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Abstract.

Background: Microarray technologies have identified imbalances in the expression of specific genes and biological pathways

in Alzheimer’s disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related

neurodegenerative and mental health disorders exhibit similar perturbations.

Objective: Meta-analyze publicly available transcriptomic data from multiple brain-related disorders to identify robust

transcriptomic changes specific to AD brains.

Methods: Twenty-two AD, eight schizophrenia, five bipolar disorder, four Huntington’s disease, two major depressive

disorder, and one Parkinson’s disease dataset totaling 2,667 samples and mapping to four different brain regions (temporal

lobe, frontal lobe, parietal lobe, and cerebellum) were analyzed. Differential expression analysis was performed independently

in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided

Correction.

Results: Meta-analysis identified 323, 435, 1,023, and 828 differentially expressed genes specific to the AD temporal lobe,

frontal lobe, parietal lobe, and cerebellum brain regions, respectively. Seven of these genes were consistently perturbed

across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-Seq data. A further nineteen genes

were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in

AD neuropathology. In addition, biological pathways involved in the “metabolism of proteins” and viral components were

significantly enriched across AD brains.

Conclusion: This study identified transcriptomic changes specific to AD brains, which could make a significant contribution

toward the understanding of AD disease mechanisms and may also provide new therapeutic targets.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common

form of dementia affecting over 44 million individu-

als worldwide, and numbers are expected to triple by
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2050 [1]. The hallmark of the disease is characterized

by the abnormal brain accumulation of amyloid-�

(A�) protein and hyperphosphorylated tau filaments,

which forms structures known as plaques and tan-

gles, respectively. The accumulation of these proteins

contributes to the loss of connections between neuron

synapses, leading to the loss of brain tissue and the

disruption of normal cognitive functions.

As AD progresses, the spread of plaques and tan-

gles in the brain usually occurs in a predictable pattern

and can begin up to 18 years prior to the onset of clini-

cal symptoms [2]. In the earliest stages of the disease,

plaques and tangles form in areas of the brain primar-

ily involved in learning and memory, specifically the

hippocampus and entorhinal cortex, both situated in

the temporal lobe (TL) region [3]. Next, the frontal

lobe (FL), a region involved in voluntary movement,

is affected, followed by the parietal lobe (PL), a region

involved in processing reading and writing. In the

later stage of the disease, the occipital lobe, a region

involved in processing information from the eyes, can

become affected, followed by the cerebellum (CB),

a region which receives information from the sen-

sory systems and the spinal cord to regulates motor

movement. Nerve cell death, tissue loss, and atrophy

occur throughout the brain as AD progresses, leading

to the manifestation of clinical symptoms associated

with loss of normal brain function. However, not all

brain regions are neuropathologically affected in the

same manner. The CB, which only accounts for 10%

of the brain but contains over 50% of the brain’s total

neurons, is often neglected in AD research because

it is generally considered to be partially spared from

the disease as plaques are only occasionally seen but

tangles are generally not reported [4, 5].

The histopathological spread of the disease is well

documented, and with the advent of high throughput

genomics approaches, we are now able to study the

transcriptomic and biological pathways disrupted in

AD brains. Microarrays can simultaneously exam-

ine thousands of genes, providing an opportunity

to identify imbalances in the expression of specific

genes and biological pathways. However, microar-

ray reproducibility has always been questionable,

with replication of differentially expressed genes

(DEGs) very poor [6]. For example, two independent

microarray transcriptomic studies performed differ-

ential expression analysis in the hippocampus of AD

brains. The first study by Miller et al. identified 600

DEGs [7], and a similar study by Hokama et al. iden-

tified 1071 DEGs [8]. An overlap of 105 DEGs exist

between the two studies; however, after accounting

for multiple testing, no gene was replicated between

the two studies. The Miller study consisted of 7

AD and 10 control subjects expression profiled on

the Affymetrix platform while the Hakoma study

consisted of 31 AD and 32 control subjects expres-

sion profiled on the Illumina platform. Replication

between the Illumina and Affymetrix platform has

been shown to be generally very high [9]; therefore,

the lack of replication between the two studies is

probably down to a range of other factors includ-

ing low statistical power, sampling bias, and disease

heterogeneity.

Unlike DEGs, replication of the molecular changes

at a pathway level are more consistent and have

provided insights into the biological processes dis-

turbed in AD. Numerous studies have consistently

highlighted disruptions in immune response [10–13],

protein transcription/translation [10, 11, 14–17], cal-

cium signaling [10, 18, 19], MAPK signaling [7, 16],

various metabolism pathways such as carbohydrates

[16], lipids [16, 20], glucose [17, 21, 22], iron [11,

23], chemical synapse [7, 18, 19], and neurotransmit-

ter [11, 18, 19]. However, many of these pathways

have also been suggested to be disrupted in other

brain-related disorders. For example, disruptions in

calcium signaling, MAPK, chemical synapse, and

various neurotransmitter pathways have also been

implicated in Parkinson’s disease (PD) [24, 25]. In

addition, glucose metabolism, protein translation,

and various neurotransmission pathways have also

been suggested to be disrupted in bipolar disorder

(BD) [26–29]. Although the biological disruptions

involved in AD are steadily being identified, many

other neurodegenerative and mental disorders are

showing similar perturbations. We are yet to identify

robust transcriptomic changes specific to AD brains.

In this study, we combined publicly available

microarray gene expression data generated from AD

human brain tissue and matched cognitively healthy

controls to conduct the most extensive AD transcrip-

tomic microarray meta-analyses known to date. We

generate AD expression profiles across the TL, FL,

PL, and CB brain regions. We further refine each

expression profile by removing perturbations seen in

other neurodegenerative and mental disorders (PD,

BD, schizophrenia [SCZ], major depressive disorder

[MDD], and Huntington’s disease [HD]) to decipher

specific transcriptomic changes occurring in human

AD brains. These AD-specific brain changes may

provide new insight and a better understanding of the

disease mechanism, which in turn could provide new

therapeutic targets for preventing and curing AD.
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MATERIALS AND METHODS

Selection of publicly available microarray

studies

Publicly available microarray gene expres-

sion data was sourced from the Accelerating

Medicines Partnership-Alzheimer’s Disease AMP-

AD (doi:10.7303/syn2580853, doi:10.1038/ng.305,

doi:10.1371/journal.pgen.1002707, doi:10.1038/ng.

305, doi:10.1038/sdata.2016.89, doi:10.1038/sdata.

2018.185) and ArrayExpress (https://www.ebi.ac.uk/

arrayexpress/) in June 2016. For a study to be selected

for inclusion, the data had to 1) be generated from

a neurodegenerative or mental health disorder,

2) be sampled from human brain tissue, 3) have

gene expression measured on either the Affymetrix

or Illumina microarray platform, 4) contain both

diseased and suitably matched healthy controls in the

same experimental batch, and 5) contain at least 10

samples from both the diseased and control group.

Microarray gene expression data pre-processing

Data analysis was performed in RStudio (ver-

sion 0.99.467) using R (version 3.2.2). All data

analysis scripts used in this study are available

at https://doi.org/10.5281/zenodo.823256. In brief,

raw Affymetrix microarray gene expression data

was “mas5” background corrected using R package

“affy” (version 1.42.3) and raw Illumina microarray

gene expression data Maximum Likelihood Estima-

tion (MLE) background corrected using R package

“MBCB” (version 1.18.0). Studies with samples

extracted from multiple tissues were separated into

tissue-specific matrices, log2 transformed and then

Robust Spline Normalised (RSN) using R package

“lumi” (version 2.16.0).

BRAAK staging is a measure of AD pathology and

ranges from I-VI. In general, stages I-II, III-IV and

V-VI represent the “low likelihood of AD”, “probable

AD” and “definite AD” respectively [30]. To main-

tain homogeneity within the sample groups and to be

able to infer pathological related genetic changes, if

BRAAK staging was available, clinical AD samples

with BRAAK scores ≤3 or clinical control samples

with BRAAK scores ≥3 were removed from further

analysis.

