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Ecologists have long studied the temporal dynamics of plant and animal communities with much
less attention paid to the temporal dynamics exhibited by microbial communities. As a result, we do
not know if overarching temporal trends exist for microbial communities or if changes in microbial
communities are generally predictable with time. Using microbial time series assessed via high-
throughput sequencing, we conducted a meta-analysis of temporal dynamics in microbial
communities, including 76 sites representing air, aquatic, soil, brewery wastewater treatment,
human- and plant-associated microbial biomes. We found that temporal variability in both within-
and between-community diversity was consistent among microbial communities from similar
environments. Community structure changed systematically with time in less than half of the cases,
and the highest rates of change were observed within ranges of 1 day to 1 month for all communities
examined. Microbial communities exhibited species–time relationships (STRs), which describe the
accumulation of new taxa to a community, similar to those observed previously for plant and animal
communities, suggesting that STRs are remarkably consistent across a broad range of taxa. These
results highlight that a continued integration of microbial ecology into the broader field of ecology
will provide new insight into the temporal patterns of microbial and ‘macro’-bial communities alike.
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Introduction

Understanding how communities are structured in
time is a fundamental pursuit in ecology. There is a
long history of research on temporal dynamics in
animal and plant communities (for example,
Preston, 1960; Holling, 1973; McNaughton, 1977;
Pimm, 1984; Ives et al., 2003; Ives and Carpenter,
2007), and this research has been integral to the
development of a wide variety of concepts in
ecology. In particular, research on long-term changes
in plant and animal diversity have been instrumen-
tal in helping ecologists recognize successional
dynamics (for example, Lockwood et al., 1997;
Chase, 2003), identify relationships between
community stability and biodiversity (Cottingham
et al., 2001; White et al., 2006) and predict how

communities may respond to disturbances, includ-
ing longer-term global changes (for example,
Fraterrigo and Rusak, 2008; Magurran et al., 2010).

Though microorganisms are ubiquitous, abundant
and have critical roles in ecosystems, far less is
known about the temporal dynamics exhibited by
microbial communities relative to those exhibited
by communities of larger organisms. A growing
collection of site-specific studies in the microbial
ecology literature suggests that microbial commu-
nities exhibit a wide range of discernable temporal
patterns. For example, patterns of primary succes-
sion in an infant gut (Koenig et al., 2011) and on leaf
surfaces (Redford and Fierer, 2009) as well as
patterns of recurring seasonality in aquatic systems
(Fuhrman et al., 2006; Shade et al., 2007; Eiler et al.,
2012; Gilbert et al., 2012) have demonstrated that
some microbial communities change directionally,
according to environmental conditions. By contrast,
patterns of stability in wastewater treatment systems
suggest that some microbial communities are
composed of core members that exhibit minimal
temporal variability and rarer taxa that exhibit more
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pronounced fluctuations in abundance over time
(Werner et al., 2011). Further, in a range of systems,
including gut microbiota challenged with an anti-
biotic (Dethlefsen et al., 2008), lake microbial
communities after water column mixing (Jones
et al., 2008; Shade et al., 2012b) and soil commu-
nities of denitrifiers and nitrite oxidizers after
exposure to increased temperature (Wertz et al.,
2007), some microbial communities have the capa-
city to recover quickly after disturbance events,
either to the pre-disturbance state or to an alter-
native stable state (Shade et al., 2012a). Overall,
these and other time series highlight that microbial
communities, like plant and animal communities,
are dynamic and exhibit temporal patterns that can
reflect underlying biotic and abiotic processes.

Because changes in microbial community compo-
sition are often associated with changes in the
functional capabilities of those communities (for
example, Bell et al., 2005; Fierer et al., 2007;
Strickland et al., 2009), understanding microbial
temporal patterns can be critical for understanding
ecosystem processes. Despite this importance, our
ability to generalize microbial community dynamics
has been limited by a focus on site- or habitat-
specific research. However, the ever-increasing accu-
mulation of 16S rRNA gene sequence data allows for
comparison of microbial communities across habi-
tats. Though microbial communities from different
habitats clearly differ in composition (Lozupone and
Knight, 2007; Nemergut et al., 2011), it is unknown
whether there are common patterns in the dynamics
or variability of microbial communities through time
and across habitats. To date, there has been no
concerted analysis of microbial temporal dynamics
across biomes, and thus understanding these
dynamics and determining their commonalities are
key challenges in microbial ecology.

