al. 2014b; Whitman

et al. 2014; Dharmakeerthi et al. 2015; Rittl et al. 2015; Cui

et al. 2017). Xe and Xc were calculated using the following

equation:

X e or X c ¼ CO2 Cnþ1−CO2 Cnð Þ=t ð1Þ

where CO2_Cn + 1 and CO2_Cn are the cumulative CO2-C pro-

duction derived from NSOC at the n + 1th and nth sampling

campaigns, respectively, and the value of t is the interval time

between the two sampling campaigns.

Some studies showed the remaining NSOC at different

incubation durations (Nguyen et al. 2014), and it was calcu-

lated by

X e or X c ¼ SOCnþ1−SOCnð Þ=t ð2Þ

where SOCn and SOCn + 1 are the amount of remaining NSOC

at the nth and n + 1th sampling campaigns.

Some studies showed priming as (Xe − Xc)/Xc (Luo et al.

2011; Farrell et al. 2013; Herath et al. 2015), and we set Xc as 1

and then calculated the value of Xe. When showing priming as

Xe − Xc (Naisse et al. 2015b; Yousaf et al. 2017), Xe was cal-

culated by the addition of Xc. For other cases (Murray et al.

2015; Kerré et al. 2016; Sheng et al. 2016; Luo et al. 2017), it

was calculated by the combination of the above equations. If

we were unable to calculate Xe and Xc, the study was excluded

from data collection. In total, we collected 1196 pairs of data

(Xe and Xc) across 27 studies.

In addition to Xe and Xc, the corresponding soil properties

(SOC, STN, C/N ratio, pH, clay, silt and sand contents and

land use), biochar properties (feedstock type, pyrolysis tem-

perature, pyrolysis time, whether biochar was activated, C and

N content, C/N ratio, pH and ash content) and incubation

conditions (incubation temperature, incubation soil moisture,

incubation days, biochar dose and whether nutrient was

added) were also collected. SOC and STN ranged from 2 to

114 and from 0.4 to 10 g/kg, respectively. Soil C/N ratio

ranged from 7.7 to 20.2. Soil pH ranged from 3.7 to 8.8.

Soils were under five types of land use, including cropland,

fallow, grassland, forest and wetland. Pyrolysis time and tem-

perature of producing biochar ranged from 0.025 to 48 h and

from 300 to 1200 °C. Biochar C and N contents ranged from

16.5 to 83.9% and from 0.09 to 6.29%, respectively. Biochar

C/N ratio ranged from 8 to 344. Biochar pH ranged from 3.90

to 11.21. Biochar ash content ranged from 3.0 to 57.2%.

Incubation temperature ranged from 20 to 60 °C, and soil

moisture ranged from 40 to 80% water-holding capacity

(WHC), except for some data expressed as water potential or

water-filled pore space (WFPS). The incubation time, attrib-

uting to the last day of a corresponding cumulative period,

ranged from 0 to 2551 days. Biochar was applied between

0.07 and 20% (as dry soil weight equivalents).

2.2 Data analysis

The effect size (ES) for each paired observation was calculat-

ed as the natural log of the response ratio as

ES ¼ Ln X e=X cð Þ ð3Þ

Thus, positive ES indicates an enhancement of NSOC de-

composition following biochar amendment, whereas negative

ES means the decrease of NSOC decomposition. The data of

ES outside of three standard deviations of its mean, 26 values
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totally, were considered outliers and discarded. There were

remaining 1170 groups of data (see Online Resource 1 in the

Electronic Supplementary Material).