Gender was predicted using the R package “mas-

siR” (version 1.0.1) and used to subset the data into

four groups based on diagnosis (case/control) and

gender (male/female). Next, probes below the 90th

percentile of the log2 expression scale in over 80%

of samples were deemed “not reliably detected” and

were excluded from further analysis to eliminate

noise [31] and increase power [32].

Publicly available data is often accompanied by

a lack of sample processing information, making

it impossible to adjust for known systematic errors

introduced when samples are processed in multiple

batches, a term often known as “batch effects”.

To account for both known and latent variation,

batch effects were estimated and removed using the

Principal Component Analysis (PCA) and Surrogate

Variable Analysis (SVA) using the R package “sva”

(version 3.10.0). Gender and diagnosis information

were used as covariates in sva when correcting

for batch effects. Outlying samples were itera-

tively identified and removed from each gender

and diagnosis group using fundamental network

concepts described in [33]. Platform-specific probe

ID’s were converted to Entrez Gene ID’s using

the BeadArray corresponding R annotation files

(“hgu133plus2.db”, “hgu133a.db”, “hgu133b.db”,

“hugene10sttranscriptcluster.db”, “illuminaHu-

manv4.db”, “illuminaHumanv3.db”) and differential

expression analysis was performed within each

dataset using the R package “limma” (version

3.20.9).

Finally, study compatibility analysis was investi-

gated through the R package “MetaOmics” (version

0.1.13). This package uses DEGs, co-expression, and

enriched biological pathways analysis to generate

six quantified measures that are used to generate

a PCA plot. The direction of each quality control

(QC) measure is juxtaposed on top of the two-

dimensional PC subspace using arrows. Datasets

in the negative region of the arrows were classed

as outliers [34] and were removed from further

analysis.

Meta-analysis

Datasets were grouped by the primary cerebral cor-

tex lobes (TL, FL, PL) and the CB. Meta-analysis

was performed using a “combining p-values” method

known as “Adaptively Weighted with One-sided

Correction” (AW.OC), implemented through the R

package “MetaDE” (version 1.0.5) [34]. A com-

bining p-value method was chosen to address the

biases introduced from different platforms. AW.OC

was chosen as it permits missing information across

datasets which are introduced by combining data

generated from different microarray platforms and

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.5281/zenodo.823256
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expression chips. This avoids the need to subset indi-

vidual datasets to common probes, which essentially

allows for the maximum number of genes to be ana-

lyzed. Furthermore, the method provides additional

information on which dataset is contributing towards

the meta-analysis p-value, and has been shown to be

amongst the best performing meta-analysis methods

for combining p-values for biological associations

[35]. The meta-analysis method does not provide

an overall directional change for each gene; there-

fore, the standard error (SE) was calculated from

the DE logFC values of each gene across the AW

assigned significant datasets and used for standard

meta-summary estimate analysis using the R pack-

age “rmeta” (version 2.16). This served as the “meta

expression” change in downstream analysis where

positive values represent a gene being upregulated

in AD and negative values as being downregulated in

AD. Selecting DEGs based on an arbitrary expression

change significantly influences the interpretation of

DE results [36]. At least half of differential expres-

sion based studies incorporate a fold change cut-off

typically between 2–3; however, informative RNAs

and expressed transcripts have been shown to have a

fold change less than 2 [37], and genes with low fold

change have been demonstrated to influence biologi-

cal effects in signaling cascades and pathways [36]. In

addition, gene expression is heavily influenced by tis-

sue, and as this study performs meta-analysis across

multiple inter-related tissues within larger brain com-

partments, we do not employ an arbitrary fold

change cut-off to determine if a gene is differentially

expressed; however, we do require the gene to be con-

sistently expressed across these tissues. If a gene was

significantly DE according to the meta-analysis (FDR

adjusted meta p-value ≤0.05), but at least one con-

tributing dataset (according to AW.OC weights) had

directional logFC discrepancy (i.e., upregulated in

one dataset and downregulated in another dataset), the

gene was deemed to be discordant and was excluded

from further analysis. This ensured we only captured

robust, and consistently reproducible expression

signatures.

Generation of disease-specific meta-analysis

expression profiles

Meta-analysis was performed across all AD

datasets, followed by a separate meta-analysis

across the non-AD disorder datasets. Using these

meta-analysis results we generated three expression

profiles: 1) “AD expression profile”, 2) “AD-specific

expression profile”, and 3) “common neurological

disorder expression profile”.

The first expression profile, “AD expression pro-

file”, is a direct result of the meta-analysis performed

on AD studies, which represents the changes typi-

cally observed from an AD and cognitively healthy

control study design. The second expression profile,

deemed as the “AD-specific expression profile”, is

produced by subtracting significantly DEGs found

in the non-AD meta-analysis results from the “AD

expression profile”. This profile represents transcrip-

tomic changes specifically observed in AD and not

in any other neurodegenerative or mental health

disorder used in this study. The third expression pro-

file, deemed as the “common neurological disorder

expression profile”, represents genes which are sig-

nificantly DE in all disorders used in this study,

including AD.

Replication of significant microarray genes in

RNA-Seq data

The genes significantly DE and deemed to be of

biological significance in this study were queried

in the curated web-based database Agora (data ver-

sion 9, accessible at https://agora.ampadportal.org),

which provides expression change of genes in AD

based on RNA-Seq of 2100 human brain samples.

Functional and gene set enrichment analysis

Gene set enrichment analysis (GSEA) and Gene

Ontology (GO) analysis was conducted using an

Over-Representation Analysis (ORA) implemented

through the ConsensusPathDB web platform (version

32) [38] in May 2017. ConsensusPathDB incor-

porates numerous well-known biological pathway

databases including BioCarta, KEGG, Reactome, and

Wikipathways. The platform performs a hypergeo-

metric test while integrating a background gene list,

which in this case is a list of all the genes that pass

quality control in this study, compiles results from

each database and corrects for multiple testing using

the false discovery rate (FDR) [38]. A minimum over-

lap of the query signature and database was set to 2,

and a result was deemed significant if the q-value was

≤0.05.

Network analysis

Protein-protein interaction (PPI) networks were

created by uploading the meta-analysis DEG

https://agora.ampadportal.org
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lists (referred to as seeds in network analy-

sis) along with their meta logFC expression

values to NetworkAnalyst’s web-based platform

http://www.networkanalyst.ca/faces/home.xhtml in

June 2017. The “Zero-order Network” option was

incorporated to allow only seed proteins directly

interacting with each other, preventing the well-

known “Hairball effect” and allowing for better

visualization and interpretation [39]. Sub-modules

with a p-value ≤0.05 (based on the “InfoMap” algo-

rithm [40]) were considered significant key hubs, and

the gene with the most connections within this hub

was regarded as the key hub gene.

RESULTS

The AD microarray datasets

We Identified and acquired nine publicly avail-

able AD studies from ArrayExpress and AMP-AD,

of which seven studies contained samples extracted

from differing regions of the brain. The basic char-

acteristics of each study and dataset are provided in

Table 1. Separating the nine studies by brain regions

resulted in 46 datasets. Here a “dataset” is defined by

brain region and study origin. For example, ArrayEx-

press study E-GEOD-36980 consists of diseased and

healthy samples extracted from three different tissues

(temporal cortex, hippocampus, and frontal cortex).

All samples originating from the same tissue were

classified as one dataset; therefore, study E-GEOD-

36980 generated three datasets, representing the three

different tissues.

The 46 AD datasets contained both AD samples

and healthy controls, were assayed using seven dif-

ferent expression chips over two different microarray

platforms (Affymetrix and Illumina) and consisted

of a total 2,718 samples before QC. Briefly, the

MetaOmics analysis identified study syn4552659 as

an outlier and was therefore removed from further

analysis (see the Supplementary Material), result-

ing in 1,501 samples (746 AD, 755 controls) in the

remaining 22 datasets after QC.