Aquatic systems are perhaps the most frequently
studied microbial communities through time, due,
in part, to the relatively large number of long-term
ecological studies conducted in aquatic systems. As
a result, published time series of aquatic microbial
communities have yielded key insights into the
drivers of microbial dynamics in marine and fresh-
water systems. For instance, we know that physico-
chemical changes in the environment often drive
shifts in aquatic microbial communities, as evident
from the observation that marine, lake and river
communities frequently exhibit pronounced season-
ality (Hofle et al., 1999; Fuhrman et al., 2006; Shade
et al., 2007; Nelson, 2008; Crump et al., 2009; Eiler
et al., 2012). Furthermore, there is evidence that
phytoplankton and bacterioplankton communities
appear to be synchronous in some systems (Kent
et al., 2007), potentially linked by the consumption
of phytoplankton-specific exudates by heterotrophic
bacterioplankton (Paver and Kent, 2010). These
select examples of aquatic microbial time series
(culled from hundreds in the literature), demon-
strate the importance of time series analysis for

identifying the important biotic and abiotic drivers
of microbial community structure.

There are clear challenges to studying microbial
communities through time. First, it is often difficult
to characterize the micron-scale niches for micro-
organisms, and therefore the immediate environ-
ment experienced by many microbial communities
remains unknown (Brock, 1987). Additionally, the
timescales over which the greatest microbial com-
munity changes occur are typically unknown
(Shade and Peter et al., 2013). Depending on the
habitat, survey efforts may lack the temporal
resolution to capture rapid community changes,
particularly in systems with actively growing micro-
bial populations, in which generation times may be
on the order of minutes. Finally, surveying microbial
diversity can be a daunting task. Individual samples
often harbor hundreds to thousands of individual
microbial taxa (Curtis and Sloan, 2004; Schloss and
Handelsman, 2007; Quince et al., 2008), and the
majority of microorganisms cannot be identified
using traditional culture-based techniques (Pace,
1997; Schloss and Handelsman, 2007). Fortunately,
the ongoing development of culture-independent
tools and high-throughput sequencing technologies
has made it feasible to describe the temporal
dynamics of microbial communities at time scales
and resolutions that were previously unattainable
(Gonzalez et al., 2012).

We conducted a meta-analysis of newly available
time series of microbial communities assessed via
high-throughput sequencing of the 16S rRNA gene,
which permits the detailed analysis of microbial
community changes through time. Our objective
was to characterize temporal dynamics of microbial
communities from a suite of habitats, and when
possible, to compare these dynamics with commu-
nities of larger organisms. To assess whether
temporal patterns were common across both micro-
bial and ‘macro’-bial organisms, we applied ana-
lyses previously applied to temporal patterns in
plant and animal communities. We address the
following outstanding questions: How variable are
microbial communities over time, and how does this
variability compare within habitats? What kinds of
temporal patterns are often exhibited by microbial
communities, and at what scales are these patterns
most apparent? Do microbial communities exhibit
species–time relationships (STRs), and if so, are
those relationships similar to those for larger
organisms?

Materials and methods

Data sets
We compiled bacterial and archaeal time series from
76 sites, spanning a wide range of study durations and
habitats, including aquatic, air, brewery wastewater
treatment, soil, plant- and human-associated com-
munities. Fungal and other eukaryotic communities