To partition independent influences of soil properties, bio-

char properties and incubation conditions, we used boosted

regression trees (BRTs). BRT is an advanced form of machine

learning method that combines regression trees and boosting

algorithm (De'Ath 2007). In BRT, multiple trees are fitted and

combined in a forward stage-wise procedure to predict the

response of the dependent variable to multiple predictors

(De'Ath 2007). BRT can simultaneously handle explainable

variables of categorical and continuous types that avoids the

errors introduced by artificial categorization in the common

meta-analysis and does not require the distributional charac-

teristics of the data (Nguyen et al. 2016). Further, BRT can

handle missing values in predictors on the basis of ‘surrogate’

splitting (Zhang et al. 2015). In addition, the independence of

predictors is not required in BRT because the interactions of

predictors are modelled automatically by the hierarchical

structure of a tree (Zhang et al. 2015). Due to the above ad-

vantages, the BRTmodel has been applied effectively inmany

ecological or environmental studies (Zhang et al. 2012, 2015;

Nguyen et al. 2016).

BRT models were operated in R (version 2.15.2; R

Development Core Team 2012) by using the gbm package

(Elith et al. 2008). In the current BRT analysis, the Gaussian

error structure was chosen for the loss function because of the

attribution of our response variable (Zhang et al. 2012). There

are four input settings for BRT models: (1) the learning rate

determines the contribution of each tree to the growing model;

(2) the tree complexity controls the level of interactions in

BRT; (3) the bagging fraction sets the proportion of observa-

tions used in selecting variables; and (4) the cross-validation

specifies the number of times to randomly divide the data for

model fitting and validation (De'Ath 2007). To find the opti-

mal settings, we fitted 27 BRT models with the combinations

of the following settings: learning rates of 0.01, 0.005 and

0.001; bag fractions of 0.4, 0.5 and 0.6; 5-, 8- and 10-fold

cross-validations; and a tree complexity of 4 to account for

potential high interactions. Among the fitted models, the best

model had a cross-validation deviance of 0.081 (± 1 stand

error = 0.005) from a learning rate of 0.05, bag fraction of

0.6 and 10-fold cross-validation. The subsequent models were

all fitted with these optimal settings. The percentage of varia-

tion in ES explained by the BRT model was calculated as {1

− [(sum of squared residuals from a BRT model)/(sum of

squared residuals from an intercept-only model)]} × 100%,

where ‘residuals’ refer to test sample residuals (Robinson

2008). We also examined the relative influence of predictor

variables to quantify the importance of predictors on the prim-

ing effect. The influence of each predictor is based on the

number of times for which a variable is selected for splitting,

weighted by the squared improvement to the model as a result

of each split and averaged over all trees. Then, the relative

importance is scaled such that the sum is 100, and higher

numbers correspond to a stronger influence on the priming

effect. The net effects of predictors on priming effect average

out the effects of the other predictors included in the BRT

model and are visualized in partial dependence plots.

Moreover, we used a bootstrap technique to estimate the

95% confidence intervals (CI) around each variable, as the

BRT cannot directly provide them. According to Carslaw

and Taylor (2009), the estimation process was conducted by

taking a random sample (with replacement) of the full hourly

data set to generate 500 bootstrap replicates. A BRT model

was fitted to each sample and predictions made for each var-

iable in turn as described previously. These data are sorted in

descending order for each variable and approximate 100 × (1–

2α)% confidence limits calculated.

3 Results

The BRT model explained in total 72.4% of the ES variation.

Incubation conditions contributed 36.5% of the explanation

for the variation of ES, wherein 27.1% was derived from

incubation time, 5.0% from incubation moisture and the re-

maining 4.4% from incubation temperature, biochar dose and

nutrient addition (Fig. 1). The ES decreased across the period

from 0 to 206 days, increased to a peak at 773 days, then

sharply decreased until 1185 days and remained relative stable

following that time (Fig. 2a). The ES value decreased with soil

moisture, being positive at the range of 40–57% WHC and

negative from 57 to 70%WHC (Fig. 2b). The ES value slight-

ly decreased from an incubation temperature of 20 to 50 °C

(Fig. 2c). The ES value was larger for < 7.5% w/w biochar

dose than > 7.5%w/w dose (Fig. 2d). Nutrient addition did not

change the ES value (Fig. 2e).