Summary of the AD meta-analysis DEG counts

The AD meta-analysis was performed on the 22

AD datasets and independently identified differen-

tially expressed genes within the TL, FL, PL, and

CB brain regions. A summary of the number of

datasets in each brain region and the number of sig-

nificant DEGs identified is provided in Table 2. The

complete DE results are provided in Supplementary

Table 1. As mentioned in the methods, due to gene

expression being influenced by tissue source and as

this study incorporates different brain regions, we do

not employ an arbitrary cut-off value to determine

genes that are highly or lowly expressed, but primar-

ily focus on genes consistently perturbed. However,

we provide the meta expression values in the Sup-

plementary tables and advise readers to consider

the expression distribution of all DEGs within each

brain region independently, if determining whether a

gene is highly/lowly expressed. For instance, the CB

meta expression ranges from –0.53 to 0.54 with an

interquartile range (Q1–Q3) of –0.1 to 0.1. In con-

trast, the PL has a larger meta expression range of

–1.5 to 1.35, with an interquartile range (Q1–Q3) of

–0.53 to 0.29. Therefore, as gene expression distribu-

tion varies across brain regions, a sensible cut-off (if

one was to be used) for highly and lowly expressed

genes may lie at the 1st and 3rd quartiles, respectively,

with quartiles calculated per tissue.

The non-AD disorder microarray datasets

Nine non-AD studies were identified and acquired,

of which four studies consisted of samples generated

from multiple disorders and brain regions. Separat-

ing the studies by disease and tissue equated to 21

datasets consisting of 8 SCZ, 6 BD, 4 HD, 2 MDD,

and 1 PD dataset with a total of 1,166 samples after

QC. The demographics of the non-AD datasets is

provided in Table 3.

Summary of non-AD brain disorder

meta-analyses DEG counts

A second meta-analysis was performed on all

non-AD disorders, and similarly to the AD meta-

analysis, datasets were grouped into the TL, FL, PL,

and CB brain regions. An overview of the non-AD

meta-analysis results are provided in Table 4, and a

complete list of DEGs is provided in Supplementary

Table 2. SCZ and BD were the only disorders with

expression data available across all four brain regions,

and the FL brain region was the only region with

expression data available from all non-AD disorders

identified in this study.

The meta-analysis expression profiles

As described in the methods, three primary expres-

sion signatures were derived from the meta-analyses

for each of the four brain regions: 1) “AD expression

profile”, 2) “AD-specific expression profile”, and 3)

http://www.networkanalyst.ca/faces/home.xhtml
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Table 1

Characteristics of individual AD studies processed in this meta-analysis

Data Accession Microarray BeadArray Tissue source (as stated Meta-Analysis Number of samples after QC

repository details platform in the original study brain region

(Publication) publication) mapping

AD (M/F) Control (M/F)

ArrayExpress E-GEOD-118553 Illumina HumanHT-12 v4 Entorhinal Cortex Temporal Lobe 35 (14/21) 21 (12/9)

Cerebellum Cerebellum 38 (10/28) 19 (5/14)

Frontal Cortex Frontal Lobe 38 (13/25) 22 (11/11)

Temporal Cortex Temporal Lobe 51 (21/30) 29 (21/8)

ArrayExpress E-GEOD-48350

([76])

Affymetrix Human Genome

U133 Plus 2.0

Entorhinal Cortex Temporal Lobe 11 (6/5) 38 (21/17)

Hippocampus Temporal Lobe 15 (8/7) 41 (22/19)

Postcentral Gyrus Parietal Lobe 19 (11/8) 33 (20/13)

Superior Frontal Gyrus Frontal Lobe 17 (8/9) 38 (22/16)

ArrayExpress E-GEOD-29378

([7])

Illumina HumanHT-12 v3 Hippocampus CA1 Temporal Lobe 16 (9/7) 16 (11/5)

Hippocampus CA3 Temporal Lobe 15 (9/6) 16 (11/5)

ArrayExpress E-GEOD-36980

([8])

Affymetrix Human Gene

1.0 ST

Frontal Cortex Frontal Lobe 14 (7/7) 17 (9/8)

Hippocampus Temporal Lobe 7 (3/4) 10 (5/5)

Temporal Cortex Temporal Lobe 10 (5/5) 19 (8/11)

ArrayExpress E-GEOD-28146

([19])

Affymetrix Human Genome

U133 Plus 2.0

Hippocampus CA1 Temporal Lobe 15 (4/11) 8 (5/3)

ArrayExpress E-GEOD-1297

([77])

Affymetrix Human Genome

U133A

Hippocampus Temporal Lobe 19 (4/11) 9 (6/3)

ArrayExpress E-GEOD-5281

([21])

Affymetrix Human Genome

U133 Plus 2.0

Entorhinal Cortex Temporal Lobe 10 (4/6) 13 (11/2)

Hippocampus CA1 Temporal Lobe 10 (4/6) 13 (10/3)

Medial Temporal Gyrus Temporal Lobe 16 (10/6) 12 (8/4)

Posterior Cingulate Parietal Lobe 9 (4/5) 13 (10/3)

Superior Frontal Gyrus Frontal Lobe 23 (13/10) 11 (7/4)

AMP syn3157225

([78])

Illumina Whole-Genome

DASL HT

Temporal Cortex Temporal Lobe 189 (93/96) 186 (116/70)

Cerebellum Cerebellum 169 (87/82) 171 (113/58)
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AMP syn4552659

([79])

Affymetrix Human Genome

U133A

Frontal Pole Frontal Lobe 25 (6/19) 7 (4/3)

Precentral Gyrus Frontal Lobe 20 (5/15) 3 (1/2)

Inferior Frontal Gyrus Frontal Lobe 19 (5/14) 4 (1/3)

Dorsolateral Prefrontal Cortex Frontal Lobe 19 (4/15) 8 (4/4)

Superior Parietal Lobule Parietal Lobe 11 (2/9) 5 (2/3)

Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2)

Parahippocampal Gyrus Temporal Lobe 18 (5/13) 7 (3/4)

Hippocampus Temporal Lobe 20 (5/15) 5 (2/3)

Inferior Temporal Gyrus Temporal Lobe 20 (5/15) 6 (3/3)

Middle Temporal Gyrus Temporal Lobe 15 (4/11) 7 (4/3)

Superior Temporal Gyrus Temporal Lobe 15 (3/12) 8 (4/4)

Temporal Pole Temporal Lobe 25 (7/18) 6 (3/3)

AMP syn4552659

([79])

Affymetrix Human Genome

U133B

Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3)

Precentral Gyrus Frontal Lobe 18 (4/14) 3 (1/2)

Inferior Frontal Gyrus Frontal Lobe 21 (5/16) 5 (2/3)

Dorsolateral Prefrontal Cortex Frontal Lobe 20 (5/15) 8 (4/4)

Superior Parietal Lobule Parietal Lobe 16 (5/11) 5 (3/2)

Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2)

Parahippocampal Gyrus Temporal Lobe 19 (7/12) 7 (3/4)

Hippocampus Temporal Lobe 22 (6/16) 5 (2/3)

Inferior Temporal Gyrus Temporal Lobe 21 (6/15) 7 (4/3)

Middle Temporal Gyrus Temporal Lobe 23 (8/15) 7 (4/3)

Superior Temporal Gyrus Temporal Lobe 23 (4/19) 8 (4/4)

Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3)

Nine publicly available AD studies were identified and acquired for this study. Separating the studies by tissue resulted in 46 datasets, each containing AD and healthy control samples. The brain

tissue in each of the 46 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe, or parietal lobe) or the cerebellum. Due to limited phenotypic information in

publicly available data, the reported gender was predicted from gene expression if clinical gender was unavailable. M, male; F, female.
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Table 2

Summary of AD study meta-analysis DEGs

Brain region Number of Number of AW.OC Significant DEGs

datasets samples (FDR adjusted p ≤ 0.05)

(case/control)

Temporal lobe 14 850 (419/431) 323

Frontal lobe 4 180 (92/88) 460

Parietal lobe 2 74 (28/46) 1736

Cerebellum 2 397 (207/190) 867

Twenty-two AD datasets containing a total of 1,501 samples remained in this study after

QC. The case/control numbers represent the total number of AD/healthy controls subjects

across all datasets within a particular brain region. The number of significant genes was

identified through a combining p-value method known as Adaptively Weighted with One-

sided Correction (AW.OC).

“common neurological disorder expression profile”.