Changes in microbial communities with time
A Shade et al

2

The ISME Journal



were not included in the meta-analysis. Each site had
a minimum of five observations through time, and
sites having a destructive sampling regime (for
example, soils) were concatenated into a single time
series. The compiled time series included eight
seasonally sampled temperate bog lakes in Wisconsin,
USA, each monitored at two locations: one sample
from the upper, mixed layer (epilimnion) and one
sample from the lower stratified layer (hypolimnion).
These time series included between 1 and 3 years of
approximately once or twice weekly observations
during the ice-free period (Shade et al., 2008).
Additional lake microbial communities were sampled
intensively over the month of a whole-ecosystem
disturbance experiment at three depths in the lake
(Shade et al., 2012b). A second data set included air
from near-surface troposphere samples from a moun-
taintop location in Colorado, USA (Bowers et al.,
2012). The air communities were sampled continu-
ously for hours over a few days, with samplings
occurring approximately every month for about a year.
Nine brewery wastewater treatment communities
were sampled once per month for a year, and two of
those sites had been previously sampled a few years
before (Werner et al., 2011). The six-year English
Channel time series, a coastal marine system, pro-
vided our longest series of monthly samples (Caporaso
et al., 2012; Gilbert et al., 2012). Flower-associated
microbial communities were sampled from six apple
trees over the lifespan of the flowers (1 week),
including five time points from before flowers opened
until petal fall (Shade et al., 2013). In a study of
human-associated microbiota, the palm, oral and gut
microbial communities from two human subjects
were collected approximately daily for a year for a
male subject, and daily for 6 months for a female
subject (Caporaso et al., 2011). Gut microbiota were
also sampled from one infant across dietary shifts for
the first 2.5 years of life (Koenig et al., 2011).
Agricultural soils at the Kellogg Biological Station,
Michigan, USA maintained under different manage-
ment regimes were sampled monthly for 6 months
(Lauber et al., 2013) and soils from National Ecologi-
cal Observatory Network (NEON) sites in Hawaii and
Florida, USA (www.neon.org) were sampled once per
month for 3 months. Finally, six freshwater streams
in Colorado, USA were sampled every 1–2 weeks
for approximately 1 year (Portillo et al., 2012).
Additional details about each data set are provided
in Supplementary Table S1 and in the associated
references.

Clearly, these sample sets vary widely with
respect to their sampling intensity and study
duration. However, this is unavoidable if we want
to assess temporal dynamics for microbial commu-
nities from diverse environments, and, as has been
demonstrated for meta-analyses of plant and animal
community dynamics (Nekola and White, 1999;
White et al., 2006; Soininen et al., 2007; Korhonen
et al., 2010; White et al., 2010), we can still describe
patterns that would not be evident if we were to

restrict our analyses to a far more limited set of
sample types.

Sequence analyses
The microbial communities in each of the 3431
individual samples were characterized by sequen-
cing a portion of the 16S rRNA gene on either the
Illumina (San Diego, CA, USA) or 454 (Branford, CT,
USA) platforms. The 16S rRNA gene is widely used
for determining the phylogenetic and taxonomic
composition of bacterial communities and, in all
the cases, the data were derived from PCR amplifi-
cation of environmental DNA using primer pairs
designed to amplify the gene region from all, or
nearly all, known bacterial taxa. A closed reference
operational taxonomic unit (OTU) picking protocol
was applied to each data set separately (Caporaso
et al., 2012). Briefly, OTUs were assigned based
on 97% sequence identity to sequences in the
Greengenes reference database (McDonald et al.,
2012) preclustered at 97% identity (http://qiime.
org/home_static/dataFiles.html). As we used the
same reference-based OTU picking strategy for all
samples, we could directly compare the relative
abundances of taxa across samples. Furthermore,
we sub-sampled each individual data set such that
all samples from a given data set were compared
at an equivalent sequencing depth (Supplementary
Table S1). All analyses were performed on the
rarefied OTU tables to permit comparisons of
patterns in within- and between-community diver-
sity. Our goal was not to quantify the absolute
diversity found in any of the samples: this task is
difficult, if not impossible, because individual
samples may harbor thousands of rare taxa (Sogin
et al., 2006). However, as recent work has demon-
strated (Shaw et al., 2008; Kuczynski et al., 2010a),
it is not necessary to characterize absolute
diversity in order to accurately describe changes
in within-sample and between-sample diversity
within and between habitat types. Pielou’s even-
ness (Pielou, 1969), richness (number of OTUs)
and Faith’s phylogenetic diversity (Faith, 1992)
were used as within-sample (alpha) diversity
metrics. Bray–Curtis was used as a taxon-based
metric of differences in community composition
(beta diversity), and the dissimilarities were calcu-
lated from the rarefied OTU tables in R using the
vegan package (Oksanen et al., 2011; R Development
Core Team, 2011). QIIME (version 1.2.1, (Caporaso
et al., 2010) was used for constructing weighted and
unweighted UniFrac distances. UniFrac is a com-
monly used phylogenetic distance metric to assess
pairwise dissimilarity in community composition
and incorporates information about differences in
phylogenetic composition of community members
(Lozupone and Knight, 2005; Lozupone et al., 2011),
with weighted UniFrac accounting for differences in
the relative abundances of community members.
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Statistical analyses
All analyses were performed using the R environ-
ment for statistical computing (R Development Core
Team, 2011), with the aid of the vegan and ggplot2
packages (Wickham, 2009; Oksanen et al., 2011). To
compare temporal variability in diversity across
habitats having inherently different diversities,
we calculated the coefficient of variation (CV)
in within-sample diversity for each community
(Equation 1)

CV¼ s
m

ð1Þ

where s is the s.d. and m is the mean.
We calculated median absolute deviation (MAD)

to compare variability in between-sample diversity
(Equation 2).