Biochar properties contributed 33.7% of the explanation,

wherein 6.2% was from the biochar C/N ratio, 5.5% from

biochar N content, 5.1% from pyrolysis time and 4.5% from

biochar pH (Fig. 1). In contrast, other biochar properties, i.e.

feedstock type, ash content, pyrolysis temperature and wheth-

er biochar was activated, independently contributed < 4%, in-

dicating that they are not relatively important to explain the

variation of biochar effect on NSOC decomposition. The ES

value continually decreased with biochar C/N ratio (Fig. 3a).

Correspondingly, the ES values generally increased with bio-

char N content, being negative when biochar N < 3.8% but

positive when biochar N > 3.8% (Fig. 3b). The ES value con-

tinually decreased with increasing duration of pyrolysis from

0.025 to 9 h, being constant after 9 h (Fig. 3c). The ES value

kept constant during the range of biochar pH from 3.9 to 8.0,

then slightly decreased from 8.0 to 10.6, but increased when

biochar pH > 10.6 (Fig. 3d). In contrast to the relationship

between ES and biochar N content, the ES value decreased
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with increasing biochar C, being positive at low biochar

C content (< 37.6%) but negative at high biochar C

content (> 37.6%, Fig. 3e). The ES value did not

change with increasing biochar ash content (Fig. 3f).

The ES value decreased when biochar-derived pyrolysis

temperature rose from 325 to 600 °C and kept almost

constant after that (Fig. 3g). Among the five feedstocks,

only sludge-derived biochar resulted in a significant

positive priming and tree- and crop residue-derived bio-

char showed the lowest ES value, i.e. the largest nega-

tive priming (Fig. 3h). Biochar with activation had sim-

ilar ES with biochar without activation (Fig. 3i).

Compared with incubation conditions and biochar

properties, soil properties had a smaller contribution

(29.8%) to the explained variation (Fig. 1). Among

the soil properties, SOC was the largest contributor

Fig. 1 Percentage relative influence of factors on the priming effect following biochar amendment. The inner figure showed the comprehensive influence

of incubation conditions, biochar properties and soil properties

Fig. 2 Partial dependence plots

showing the variation in biochar

priming effect by incubation

condition variables used in the

BRT model. a Incubation time. b

Incubation soil moisture. c

Incubation temperature. d

Biochar dose (% dried soil

weight). e Nutrient addition or

not. The fitted function shows the

relationship between ES and an

explanatory variable while all

other explanatory variables are

kept constant at their mean level.

The shading shows the 95%

confidence intervals estimated,

and the vertical bars show the

standard deviations, from 500

bootstrap samples of the data set.

The horizontal dashed line

represented a predicted ES value

equal to 0
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(5.2%), and then it was sand content (4.7%) and clay

content (4.1%). The other soil properties had minor

contributions, with soil C/N ratio (3.6%), land use

(3.2%), soil pH (3.2%), silt content (2.9%) and STN

(2.9%). The ES value was positive when SOC <4 g/kg,

but sharply decreased to − 1 when SOC = 4 g/kg and

then kept generally constant after that (Fig. 4a). The

ES value increased with sand content from 4 to 35%,

then kept constant from 35 to 60%, but decreased

when sand content was larger than 60% (Fig. 4b). In

contrast, the ES value changed slightly with clay con-

tent from 1 to 54% but continuously decreased when

clay content was larger than 54% (Fig. 4c). Notably,

the ES value increased with increasing soil C/N ratio

(Fig. 4d). The soils under different land uses had sim-

ilar ES values (Fig. 4e). The ES generally decreased

with increasing soil pH (Fig. 4f). The ES value had a

slight decline with silt content (Fig. 4g) and increased

faintly with STN content (Fig. 4h).

4 Discussion

We identified incubation time as the largest determining factor

on biochar-induced C priming. The positive priming only oc-

curred within the first 775 days of incubation, shifting towards

negative priming afterwards (Fig. 2a). It was noted that the

number of data points for incubation periods greater than

2 years was smaller than shorter-term incubations.