The numbers of significant DEGs in each of the three

expression signatures are provided in Table 5.

The DEGs from the “AD expression profile” in

the TL brain region were not significantly DE in any

other disorder included in this study. Hence, the “AD

expression profile” and the “AD-specific expression

profile” contained the same 323 genes for the TL

brain region. The “AD-specific expression profile”

for all four brain regions is provided in Supplemen-

tary Table 3.

The “common neurological disorder expression

profile” within the four brain regions consisted of

very little or no DEGs (except for the PL); hence,

the downstream analysis did not yield any statisti-

cally significant results of biological relevance. We

find little robust evidence of shared biology based on

this data analysis and therefore, exclude all results

generated from the “common neurological disorder

expression profile” from this paper; however, we pro-

vide the complete list of significantly DEGs within

this profile in Supplementary Table 4.

Common differentially expressed genes across

multiple brain regions in AD

AD is known to affect all brain regions through

the course of the disease, although not to the same

degree, similar transcriptomic changes across all

brain regions were deemed disease-specific, while

perturbations in a single brain region were considered

to be tissue-specific. We were particularly interested

in disease-specific transcriptomic changes and there-

fore decided to focus on genes that were found to be

consistently DE across multiple brain regions.

Meta-analysis of the AD datasets identified a total

of 2,495 unique genes as significantly DE. The dis-

tribution of these genes across the four brain regions

is shown in Fig. 1. Forty-two genes were found to

be perturbed across all four brain regions and can be

grouped into three sets (Fig. 2). The first group (Gene

set 1) are expressed consistently in the same direction

across all four brain regions and can be regarded as

disease-specific. The second group (Gene set 2) are

expressed in the same direction in the TL, FL, and PL,

but expression is reversed in the CB brain region, a

region suggested to be spared from AD pathology [4,

5]. This expression pattern suggests these genes may

be involved in AD pathology. Finally, the third group

(Gene set 3) are inconsistently expressed across the

four brain regions are most likely tissue-specific or

even false-positives.

From the forty-two genes significantly differen-

tially expressed across all brain regions, seven genes

were DE in the same direction and belong to the

“AD-specific expression profile”, that is, these seven

genes (downregulated NDUFS5, SOD1, SPCS1 and

upregulated OGT, PURA, RERE, ZFP36L1) were

consistently perturbed in all AD brain regions and not

in any other brain region of any other disorder used in

this study and can be considered unique to AD brains.

The expression of these seven genes across AD brains

is shown in Fig. 3.

Differentially expressed genes in brain regions

affected by AD histopathology

In AD, the TL, FL, and PL are known to be affected

by both plaques and tangles, while the CB brain

region is rarely reported to be affected. In addition

to identifying genes DE across all brain regions and

reversed in the CB brain region, we were also inter-

ested in genes perturbed in the TL, FL and PL and

not the CB. These genes may also play a role in gen-

eral AD histopathology and could be new therapeutic

targets in preventing or curing AD.

Fifty-five genes were found to be significantly DE

in TL, FL and PL but not the CB, of which sixteen
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Table 3

Characteristics of individual non-AD studies included in this meta-analysis

Data ArrayExpress Microarray BeadArray Disorder Sample source (as Mapping to Number of samples after QC

repository Accession details Platform stated in the original brain region

(Publication) study publication) AD (M/F) Control (M/F)

ArrayExpress E-GEOD-12649

([43])

Affymetrix Human Genome

U133A

Bipolar Disorder Prefrontal Cortex Frontal Lobe 33 (16/17) 34 (25/9)

Schizophrenia Prefrontal Cortex Frontal Lobe 33 (25/8) 32 (24/8)

ArrayExpress E-GEOD-17612

([44])

Affymetrix Human Genome

U133 Plus 2.0

Schizophrenia Prefrontal Cortex Frontal Lobe 27 (18/9) 22 (11/11)

ArrayExpress E-GEOD-20168

([45])

Affymetrix Human Genome

U133A

Parkinson’s Disease Prefrontal Cortex Frontal Lobe 14 (7/7) 16 (11/5)

ArrayExpress E-GEOD-21138

([46])

Affymetrix Human Genome

U133 Plus 2.0

Schizophrenia Prefrontal Cortex Frontal Lobe 25 (21/4) 28 (23/5)

ArrayExpress E-GEOD-21935

([47])

Affymetrix Human Genome

U133 Plus 2.0

Schizophrenia Temporal Cortex Temporal Lobe 22 (12/10) 19 (10/9)

ArrayExpress E-GEOD-35978

([48])

Affymetrix Human Gene

1.0 ST

Bipolar Disorder Cerebellum Cerebellum 32 (16/16) 46 (29/17)

Schizophrenia Cerebellum Cerebellum 43 (31/12) 46 (29/17)

Bipolar Disorder Parietal Lobe Parietal Lobe 40 (24/16) 45 (32/13)

Schizophrenia Parietal Lobe Parietal Lobe 51 (37/14) 36 (26/10)

ArrayExpress E-GEOD-3790

([49])

Affymetrix Human Genome

U133A

Huntington’s Disease Frontal Lobe Frontal Lobe 36 (22/14) 27 (19/8)

Huntington’s Disease Cerebellum Cerebellum 38 (22/16) 27 (16/11)

Human Genome

U133B

Huntington’s Disease Cerebellum Cerebellum 38 (23/15) 27 (16/11)

Huntington’s Disease Frontal Lobe Frontal Lobe 37 (21/16) 29 (19/10)

ArrayExpress E-GEOD-5388

([50])

Affymetrix Human Genome

U133A

Bipolar Disorder Prefrontal Cortex Frontal Lobe 30 (16/14) 29 (23/6)

ArrayExpress E-GEOD-53987

([51])

Affymetrix Human Genome

U133 Plus 2.0

Bipolar Disorder Prefrontal Cortex Frontal Lobe 17 (10/7) 19 (11/8)

Major Depressive Disorder Prefrontal Cortex Frontal Lobe 16 (9/7) 18 (10/8)

Schizophrenia Prefrontal Cortex Frontal Lobe 14 (7/7) 19 (11/8)

Bipolar Disorder Hippocampus Temporal Lobe 18 (11/7) 17 (9/8)

Major Depressive Disorder Hippocampus Temporal Lobe 16 (9/7) 17 (9/8)

Schizophrenia Hippocampus Temporal Lobe 15 (9/6) 18 (10/8)

Nine publicly available non-AD studies were identified and acquired. Separating the studies by tissue resulted in 21 datasets. Each dataset contained both diseased and complimentary healthy

controls. The brain tissue in each of the 21 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe, or parietal lobe) or the cerebellum. Due to limited phenotypic

information in publicly available data, the reported gender was predicted from gene expression if clinical gender was unavailable. M, male; F, female.
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Table 4

Summary of non-AD study meta-analysis DEGs

Brain region Number of BD Number of Number of HD Number of Number of PD Total number of AW.OC Significant

datasets Schizophrenia datasets MDD datasets datasets datasets DEGs (FDR

(case/control) datasets (case/control) (case/control) (case/control) (case/control) adjusted

(case/control) p ≤ 0.05)

Temporal lobe 1 (18/17) 2 (37/37) 0 1 (16/17) 0 4 (71/71) 51

Frontal lobe 3 (80/82) 4 (99/101) 2 (73/56) 1 (16/18) 1 (14/16) 11 (282/273) 149

Parietal lobe 1 (40/45) 1 (51/36) 0 0 0 2 (91/81) 2611

Cerebellum 1 (32/46) 1 (43/46) 2 (76/54) 0 0 4 (151/146) 177

The table illustrates the non-AD dataset and sample distribution across the four brain regions. The case/control numbers represent the total

number of diseased and healthy control subjects within a disease group and brain region. For instance, “3 (80/82)” for BD datasets in the

Frontal lobe region indicates three BD datasets with a combined total of 80 BD and 82 complimentary healthy control subjects. The number of

significant DEGs was identified through a combining p-value method known as Adaptively Weighted with One-sided Correction (AW.OC).

BD, bipolar disease; HD, Huntington’s disease; MDD, major depressive disorder; PD, Parkinson’s disease.