MAD¼medianið Xi �medianjðXjÞ
�
�

�
�Þ ð2Þ

Finally, we calculated z-scores of richness to
examine the step-wise variability of richness
through time, across data sets (Equation 3).

z¼ w� m
s

ð3Þ

where w is the raw value of richness, m is the mean of
the sample, and s is the s.d. around the mean.

In using the coefficient of variation, median
absolute deviation and z-scores of richness over
time, we compared variability in diversity rather
than absolute measures of diversity, which was most
appropriate for comparing communities from differ-
ent habitats that were assessed using different
protocols for 16S rRNA short-read sequencing. To
assess whether there were patterns in community
structure that could be described by time between
observations, we related community similarity/dis-
tance to time elapsed using Mantel tests with
Pearson’s correlation on 999 permutations.

We evaluated the decay of community similarity
over time (time-decay) using the same methods for
calculating decay of community similarity over
space (distance-decay; Nekola and White, 1999;
Soininen et al., 2007). Though assessment of
distance-decay is common in the literature, it is less
common to assess time-decay. To assess time-decay
in microbial communities, we used a similar
approach adopted by Korhonen et al. (2010) to the
meta-analysis of aquatic community time-decay. A
log-linear model was fitted between the change in
community structure (assessed by pair-wise simila-
rities or distances, including Bray–Curtis, UniFrac
and unweighted UniFrac) and days elapsed. Com-
munity dissimilarities were converted to similarities
by subtracting from one. Similarities were log-
transformed. The slope of the log-linear model is a
rate of community change, sometimes referred to as
turnover (Nekola and White, 1999). For plotting
time-decay examples from each biome, we applied
lowess smoothing over windows the length of 5% of
the total series. Because time-decay can be sensitive

to the duration of the study, we also performed a
simple analysis of how quickly microbial commu-
nities change at temporal scales from 1 week to 1
month, from 1 to 6 months, from 6 months to 1 year,
from 1 to 2 years, from 2 to 3 years, from 3 to 4 years,
from 4 to 5 years and from 5 to 6 years. These
windows encompass the breadth of time series
durations included in the meta-analysis. For all
pairs of observations within a community’s time
series, a rate of change was calculated by dividing
Bray–Curtis dissimilarity by the time between
observations. Next, all pairs of observations were
partitioned into the appropriate temporal window
(determined by the time between observations) and
an average rate of change for each window was
calculated. The global average rate of change was
summarized across sites from the same habitat
(reported in Supplementary Table S2).

STRs for each site were constructed in R by
calculating richness using the moving window
approach of White et al. (2006). This approach
involves partitioning a time series into as many
window subsets as possible given the number of
observations and fitting the STR model (the power-
law relationship between time and richness) at each
window. For example, a 250-time point series could
divided into one 250-point window, two 249-point
windows, and so on. The power function, rather
than the lognormal function, was used so that our
results would be directly comparable with the
results from communities of larger organisms
reported in White et al. (2006). There is some debate
regarding which function is most appropriate for
describing the STR (McGill, 2003; White et al.,
2006), but White et al. (2006) found that the log and
power functions produced identical patterns. We
compared STR patterns in microbial communities
with patterns for communities of larger organisms.
However, microbial communities are widely con-
sidered to be more diverse than communities of
larger organisms, and it remains difficult to make a
direct comparison, as discussed at length previously
(Fierer and Lennon, 2011).