Nevertheless, the trend of negative priming upon ageing in

soil is supported by many other studies (Zimmerman et al.

2011; Maestrini et al. 2014a, b; Whitman et al. 2014; Weng

et al. 2017). Moreover, a recent meta-analysis showed an av-

erage negative priming of 3.8% on NSOC decomposition

(Wang et al. 2015). These results demonstrated that biochar

amendment has the potential to increase non-biochar-derived

soil C stocks, especially over a longer term. The possible

mechanism for positive priming during early incubation is that

labile C within biochar can serve as an energy source for soil

microorganisms and stimulate microbial activity shortly after

Fig. 3 Partial dependence plots

showing the variation in biochar

priming effect by biochar

properties used in the BRTmodel.

a C/N ratio. b Biochar nitrogen

content. c Pyrolysis time during

biochar production. d Biochar

pH. e Biochar carbon content. f

Ash content. g Pyrolysis

temperature during biochar

production. h Feedstock types. i

Whether biochar was activated.

The fitted function shows the

relationship between ES and an

explanatory variable while all

other explanatory variables are

kept constant at their mean level.

The shading shows the 95%

confidence intervals estimated,

and the vertical bars show the

standard deviations, from 500

bootstrap samples of the data set.

The horizontal dashed line

represented a predicted ES value

equal to 0
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amendment (Lehmann et al. 2011; Weng et al. 2015), but as

the labile C depletes during the incubation, microbial stimu-

lation may cease (Table 1). Further, sorption of soil organic

matter by the amended biochar has been shown to be kineti-

cally limited by the slow diffusion into the sub-nanometre

pores dominating biochar surfaces (Kasozi et al. 2010) and

the quantity of NSOC sorbed increased with incubation time,

thus resulting in negative priming upon ageing.

Apart from incubation time, incubation soil moisture was

an important factor driving biochar-induced priming. Biochar

showed positive priming in low-moisture soils but showed a

negative one in high-moisture soils (Fig. 2b). The possible

mechanism is that biochar may sorb large amounts of soluble

NSOC due to its rising mobility in high-moisture soils. This

also can explain why Yu et al. (2013) observed smaller

biochar-induced positive priming under 85 or 100% WFPS

than under 30 or 60% WFPS. Moreover, biochar-induced

priming varied with other incubation conditions, although

they contributed less to the variation of ES. Greater negative

priming was shown at higher soil incubation temperatures up

to 50 °C (Fig. 2c). This was supported by the results of Fang

et al. (2015) who observed increasing biochar-induced nega-

tive priming from 20 °C incubation to 40 °C incubation in four

contrasting soils. Fang et al. (2014) suggested that NSOC

molecules in soil water may become more flexible and slowly

access interior pores of biochar at higher incubation tempera-

ture and thus limit accessibility to soil microorganisms. Only a

single study examined incubation temperatures above 50 °C

(Fang et al. 2014) thus limiting the information available for

the meta-analysis.

Among the biochar properties, biochar C/N ratio was the

largest determining factor for the C priming (Fig. 1). The

decline of ES with increasing biochar C/N ratio (Fig. 3a)

was possibly related to the influence of biochar N and C con-

tents on ES. The priming being negative for low N biochar but

positive for high N biochar was probably because high N

biochar may supply available N to soil microorganisms in

the short term and stimulate microbial activity (Table 1). It

was previously assumed that biochar N had low availability

due to it being in heterocyclic structures (Knicker and

Fig. 4 Partial dependence plots

showing the variation in biochar

priming effect by soil properties

used in the BRT model. a Soil

organic carbon (SOC) content. b

Sand content. c Clay content. d

Soil C/N ratio. e Land uses. f Soil

pH. g Silt content. h Soil total

nitrogen (STN) content. The fitted

function shows the relationship

between ES and an explanatory

variable while all other

explanatory variables are kept

constant at their mean level. The

shading shows the 95%

confidence intervals estimated,

and the vertical bars show the

standard deviations, from 500

bootstrap samples of the data set.