Table 5

Summary of DEGs in each expression signature and brain region

Expression Cerebellum Frontal Parietal Temporal Total

Profile lobe lobe lobe (unique)

AD 867 460 1736 323 2494

Non-AD 177 149 2611 51 2809

AD-specific 828 435 1023 323 1994

Common 39 25 713 0 755

Total (unique) 1005 584 3642 374 –

The “AD” expression profile represents genes identified as DE in the AD vs control meta-analysis.

The “non-AD” expression profile represents genes identified as DE in the non-AD meta-analysis.

The “AD-specific” expression profile is a list of genes DE in AD and no other disorder, and the

“common” expression profile is a list of genes DE in all mental disorder used in this study. Each

expression profile is brain region specific. The “Total (unique)” represents a unique list of the total

number of genes identified as significantly DE across brain regions or expression profiles.

Fig. 1. Overlap of DEGs in the AD expression profile across brain

regions. Forty-two genes were observed to be significantly differ-

entially expressed across all four AD brain regions.

were expressed in the same direction and were not

DE in the other brain disorders used in this study.

Ten of these genes (ALDOA, GABBR1, TUBA1A,

GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA,

SLC25A5) were consistently downregulated, and six

genes (PRNP, FDFT1, RHOQ, B2M, SPP1, WAC)

were consistently upregulated in AD.

Furthermore, from the forty-two genes identified as

significantly DE across all four AD brain regions, ten

genes were in consensus in their expression across

the TL, FL, and PL brain region but expression is

reversed in the CB. Only 3 of these genes (UBA1,

EIF4H, and CLDND1) belong to the “AD-specific

expression profile”, and all three genes were signif-

icantly downregulated in the TL, FL, and PL, but

significantly upregulated in the CB brain region (see

Gene set 2 in Fig. 2).

Microarray gene expression profiling in

RNA-Seq data

The 7 genes (NDUFS5, SOD1, SPCS1, OGT,

PURA, RERE, ZFP36L1) consistently expressed

across all brain regions and the 19 genes (ALDOA,

GABBR1, TUBA1A, GAPDH, DNM3, KLC1,

COX6C, ACTG1, CLTA, SLC25A5, PRNP,

FDFT1, RHOQ, B2M, SPP1, WAC, UBA1,

EIF4H, CLDND1) consistently expressed in the TL,

FL, and PL and not in the CB or reversed in the
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Fig. 2. Expression pattern of genes significantly differentially expressed across all four AD brain regions. The expression values for each

gene was obtained from the meta-summary calculations. Red cells represent downregulated genes, and green cells represent upregulated

genes. Forty-two genes were observed to be significantly perturbed across all four AD brain regions and can be grouped into three “sets”.

Gene set 1 represents genes which are perturbed consistently in the same direction across all AD brain regions and can be considered

disease-specific. Gene set 2 represents genes consistent in expression in the temporal lobe, frontal lobe, and parietal lobe brain regions, but

reversed in the cerebellum brain region; a region often referred to be free from AD pathology. Finally, Gene set 3 represents genes which

are significant DE across all four brain regions, however, directional change is not consistent across the brain regions and may represent

tissue-specific genes or even false positive. The gene names highlighted in red are genes perturbed in AD and not in any other disorder used

in this study and are deemed “AD-specific”.

CB, were queried in the web-based platform Agora

to compare RNA-Seq based expression profiling.

The results are provided in Table 6. Agora failed to

provide expression profiling for 17/26 genes; how-

ever, from the data available, the genes observed to

be consistently expressed across all brain regions

based on microarray data are relatively mirrored in

RNA-Seq data, specifically genes SPCS1, PURA

and ZFP36L1.

RNA-Seq data was available for only 6/19 genes

(DNM3, COX6C, ACTG1, CLTA, RHOQ, and

B2M) expressed in brain regions affected by hall-

mark AD pathology (TL, FL, and PL), and were all

relatively consistent in directional change across AD
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Fig. 3. Seven genes consistently significantly differentially expressed in the same direction in all regions of AD brains but not in schizophrenia,

bipolar disorder, Huntington’s disease, major depressive disorder, or Parkinson’s disease brains. These seven genes can be assumed to be

unique to AD brains and may play an important role in disease mechanisms.

brain regions, including the CB, a characteristic unde-

sired by genes which may be associated with hallmark

AD pathology.

“AD Expression Profile” functional gene set

enrichment and GO analysis

Gene set enrichment analysis of the “AD expres-

sion profile” identified 205, 197, 98, and 45

biological pathways significantly enriched in the

TL, FL, PL, and CB brain regions, respec-

tively (Supplementary Table 5). There were ten

pathways significantly enriched in all four brain

regions, of which eight are involved in the

“metabolism of protein” (specifically the transla-

tion process, the most significant being in CB brain

region with a q-value = 1.11e-7), one involved in

“adenosine ribonucleotides de novo biosynthesis”

(TL q-value = 0.007, FL q-value = 7.56e-5, PL q-

value = 0.04, CB q-value = 0.03) and one involved

in the “digestive system” (TL q-value = 0.02, FL q-

value = 0.02, PL q-value = 0.01, CB p-value = 0.02).

When excluding the CB brain region, 42 path-

ways were significantly enriched in the remaining

three brain regions, of which five pathways

obtained an FDR adjusted significance p-value of

≤0.01. The five pathways are “Alzheimer’s dis-

ease” (TL q-value = 6.53e–4, FL q-value = 0.02,

PL q-value = 0.01), “Electron Transport Chain”

(TL q-value = 0.006, FL q-value = 2.95e–5, PL

q-value = 3.69e–5), “Oxidative phosphorylation”

(TL q-value = 1.77e–4, FL q-value = 4.99e–8, PL

q-value = 4.18e–05), “Parkinson’s disease” (TL

q-value = 8.57e–4, FL q-value = 1.59e–6, PL q-

value = 1.77e–6), and “Synaptic vesicle cycle” (TL

q-value = 5.19e–4, FL q-value = 3.82e–7, PL q-

value = 2.03e–4).

The biological GO analysis identified 384, 417,

216, and 72 biological components as significantly

enriched in the TL, FL, PL, and CB brain region

respectively (Supplementary Table 6). There were

36 pathways significantly enriched across all four

brain regions at a p-value threshold of ≤0.05 and

nine at an FDR adjusted significant p-value thresh-

old of ≤0.01. These nine processes are “cellular

component biogenesis” (TL q-value = 1.38e–4,

FL q-value = 0.002, PL q-value = 5.86e–4, CB q-

value = 0.006), “cellular component organization”

(TL q-value = 1.96e–8, FL q-value = 1.04e–8, PL
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Table 6

Microarray gene expression compared to RNA-Seq gene expression

The 7 genes consistently expressed across all brain regions and the 19 genes consistently expressed in the TL, FL and PL and not/reversed

in the CB were queried in the web-based platform Agora to compare RNA-Seq expression. Only significantly DEGs are shown. Red cells

represent downregulated genes in AD, green cells represent upregulated genes in AD, white cells represent genes not significantly DE, and

grey cells are when data is not available. TL, temporal lobe; FL, frontal lobe; PL, parietal lobe; CB, cerebellum; TCX, temporal cortex; STG,

superior temporal gyrus; PHG, parahippocampal gyrus; IFG, inferior frontal gyrus; FP, frontal pole; DLPFC, dorsolateral prefrontal cortex.

q-value = 3.35e–5, CB q-value = 0.004), “inter-

species interaction between organisms” (TL

q-value = 1.85e–4, FL q-value = 8.73e–5, PL

q-value = 5.59e–5, CB q-value = 0.002), “multi-

organism cellular process” (TL q-value =1.12e–4,

FL q-value = 4.72e–5, PL q-value = 8.04e–5, CB

q-value = 0.002), “nervous system development”

(TL q-value = 1.64e–7, FL q-value = 5.90e–14, PL

q-value = 3.82e 8, CB q-value = 0.01), “organon-

itrogen compound metabolic process” (TL

q-value = 0.002, FL q-value = 1.56e–5, PL q-

value = 1.02e–5, CB q-value = 0.002), “symbiosis,

encompassing, mutualism through parasitism”

(TL q-value = 4.04e–4, FL q-value = 1.92e–4, PL q-
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value = 3.18e–4, CB q-value = 0.004), “translational

initiation” (TL q-value = 0.007, FL q-value = 0.006,

PL q-value = 2.41e–4, CB q-value = 5.24e–6),

and “viral process” (TL q-value = 2.82e–4, FL

q-value = 1.17e–4, PL q-value = 3.18e–4, CB q-

value = 0.002). Excluding the CB brain region

resulted in 84 common biological components being

significantly enriched across the remaining three

brain regions.