There are caveats to the data sets used here that
are worth highlighting. First, high-throughput
sequencing of 16S rRNA genes can introduce biases
in the determination of microbial diversity; these
limitations have been described elsewhere (for
example, Kunin et al., 2010; Haas et al., 2011;
Quince et al., 2011; Soergel et al., 2012). Second,
because sequencing depth varied across the sample
sets (Supplementary Table S1), it is difficult to
directly compare the temporal dynamics of indivi-
dual taxa across the data sets (particularly taxa
that are relatively rare). For this reason, we have
focused our meta-analyses entirely on the over-
arching patterns in within- and between-sample
diversity, which should be reasonably robust to
differences in sequencing depth (Kuczynski et al.,
2010b); however, we also tested whether inter-biome
differences were a byproduct of differences in
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sequencing depth. Third, we picked OTUs using a
closed-reference database protocol to compare data
sets generated using different primers that target
different variable regions of the 16S rRNA gene
(as done in Caporaso et al., 2011). Although this
method allowed us to directly compare data sets
using the same reference phylogeny, any sequences
not matching the well-curated database were dis-
carded from the analyses. Therefore, communities
that had better representation of taxa in the database
(for example, human-associated communities) had a
higher proportion of taxon assignments than, for
instance, flower communities, where a larger per-
centage of the sequences lack a close match to those
found in the database. However, we found no
relationship between the proportion of sequences
that matched the reference database and patterns of
temporal variability, suggesting that frequency of
matches to the reference database did not bias
overall patterns.

Results and discussion

Temporal variability in within-sample diversity
We used coefficients of variation calculated over
each site’s time series to compare the variability in

community evenness (equitability of representation
of taxa), richness (number of taxa) and phylogenetic
diversity (breadth of lineages). Variability in these
diversity metrics was generally consistent across
sites representing the same habitat (Figure 1a).
Evenness exhibited less variability than richness or
phylogenetic diversity over time. This is likely due
to the exceedingly uneven nature of microbial
communities (for example, Dethlefsen et al., 2008;
Quince et al., 2008), where there are few very
prevalent community members and a relatively large
number of rare members (a ‘long tail’ distribution).
Variability in community structure (beta diversity),
measured as the median absolute deviation in
weighted UniFrac distances, exhibited similar pat-
terns as the variability in other diversity metrics
(Figure 1b). Supplementary Figure S1 additionally
provides for each time series a visualization of every
time point’s deviation from the mean richness.

Variability in evenness, richness, phylogenetic
diversity and community structure were all highly
correlated (Figure 1c), demonstrating that both
phylogenetic (phylogenetic diversity and UniFrac)
and taxonomic (evenness and richness) approaches
to community diversity revealed similar overarching
patterns in temporal variability across sites.
This was surprising because we did not necessarily
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Figure 1 Temporal variability in (a) Pielou’s evenness (equitability of representation of taxa), richness (number of taxa), Faith’s
phylogenetic diversity (breadth of lineages) and (b) weighted UniFrac distance, a community distance metric (between-sample diversity).
Solid lines are the mean within each habitat. (c) Correlations in variability for each measure of diversity. All R40.72 and Po0.001.
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expect phylogenetic metrics, such as phylogenetic
diversity, and taxonomic metrics, such as rich-
ness, to vary consistently with one another in
time. This result suggests that the diversity metric
used to investigate temporal variability may not
matter, allowing robust comparisons of microbial
diversity measured in different ways across different
studies. Furthermore, differences in temporal varia-
bility across sites and habitats were not likely an
artifact of differences in survey effort (the number
of sequences per sample) or an artifact of our
ability to identify taxa against the reference database
(Figure 2, Pearson’s correlation, all P-values 40.10).
These results suggest that there are often clear
differences in the temporal variability in both within-
and between-sample diversity within bacterial com-
munities from different environment types.

Overall, soil and brewery wastewater treatment
communities were consistently less variable than
other community types (Figure 1). Though we
cannot know a priori the drivers governing the
observed rates of change, we can generate reason-
able hypotheses based on knowledge of the biology
and ecology of a microbial habitat. For example, we
may expect a relatively low degree of variability in
soil communities for two reasons. First, soil envir-
onmental conditions may simply be less variable at
the timescale of the included studies (6 months)
than some of the other habitats considered in this
study. Second, soil communities contain a large
proportion of dormant organisms (Lennon and
Jones, 2011) and because our sequencing approach
could not discriminate between active and inactive
members, the communities may appear to change
relatively little over the given time scale. Soils also
have high spatial heterogeneity, which can mask
changes in local communities with time because of
high community variability across micro-sites.

However, brewery wastewater treatment commu-
nities may vary minimally for different reasons.
Wastewater treatment facilities have been engi-
neered to perform a function (for example, nutrient
removal Curtis and Sloan, 2006; Martı́n et al., 2006;
Harris et al., 2012). Thus, a wastewater treatment
system may represent an environmental filter for
microorganisms that survive in wastewater treat-
ment processes while system performance is main-
tained. However, operating conditions, such as
feeding rate, and other environmental variables
(including temperature) change over time in waste-
water treatment facilities, as was true for the
environmental conditions in the system studied
here (Werner et al., 2011). Therefore, these commu-
nities may have low variability simply because of an
environmental filter, rather than because of dor-
mancy or invariant environmental conditions.