The horizontal dashed line

represented a predicted ES value

equal to 0

J Soils Sediments



Skjemstad 2000). However, a study using 15N labelling

showed that a portion of the N within N-rich biochar is avail-

able and easily incorporated by soil microbes and plant bio-

mass (Rosa and Knicker 2011). Even if N in biochar is oc-

cluded in aromatic structures, a small amount of N was found

to be mineralized (Schouten et al. 2012). Contrastingly, the

priming was positive for low C biochar but negative for high

C biochar. This can be explained that low C biochar usually

contains a larger labile C fraction (Singh et al. 2012), which

can simulate microbial activity (Luo et al. 2013).

Other biochar properties also influenced the C priming.

Pyrolysis time for biochar production was an important factor

for the C priming (Fig. 1). Biochar derived after longer pyrol-

ysis time showed a larger negative priming (Fig. 3c). This

could be explained by the fact that surface area and porosity

of biochar increase with pyrolysis time (Chen et al. 2008;

Yuan et al. 2014; Zhang et al. 2015), thereby facilitating the

greater adsorption of NSOC. This explanation for the results

of high larger negative priming for biochar derived from

higher pyrolysis temperature (Fig. 3g) was similar, as the sorp-

tive capacity of biochar also increases with pyrolysis temper-

ature (Kasozi et al. 2010). Moreover, biochar pH was an

influencing factor for C priming (4.5% contribution, Fig. 1).

There was a trend towards weaker negative priming when pH

was larger than 10.7 (Fig. 3d). However, the data points within

this range were extracted from only two studies, thus limiting

the information available for the meta-analysis. In addition,

biochar-derived C priming varied with the type of feedstock.

Tree- and crop residue-derived biochar had a greater negative

priming effect than biochars derived from other feedstock

(Fig. 3h). Zimmerman et al. (2011) also observed that tree

wood biochar gave greater negative priming than grass bio-

char. The possible mechanism is that woody biochar generally

has a higher surface area and porosity (Hilscher et al. 2009;

Lehmann and Joseph 2009; Zimmerman 2010) .

Contrastingly, sludge-derived biochar showed positive C

priming (Fig. 3h). This was likely due to its greater labile C

content than other feedstock (Singh et al. 2012). This was

partly supported byMcBeath and Smernik (2009) who report-

ed that the biochar derived from paper mill sludge had smaller

proportion of aromatic (stable) C than the biochars derived

from other feedstock, e.g. wood, straw or manure.

Soil properties can also influence biochar-derived C prim-

ing. First, SOC content was an important factor for C priming

(Fig. 1). The biochar-derived priming was positive in the low-

C soils but negative in the high-C soils, which was similar

with Maestrini et al. (2014a) who found that the size of the

negative PE was higher when the soil had a higher content in

C. The possible reason was that low-C soils usually have a

small amount of dissolved NSOC molecules that were hardly

adsorbed by biochar, thereby impossibly resulting in negative

priming and vice versa. Furthermore, soil texture was an

influencing factor on biochar effect on NSOC decomposition

(sand and clay giving 4.7 and 4.1% contributions, respective-

ly, Fig. 1). Soils with higher clay content had larger negative

priming (Fig. 4c). Similarly, Wang et al. (2015) observed a

trend of positive priming in soils with a clay content < 10%

while negative priming was observed when clay content was

> 10%. The possible mechanismwas that large amount of clay

can encourage the formation of stable soil aggregates (<

250 μm) via organo-mineral interactions between native

and/or added organic matter and soil minerals (Golchin et al.

1994; Wagner et al. 2007), thereby protecting NSOC from

decomposition (Brodowski et al. 2006; Joseph et al. 2010;

Zimmerman et al. 2011).