“AD-specific expression profile” functional gene

set enrichment and GO analysis

Analysis of the “AD-specific expression profile”

identified 205, 196, 40, and 42 pathways as sig-

nificantly enriched in the TL, FL, PL, and CB

brain region respectively in the GSEA analysis (Sup-

plementary Table 7). The analysis identified six

significantly enriched pathways across all four brain

regions, and all are involved in “metabolism of pro-

tein” (specifically the translation process, with the

most significant pathway being in the PL brain region

with a q-value = 8.92e–7). The same six pathways

were identified when the CB region was excluded.

The GO analysis identified 384, 344, 36, and 72

significantly enriched biological components for the

TL, FL, PL, and CB brain region, respectively. Only

four common biological components were signifi-

cantly enriched across all four brain regions, and

all are indicative of interspecies interactions includ-

ing viral. Excluding the CB identifies only “neural

nucleus development” (TL q-value = 5.35e–5, FL q-

value = 0.007, PL q-value = 0.003) as an additional

component being enriched. The complete biological

GO analysis results are provided in Supplementary

Table 8.

Network analysis hub gene identification

PPI networks were generated for each expression

profile and in each of the four brain regions (TL, FL,

PL, and CB) to identify genes whose protein product

interacts with other protein products from the same

expression profile. Genes with more interactions than

expected are referred to as hub genes and may be of

biological significance.

Temporal lobe hub genes

PPI network analysis was performed on the

expression profiles of the TL brain region to iden-

tify key hub genes. The “AD expression profile”

and the “AD-specific expression profile” both con-

sisted of the same 323 DEGs which represented

282 seed proteins with 716 edges (interactions

between proteins). Two significant key hub genes

were identified; the downregulated Polyubiquitin-

C (UBC, p-value = 1.57e–30) and the upregulated

Small Ubiquitin-related Modifier 2 (SUMO2, p-

value = 3.7e–4).

Frontal lobe hub genes

The FL “AD expression profile” consisted of

460 DEGs which represented 272 seed proteins

and 620 edges. Two significant key hub genes

were identified; upregulated Amyloid Precursor

Protein (APP, p-value = 1.98e–08) and downregu-

lated Heat Shock Protein 90-alpha (HSP90AA1,

p-value = 0.003). Using the “AD-specific expression

profile” identified the same two key hub genes, with

APP reaching a significant p-value of 2.11e–09.

Parietal lobe hub genes

The PL “AD expression profile” consisted of 1,736

DEGs which represented 1,437 seed proteins and

5,720 edges. Similar to the TL and FL, two significant

key hub genes were identified; downregulated Cullin-

3 (CUL3, p-value = 1.84e–10) and downregulated

UBC (p-value = 1.84e–10). Using the “AD-specific

expression profile” (1,023 DEGs, 810 seed proteins,

and 2,351 edges) identified UBC as the only key hub

gene, with a more significant p-value of 1.84e–10.

The CUL3 gene is no longer a significant key hub

gene in the network.

Cerebellum hub genes

The CB “AD expression profile” consisted of

867 DEGs which represented 548 seed pro-

teins and 1419 edges. Four significant key

hub genes were identified: upregulated APP

(p-value = 4.24e–26), downregulated Ribosomal Pro-

tein 2 (RPS2, p-value = 4.24e–26), downregulated

SUMO2 (p-value = 4e–05), and upregulated Glycyl-

TRNA Synthetase (GARS, p-value = 0.0207). Using

the “AD-specific expression profile” for the same

brain region identified APP (p-value = 3.44e–26),

RPS2 (p value = 6.61e–06), and SUMO2 (p-

value = 3.78e–06) as the key hub genes only. The

GARS gene is no longer a key hub gene in the net-

work.

DISCUSSION

In this study, we acquired eighteen publicly avail-

able microarray gene expression studies covering
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six neurological and mental health disorders; AD,

BD, HD, MDD, PD, and SCZ. Data was gen-

erated on seven different expression BeadArrays

and across two different microarray technologies

(Affymetrix and Illumina). The eighteen studies con-

sisted of 3,984 samples extracted from 22 unique

brain regions which equated to 67 unique datasets

when separating by disorder and tissue. However,

due to study and sample outlier analysis, only 43

datasets (22 AD, 6 BD, 4 HD, 2 MDD, 1 PD,

and 8 SCZ) totaling 2,667 samples passed QC. We

grouped the AD datasets by tissue, into the TL, FL,

PL, and CB brain regions to perform the largest

microarray AD meta-analysis known to date to our

knowledge, which identified 323, 460, 1,736, and

867 significant DEGs, respectively. Furthermore, we

incorporated transcriptomic information from other

neurological and mental health disorders to subset

the initial findings to 323, 435, 1,023, and 828 sig-

nificant DEGs that were specifically perturbed in the

TL, FL, PL, and CB brain regions respectively of

AD subjects.

Genes specifically perturbed across AD brain

regions

Seven genes (downregulated NDUFS5, SOD1,

SPCS1 and upregulated OGT, PURA, RERE,

ZFP36L1) were DE in AD brains and not DE in the

other disorders used in this study. We deemed these

seven protein-coding genes as “AD-specific”. The

expression patterns of three genes (SPCS1, PURA,

and ZFP36L1) were relatively mirrored in RNA-Seq

data; however, it is important to note the RNA-

Seq data does not contain expression profiling for

the PL region, and it also contains three specific

brain regions within the TL (temporal cortex, supe-

rior temporal gyrus, and parahippocampal gyrus) and

FL (Inferior frontal gyrus, frontal pole, and dorso-

lateral prefrontal cortex). Nevertheless, the SPCS1

gene was observed to be consistently downregulated

across all hierarchical AD brain regions available in

both the microarray and RNA-Seq data. In addition,

based on a network of genomics and epigenomic

elements in the region of this genes, in combina-

tion with phenotypes, the AMP-AD consortia have

nominated SPCS1 as a druggable target for AD

treatment.

Three of the “AD-specific” genes (NDUFS5,

SOD1, and OGT) have been previously associated

with AD. Down-regulated NADH Dehydrogenase

Ubiquinone Fe-S Protein 5 (NDUFS5) gene is

part of the human mitochondrial respiratory chain

complex; a process suggested to be disrupted in

AD in multiple studies [41]. A study investigat-

ing blood-based AD biomarkers identified 13 genes,

including NDUFS5, which was capable of pre-

dicting AD with 66% accuracy (67% sensitivity

and 75% specificity) in an independent cohort of

118 AD and 118 control subjects [42]. The per-

turbation in NDUFS5 expression in the blood and

brains of AD subjects suggests this gene may have

potential as an AD biomarker and warrants further

investigation.

Downregulated Superoxide Dismutase 1 (SOD1)

gene encodes for copper and zinc ion binding proteins

which contribute to the destruction of free super-

oxide radicals in the body and is also involved in

the function of motor neurons [provided by Ref-

Seq, Jul 2008]. Mutations in this gene have been

heavily implicated as causes of familial amyotrophic

lateral sclerosis (ALS) [43] and have also been

associated with AD risk [44]. A recent study dis-

covered SOD1 deficiency in an amyloid precursor

protein-overexpressing mouse model accelerated A�

oligomerization and also caused tau phosphoryla-

tion [45]. They also stated SOD1 isozymes were

significantly decreased in human AD patients, and

we can now confirm SOD1 is significantly under-

expressed at the mRNA level in human AD brains

as well.