Stream bacterioplankton communities, the infant
gut community, flower communities and human
palm communities were highly variable in diversity
(Figure 1). Again, we can generate hypotheses as to
the drivers of this variability based on the knowl-
edge of the microbial habitat. Streams in the sub-
alpine region studied here are flow-through systems
with pronounced physicochemical instability. They
experience frequent and rapid shifts in environ-
mental conditions as well as shifts in bacterial
inputs into the stream channel (from sediment, soil
and biofilms) that are likely driven by pulse flashes
in hydrological conditions (Portillo et al., 2012).
Human palm sites were previously noted to be
highly variable (Fierer et al., 2008; Caporaso et al.,
2011), and this was attributed to frequent exposure
to bacterial inocula from a diverse array of touched
surfaces and a high degree of temporal heterogeneity
in environmental conditions (likely driven, in part,
by the disturbances associated with washing
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events). In this way, palm and stream communities
both experience environmental conditions that can
vary considerably over time.

The time series that represent cases of microbial
primary succession, the infant gut and flower
surfaces, also exhibited a high degree of temporal
variability in diversity. In both cases, there was
microbial colonization of a sterile (or nearly sterile)
habitat and rapid replacement of members through
time as the environment is altered (Fierer et al., 2010).
Thus, just as primary succession in plant commu-
nities can often lead to rapid changes in diversity and
community composition over time, we would also
expect a high degree of variability in diversity for
microbial communities undergoing succession.

Predictability in microbial community changes over
time and across temporal scales
We next asked whether communities sampled close
together in time were, on average, more similar in
composition than communities sampled further
apart. Approximately 26–40% of the 76 sites had
community changes that were correlated with time
over the entirety of study duration (Figure 3).
Specifically, there were 34 significant relationships
using Bray–Curtis, 26 relationships for unweighted
UniFrac and 21 relationships for weighted UniFrac
out of the 76 sites. Thus, in less than half of the sites
did we find that samples collected at shorter intervals
harbored communities that were consistently more
similar than those collected at longer intervals.
However, there was at least one site from each
biome that exhibited community changes that were
significantly correlated with time (Figure 3). Overall,
these results suggest that temporal variability is not
necessarily predictable solely by considering the time
between sampling events.

Those communities that consistently exhibited
temporal dependence included air, marine, human
and lake communities. The air, marine and lake
community time series were sampled over a dura-
tion that included seasonal changes, and thus
temporal trends are expected for these sites (Shade
et al., 2008; Bowers et al., 2012; Gilbert et al., 2012).
Further, human-associated microbial communities
sampled consecutively over time have been shown
to be more similar than those sampled more
distantly in time (Costello et al., 2009), which is
consistent with our detection of a temporal trend for
these communities. These results suggest that over-
all temporal signals exist for communities from
certain habitats and that, for communities from
these habitats, the relationship between community
structure and time is insensitive to the choice of
metric used for evaluating community structure
(Figure 3).

Several habitats had no or few communities that
exhibited correlations between time and community
structure (Figure 3). For example, depending on the
metric used, anywhere from five to none of the 25
soil time series exhibited significant temporal
dependence (Figure 3). For soil communities,
inter-annual changes would not be evident in this
data set, as the study durations were p6 months.
Thus, it may be that changes in soil communities are
not correlated with time at the time scale included
but that such relationships could become evident if
we had time series extending across full years or
multiple years.

It is also not surprising that the structure of
brewery wastewater treatment communities was
often not correlated with time, as any changes in
operation would not necessarily be related to time.
For the flower communities, the taxonomic metric,
Bray–Curtis, detected a significant temporal signal
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999 permutations; tests that were not significant are not shown. For example, all six flower communities (green points) were significant using
Bray–Curtis, one was significant using weighted UniFrac and none were significant using unweighted UniFrac metrics.
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(Figure 3a) where the phylogenetic metrics did not
(Figures 3b and c), likely because closely related
taxa were replacing one another (Shade et al., 2013),
a change to which a phlyogenetic metric would be
less sensitive. Only one of the stream communities
was correlated with time, and this correlation was
evident only when using the weighted UniFrac
distance metric (Figure 3c). Because environmental
conditions in the sampled streams are flashy with
irregular pulse distances (Portillo et al., 2012),
changes in stream communities may not be corre-
lated with time but rather with the occurrence of
these infrequent events.