Biochar-derived C priming also varied with other soil prop-

erties, although they contributed little to the explanation for

Table 1 The occurring conditions and possible mechanisms for positive

and negative priming on native soil organic carbon decomposition

following biochar amendment

Biochar Occurring conditions Possible mechanisms

Positive

priming

Early incubation, low C

biochar, sludge-derived

biochar

A large amount of labile

C that stimulates

microbial activities

High N biochar Available N supply

stimulates microbial

activities

Low soil moisture Low mobility of NSOC

molecules to be hardly

adsorbed by biochar

Low-C soil Small amount of

dissolved NSOC

molecules to be hardly

adsorbed by biochar

Negative

priming/-

large

negative

priming

Late incubation Kinetically limited

adsorption and labile

carbon depletion in

biochar

Large biochar dose Many sorption sites in

biochar that can absorb

a large amount of

NSOC molecules

Long pyrolysis time, high

pyrolysis temperature,

wood-derived biochar

Large biochar surface

area and porosity that

can absorb a large

amount of NSOC

molecules

High-pH soil Deteriorated soil

environment that

inhibits microbial and

enzyme activities

High-clay soil Conducive to formation

of soil aggregates

which protect NSOC

molecules

Low-C/N soil Microbes with no lack of

N nutrient do not need

to decompose NSOC

to obtain N

J Soils Sediments



ES. For example, the size of negative priming decreased with

soil C/N ratio (Fig. 4e). The reason could be that microorgan-

isms in soils with high C/N ratio was lacking N nutrient, so

they could need to decompose the native SOMmore intensely

to obtain available N for growth (Zhang et al. 2013), thereby

resulting in low net negative priming. Another factor was soil

pH. Larger negative priming in alkaline soil was observed

than in acidic soil (Fig. 4h). Acidic soils may have less pH-

related constraints to microbial activity after biochar amend-

ment (Van Zwieten et al. 2010), but alkaline soil may become

more alkaline and suppress soil microbial activity, thereby

triggering larger negative priming.

Our results showed that incubation conditions and biochar

properties played more important roles in driving biochar-

induced soil C priming than soil properties (Fig. 1). This

seemed to be different from the drivers for the soil C priming

induced by fresh organic materials (no charred). Previous

meta-analyses have shown that the priming of NSOC decom-

position by fresh organic material was closely related to soil

parameters (e.g. SOC, STN, soil C/N ratio or soil clay content

and land use type) rather than the properties of the added

materials (Zhang et al. 2013; Luo et al. 2016). This difference

in drivers could be due to the sorption of NSOC by biochar, as

a main mechanism for the negative C priming as discussed in

Maestrini et al. (2014a), which is yet unlikely to occur after

fresh organic matter addition.

Although our analysis provides new insights into the re-

sponse of NSOC decomposition to biochar amendment, sev-

eral knowledge gaps are still apparent. Firstly, the duration of

biochar-induced negative priming was evident for 7 years in

our meta-analysis. Further, negative priming has been detect-

ed a decade after biochar was applied to a ferrosol under sub-

tropical pasture (Weng et al. 2017), indicating the potential for

biochar amendment to support soil C sequestration beyond the

stable C content of biochar alone. However, a paucity of

longer-term studies (lasting for decades) using C isotope dif-

ferentiation between biochar C and NSOC remains, especially

under varying soil types and climatic conditions. Considering

biochar would persist in soils on a centennial scale (Wang

et al. 2015), future studies need to test whether the negative

priming of biochar can last for so long.

5 Conclusions

Our synthesis critically evaluated the influencing factors on

the biochar-induced soil C priming in laboratory settings. We

demonstrated that biochar properties and incubation condi-

tions have larger impacts on the priming than soil properties.

We also identified the factors (> 4% contribution) driving

biochar-induced priming in incubation studies, these being

incubation time and soil moisture, biochar C/N ratio and N

content and pH, pyrolysis time during biochar production and

SOC content and soil texture. We revealed that biochar

amendment showed positive priming during early incubation,

for the biochars with low C content or high N content or

derived from sludge and in the soils with low C content or

with low moisture. In the other circumstances, it would show

negative priming. These insights can help us to better predict

the effect of biochar amendment on soil C cycling.
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