The upregulated O-Linked N-Acetyl Glucosamine

Transferase (OGT) gene encodes for a glycosyltrans-

ferase that links N-acetylglucosamine to serine and

threonine residues (O-GlcNAc). O-GlcNAcylation is

the post-translational modification of O-GlcNAc and

occurs on both neuronal tau and A�PP. Increased

brain O-GlcNAcylation has been observed to pro-

tect against tau and A� peptide toxicity [46]. A

mouse study has demonstrated a deletion of the

encoding OGT gene causes an increase in tau

phosphorylation [47]. In this study, we observe a sig-

nificant increase in OGT gene expression throughout

human AD brains, including the CB where tan-

gles are rarely reported, suggesting OGT gene is

most likely not solely responsible for the formation

of tangles.

OGT and O-GlcNAcase (OGA) enzymes facilitate

O-GlcNAc cycling, and levels of GlcNAc have also

been observed to be increased in the PL of AD brains

[48]. Appropriately, OGA inhibitors have been tested

for treating AD with promising preliminary results

[49], prompting further investigation into targeting

OGT for AD treatment.
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Genes involved in AD histopathology

The CB brain region is known to be free from

tau pathology and occasionally free from plaques.

We exploited the CB brain region as a sec-

ondary control to identify sixteen genes (ALDOA,

GABBR1, TUBA1A, GAPDH, DNM3, KLC1,

COX6C, ACTG1, CLTA, SLC25A5, PRNP,

FDFT1, RHOQ, B2M, SPP1, WAC) DE specifi-

cally in TL, FL, and PL and not the CB brain region

of AD subjects. RNA-Seq data was available for 6

of these genes (DNM3, COX6C, ACTG1, CLTA,

RHOQ, and B2M) and all 6 genes failed to repli-

cate expression patterns observed with microarray

data. Nevertheless, DNM3 gene has been previously

associated with AD pathology based on proteomic

data. DNM3 gene encodes a member of a family

of guanosine triphosphate (GTP)-binding proteins

that associate with microtubules and are involved

in vesicular transport. A proteomic study identified

a module of co-expressed proteins, which included

DNM3, as negatively correlated with BRAAK stag-

ing [50]. Although DNM3 gene expression based on

microarray and RNA-Seq data are in disagreement in

the CB brain region, a region used in this study to

aid in determining whether a gene may be involved

with AD pathology, an independent proteomic study

demonstrated DNM3 might indeed be association

with AD pathology. This suggests all 6 genes which

failed replication in RNA-Seq data may still be

associated with AD pathology and require further

confirmation.

An additional 9 genes (GABBR1, GAPDH,

PRPN, FDFT1, KLC1, TUBA1A, CLTA, COX6C,

and SLC25A5), where expression profiling based

on RNA-Seq data was unavailable, have also been

previously associated with AD, of which four genes

(GABBR1, GAPDH, PRPN, and FDFT1) have indi-

vidually been suggested to be involved with the

pathogenesis of the disease. GABBR1 gene encodes

a receptor for gamma-aminobutyric acid (GABA),

which is the primary inhibitory neurotransmitter in

the human central nervous system. As observed

in this study, the GABBR1 gene has been previ-

ously reported to be downregulated in AD brains

[16]. GABBR1 receptors are prominent in neuronal

soma, where neurofibrillary tangle (NFT) forma-

tion is known to accumulate. A study examined the

immunohistochemical localization and distribution

of GABABR1 protein in the hippocampus of AD

subjects and observed a negative correlation with

NFT formation and suggested an increase or stable

expression of GBBR1 could contribute to neuronal

resistance to the disease process [51].

GAPDH gene encodes for a member of the

glyceraldehyde-3-phosphate dehydrogenase protein

family, which catalyzes an essential step in the car-

bohydrate metabolism. GAPDH has been shown to

interact with A�PP but not cleaved A�, and has

been proposed to be directly involved in tau aggrega-

tion and NFT formation in AD [52–54]. The PRNP

gene encodes for the prion protein, a membrane

glycosylphosphatidylinositol-anchored glycoprotein

that tends to aggregate into rod-like structures. Muta-

tions in the PRNP gene has been associated with

AD and prion protein has also been suggested to be

involved in the pathogenesis of AD [55]. FDFT1 gene

encodes a membrane-associated enzyme located at

a branch point in the mevalonate pathway, which

generates isoprenoids that have been found to be

positively correlated with tau pathology [56]. KLC1

gene encodes for Kinesin Light Chain 1 which

transports various cargos such as vesicles, mitochon-

dria, and the Golgi complex along microtubules. An

immunoblotting study observed decrease expression

of kinesin light chains (KLCs) in the frontal cor-

tex of AD subjects but not in the CB of the same

subjects [57]. TUBA1A gene encodes for Tublin

Alpha 1a, which has been observed to be perturbed

in AD [58], and CLTA gene encodes for clathrin

Light Chain A, which has been observed to be per-

turbed in AD as well [59]. COX6C and SLC25A5

gene encodes for products which interact with mito-

chondria and mitochondrial dysfunction in AD has

been suggested on numerous occasions [41, 60,

61].

We identified an additional three AD-specific

genes (UBA1, EIF4H, and CLDND1) which were

significant DE in all four brain regions. How-

ever, the genes were downregulated in the TL

FL and PL but upregulated in the CB brain

region. Ubiquitin-Like Modifier Activating Enzyme

1 (UBA1) encodes for a protein that catalyzes the

first step in ubiquitin conjugation to mark cellu-

lar proteins for degradation. Eukaryotic Translation

Initiation Factor 4H (EIF4H) encodes for a transla-

tion initiation factors, which functions to stimulate

the initiation of protein synthesis at the level of

mRNA utilization and Claudin Domain Contain-

ing 1 (CLDND1) is a transmembrane protein of

tight junctions found on endothelial cells [62]. As

the CB is the only brain region spared from tangle

formation and occasionally from plaque, we sug-

gest these 19 genes (ALDOA, GABBR1, TUBA1A,
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GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA,

SLC25A5, PRNP, FDFT1, RHOQ, B2M, SPP1,

WAC, UBA1, EIF4H, and CLDND1) could poten-

tially be associated with AD histopathology.

Translation of proteins perturbed specifically in

AD brains

Functional gene set enrichment analysis of the “AD

expression profile” revealed more pathways were

significantly perturbed in the TL, followed by the

FL, PL, and CB, which is the general route AD

pathology is known to spread through the brain. We

originally observed ten biological pathways being

enriched across all AD brain regions, which included

biological pathways likely to be irrelevant such as the

“digestive system”. However, when incorporating

transcriptomic information from non-AD disorders,

we were able to refine the AD expression signature

to specific genes perturbed in AD only. This resulted

in the enrichment of pathways only involved in the

“metabolism of proteins”, specifically the transla-

tion process which has been previously suggested in

be associated with AD on numerous occasions [10,

11, 14–17]. We now suggest this may be a biological

process specifically disrupted in AD brains, and not

BD, HD, MDD, PD, or SCZ brains.

Previous biological perturbations observed in

AD are only associated with the temporal lobe

brain region

Previous AD studies have consistently suggested

the immune response [10–13], protein transcrip-

tion/translation regulation [10, 11, 14–17], calcium

signaling [10, 18, 19], MAPK signaling [7, 16],

chemical synapse [7, 18, 19], neurotransmitter [11,

18, 19], and various metabolism pathways [11, 16,

17, 20–23] are disrupted in AD. We observe the

same pathways enriched in our meta-analysis, how-

ever, only in the TL brain region, a brain region often

heavily investigated in AD. Except for “metabolism

of proteins”, we did not observe any of these path-

ways significantly enriched across all of the four brain

regions, suggesting these pathways observed to be

perturbed in previous studies may be tissue-specific

rather than disease-specific.

Interspecies interactions possibly involved in AD

Gene Ontology analysis on the “AD expression

profile” identified nine different biological compo-

nents enriched across all four brain regions. However,

when we remove genes perturbed in other neurolog-

ical or mental health disorders, we only observe four

biological components as significantly enriched, and

all four were indicative of interspecies interactions.