Plant and animal communities often (but not
always) become less similar with increasing time
or geographical distance, a phenomenon known as
similarity-decay (Nekola and White, 1999). To
determine whether there was decay of microbial
community structure over time (time-decay), we fit
log-linear models to community similarity over
differences in time between sample collections
(Nekola and White, 1999; Korhonen et al., 2010;
Figure 4). The rate of temporal change in community
structure is the slope of the model, and this slope is
a measure of community turnover. A community
that is not changing over time would have a slope of
zero. More negative, steeper slopes indicate a faster
rate of change than less negative slopes. In Figure 4,
very gradual time-decay is evident, even for micro-
bial communities that exhibit seasonality, such as the
coastal marine and lake sites, as well as for sites that
have high temporal variability, such as the stream
community. Overall, 31–40% of microbial commu-
nities exhibited significant time-decay in community
similarity (Supplementary Figure S2, Po0.05). Slope
was not correlated with richness (all P40.05 for all
similarity metrics), suggesting that differences in the
number of taxa detected in individual samples did
not influence outcomes. Slopes were barely negative
in most cases. However, one flower (Gala 2), one soil
(HI_R12) and one brewery wastewater treatment (E1)
had slopes between � 0.02 and � 0.03. Aside from
these exceptions, the consistency of microbial time-
decay suggests that community turnover is generally
quite slow.

Time-decay can be sensitive to a study’s duration.
Therefore, we asked at what temporal scale commu-
nities changed the most quickly for the study
duration and sampling intensities of observations
that were available to us. To do this, we calculated a
simple rate of change by dividing pair-wise
Bray–Curtis dissimilarity by the time between obser-
vations and then partitioned observations into nine
broad temporal ranges, from 1 day to 6 years
(Supplementary Figure S3), representing the breadth
of the available time series. This analysis also showed
a consistent trend of slower change with longer
durations of time, and additionally reveals gaps in
the currently available time series, and points to the
temporal resolutions that are yet unknown for certain
habitats (Supplementary Table S2).

Notably, just because microbial community turn-
over is very gradual at long study durations does not
mean that there is no change occurring in these
communities. Rather, it suggests that there are not
drastic or new changes occurring, such as the
addition of new or phylogenetically distinct taxa.
Also, it is possible that some of the communities
may be changing around a ‘baseline’ of normal
variability, following the conceptual model of ball
and urn for alternative stable states (Beisner et al.,
2003).

STRs
STRs describe the accumulation of richness in a
community, over increasingly longer durations (for
example, Preston, 1960). The exponent of the STR
provides an indication of the rate at which new
taxa are observed in a community over time; the
higher the exponent the more new taxa are intro-
duced over time. Depending on the scale of the
study and the community of interest, STRs can be
explained by sampling, ecological or evolutionary
effects (Preston, 1960; White et al., 2006, 2010). Over
short-time periods, incomplete sampling effort
(duration or intensity) often drives STRs, but
evolutionary processes such as speciation and
extinction become more important for STRs over
longer-time periods. Between these extremes, ecolo-
gical processes such as meta-community dynamics
are important for STR, including dispersal of
transient tourists into a regional species pool
(Magurran and Henderson, 2003). Though the STR
spatial equivalent, the species–area relationship,
remains actively investigated in microbial ecology
(for example, Horner-Devine et al., 2004; Fierer and
Jackson, 2006; Green and Bohannan, 2006; Martiny
et al., 2006; Woodcock et al., 2006; Bell, 2010), STRs
are less often documented for microorganisms.
However, STRs have been reported for communities
from diverse environments, such as on leaf surfaces
(Redford and Fierer, 2009), in streams (Portillo et al.,
2012) and in bioreactors (Van Der Gast et al., 2008),
hinting that STRs may generally apply to microbial
communities.