AD brains have a prominent inflammatory compo-

nent which is characteristic of infection, and many

microbes have been implicated in AD, notably herpes

simplex virus type 1 (HSV1), Chlamydia pneumo-

nia, and several types of spirochete [63]. A very

recent study also identified common viral species in

normal and aging brains, with an increased human

herpesvirus 6A and human herpesvirus 7 in AD brains

[64]. Furthermore, A� has been suggested to be an

antimicrobial peptide and has been shown to protect

against fungal and bacterial infections [65]. Thus, the

accumulation of A� may be part of the brains defense

mechanism against infections. Although a controver-

sial theory, we also observe a viral component in AD

brains, and as a result of this meta-analysis, further

suggest this maybe AD-specific and warrants further

investigation.

Network analysis identifies AD-specific APP

UBC and SUMO2 hub genes

Network analysis identified five (APP,

HSP90AA1, UBC, SUMO2, and RPS2) sig-

nificant hub genes specific to AD brain regions.

APP, UBC, and SUMO2 gene appear as hub genes

in multiple brain regions. The APP gene encodes for

a cell surface receptor transmembrane A�PP that is

cleaved by secretases to form a number of peptides.

Some of these peptides are secreted and can bind

to the acetyltransferase complex APBB1/TIP60

to promote transcriptional activation, while others

form the protein basis of the amyloid plaques in

AD brains. In addition, two of the peptides are

antimicrobial peptides, having been shown to have

bacteriocidal and antifungal activities [provided by

RefSeq, Aug 2014]. Changes in A�PP functions

have been suggested to play an essential role in

the lack of A� clearance, ultimately leading to the

formation of plaques [66].

UBC (ubiquitin-C) gene encodes for a

Polyubiquitin-C protein which is part of the

ubiquitin-proteasome system (UPS), the primary

intracellular protein quality control system in

eukaryotic cells. UPS has an immense impact on the

amyloidogenic pathway of A�PP processing that

generates A� [67]. A recent genome-wide associa-

tion study identified UBC as a novel late-onset AD



1652 H. Patel et al. / Meta-Analysis of AD Brain Transcriptomic Data

gene, and through network analysis also identified

UBC as a key hub gene. The study validated their

findings in a UBC C. elegans model to discover UBC

knockout accelerated age-related A� toxicity [68].

We also observe the UBC gene being downregulated

and as a key hub gene in multiple regions of human

AD brains, further providing evidence of its key role

in AD.

Small Ubiquitin-Like Modifier 2 (SUMO2) gene

encodes for a protein that binds to target proteins

as part of a post-translational modification system, a

process referred to as SUMOylation [69]. However,

unlike ubiquitin, which targets proteins for degrada-

tion, this protein is involved in a variety of cellular

processes, such as nuclear transport, transcriptional

regulation, apoptosis, and protein stability [provided

by RefSeq, Jul 2008]. Early studies have indicated

that the SUMO system is likely altered with AD-

type pathology, which may impact A� levels and tau

aggregation [69]. Genetic studies have supported this

theory with a genome-wide association study linking

SUMO-related genes to late-onset AD [70], with fur-

ther studies showing that the two natively unfolded

proteins, tau and �-synuclein, are sumoylated in vitro

[71]. We identified SUMO2 as a significant key

hub gene in both the human TL and the CB brain

region. However, what makes this discovery inter-

esting is that SUMO2 is significantly upregulated

in the TL, a region where both plaques and tangles

can be observed, but significantly downregulated in

the CB, where only plaques have been occasionally

observed, but tangles never reported. The upregula-

tion of SUMO2 gene may play a vital role in the

formation of tangles, and further investigation into

this gene is warranted.

Limitations

Although this study presents novel insights to

AD-specific transcriptomic changes in the human

brain, limitations to this study must be addressed.

Firstly, we meta-analyzed a total of 22 AD and

21 non-AD datasets, and many of these datasets

lacked necessary experimental processing or basic

phenotypic information such as technical batches,

RNA integrity numbers (RIN), age, NFT, clinical

gender, or ethnicity, all of which can have con-

founding effects. To address this, we incorporated

recommended best practices to estimate and cor-

rect for both known and hidden batch effects using

SVA and COMBAT to ensure data is comparable

between experiments and studies. However, this does

not guarantee that all technical variation is completely

removed.

Secondly, the terminology used to label brain tis-

sue varied across studies, with some reporting a broad

region such as the “hippocampus” used in study E-

GEOD-48350, while others were particular to the

tissue layer, such as “hippocampus CA3” in study

E-GEOD-29378. We, therefore, decided to map all

brain tissue as mentioned in each dataset publica-

tion to their hierarchical cerebral cortex lobe (TL,

FL, and PL) and the CB. The mapping procedure

was completed using publicly available literature

defined knowledge, and we assume tissues within

these brain regions are relatively comparable to infer

AD-associated histopathological changes.

Thirdly, this study relied on publicly available tran-

scriptomic data, and as previous research has heavily

investigated brain regions known to be at the fore-

front of disease manifestation, this led to unbalanced

datasets per brain region in both the AD and non-AD

meta-analysis. Subsequently, the AD meta-analysis

consisted of 14, 4, 2, and 2 datasets for the TL, FL,

PL, and CB brain regions respectively, with the PL

brain region consisting of only 74 samples (28 AD

and 46 controls) in total. In addition, the non-AD

meta-analysis lacked expression signatures form all

non-AD diseases across all brain regions (except for

FL). Nevertheless, the brain regions most affected

by each disorder was captured in this study, suggest-

ing we most likely were able to capture key brain

transcriptomic changes relating to each disorder. Fur-

thermore, as AD is known to affect all brain regions,

albeit not to the same extent, we focus on transcrip-

tomic changes observed across all brain regions that

are also not observed in any brain region of the

non-AD subjects, ensuring we capture transcriptomic

signatures unique to AD brains.

Fourthly, the advances in next sequencing tech-

nologies (RNA-Seq) which are capable of profiling

the whole transcriptome, thus not limited by the pre-

defined probes based on known sequencing, would

be ideal for disease discoveries. However, AD and

mental health studies profiled through RNA-Seq is

somewhat limited in the public domain, and those

that have published DE results are based on small

sample numbers, which would fail our selection cri-

teria, such as [72–75]. In addition, these studies lack

the same brain regions and mental health disorders

covered in this meta-analysis. Nevertheless, we were

able to query our genes of interest in the largest known

AD RNA-Seq web-based database (Agora) which
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contains DE results from over 2100 human brain sam-

ples; however, expression profiling was unavailable

for 17/26 genes, and DE on the PL was unavailable.

Therefore, this study was unable to validate all find-

ings in RNA-Seq data.

Finally, we assume the non-AD datasets are com-

parable through meta-analysis, and by identifying

common expression signatures that are not associated

with individual disease mechanisms may represent

false positives or even a general signature for “brain

disorder”. Removing this signature from the AD

meta-analysis expression profile may result in tran-

scriptomic changes specific to AD brains, revealing

more relevant changes to the underlying disease

mechanism rather than general diseases. Under this

assumption, we observe more relevant and refined

biological enrichment results. For example, we orig-

inally observed ten biological pathways enriched

across all AD brain regions, including biological

pathways such as the “digestive system”. However,

by refining the AD expression signature by removing

genes perturbed in non-AD disorders, only pathways

involved in the “metabolism of proteins” remain,

which has been previously suggested in be associated

with AD on numerous occasions [10, 11, 14–17]. This

observation provides strong evidence of our assump-

tion of incorporating non-AD diseases in this study

to infer AD-specific changes as valid.

Conclusion

We present the most extensive human AD brain

microarray transcriptomic meta-analysis study to

date, incorporating, brain regions both affected and

partially spared by AD pathology, and utilize related

non-AD disorders to infer AD-specific brain changes.

This led to the identification of seven genes specifi-

cally perturbed across all AD brain regions and are

considered disease-specific, nineteen genes specifi-

cally perturbed in AD brains which could play a role

in AD neuropathology, and the refinement of GSEA

and GO analysis results to identify specific biologi-

cal pathways and components specific to AD. These

AD-specific changes may provide new insights into

the disease mechanisms, thus making a significant

contribution towards understanding the disease.
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