We found that all communities had significant
STRs (Po0.05, Figure 5a). Microbial STRs were not
related to study duration or sequencing depth
(Pearson’s correlation P¼ 0.81 and 0.36, respec-
tively), suggesting limited, if any, influence of
sampling. However, our analysis does not distin-
guish stochastic processes (for example, random
presence and absence of taxa) from deterministic
properties in driving the STR, and both of these
likely contribute. There was a very consistent taxa–
time relationship across microbial communities,
ranging from 0.24 to 0.61. Communities had com-
parable STR exponents within biomes, again high-
lighting the within-biome consistency. Furthermore,
differences in the STR exponents across biomes
could be explained by known ecological attributes of
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the communities. For example, the air and stream
communities, with high flow-through and hetero-
geneity, had high STR. The infant gut and flower
primary succession communities also had high STR.
The soil communities had the lowest STR expo-
nents, demonstrating that despite their high levels of

diversity (for example, Elshahed et al., 2008), the
taxa present at a given location do not change
appreciably over time (a pattern also noted in Fierer
and Jackson, 2006). These results are consistent with
the general trends in diversity over time as seen in
Figure 1 and suggest that fluctuating abiotic
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conditions drive higher microbial STRs. These
environmental fluctuations potentially allow for
time series to effectively encompass a wider range
of microbial niches (Shurin, 2007).

We next asked whether STRs could be distin-
guished at the phylum level. For each community,
we calculated STRs for common phyla observed
within each habitat (Actinobacteria, Bacteroidetes,
Firmicutes, Proteobacteria and Verrucomicrobia), at
each site. We found a range of STRs at the phylum-
level, but the exponents had comparable means
across phyla (Figure 5b). This suggests that micro-
bial phyla do not have inherently different rates of
replacement but that the local ecology drives the
observed STR within a community. One exception
to this may be the Firmicutes, which had a slightly
higher mean STR and wider upper range than the
other phyla. We speculate that this pattern may be a
product of many taxa affiliated with Firmicutes
being capable of sporulation (Onyenwoke et al.,
2004) and may either have higher rates of dispersal
into communities or are able to persist in commu-
nities in very low abundances when conditions are
unfavorable and bloom when conditions become
favorable. However, taxa affiliated with other phyla
are also capable of persisting in dormant states, and
more evidence is needed to address this hypothesis.

It can be difficult to directly compare STR patterns
of microbial communities with communities of larger
organisms. First, most microbes probably have gen-
eration times shorter than those of larger organisms,

and the microbial time series investigated here likely
included far more microbial generations than com-
parable study durations of plant and animal taxa. In
addition, species definitions as applied to microbes
are distinct from how plant and animal species are
typically defined (Stackebrandt et al., 2002; Gevers
et al., 2005). Finally, microbial communities are often
more diverse than communities of larger organisms,
with individual samples harboring hundreds to
thousands of taxa as compared with the tens of taxa
reported in White et al., (2006). However, despite
these caveats, the range of STRs for microbial
communities was the same as that reported in
White et al., (2006) meta-analysis of STR for larger
organisms (Figures 5a and c). On average, STR
exponents are higher for microorganisms than for
larger organisms, and the exponents were less
variable within communities. Though White et al.
(2006) found a relationship between STRs and
richness in their meta-analysis, we found no such
relationship for microbial communities (P¼ 0.19),
suggesting that microbial community STRs are better
explained by changes in environmental conditions
than by local richness. However, the slightly higher
average STR for microbial communities over macro-
bial communities may be due to the generally higher
richness of microbial communities. Random changes
in the occurrences of these community members may
partly be driven by the stochastic process of drift
(Vellend, 2010), which could also contribute to the
STR. Nonetheless, the overall consistency in STRs
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across microbial and macrobial communities is
striking, suggesting that this may be an ecological
pattern that is ubiquitous across scales, phyla and
habitats.

Conclusions and future directions

From this meta-analysis, we gain a preliminary
understanding of how temporal patterns in micro-
bial communities compare with each other and with
those of communities of larger organisms. There was
consistent variability in diversity and STRs across
communities from similar habitats. This consistency
can be leveraged when making logistical decisions
about sampling regimes and for understanding
baseline levels of temporal variability. Within a
habitat, these temporal patterns may represent the
equilibrium from which disturbance events may
alter microbial dynamics. This information is
important for identifying when a microbial commu-
nity is experiencing a disturbance, anticipating
how quickly a community may recover from such
events, and determining if and when a community
has recovered post-disturbance (Allison and
Martiny, 2008; Shade et al., 2012a; Shade and
Peter et al., 2013).

A challenge in conducting this meta-analysis was
the availability of directly comparable microbial
time series collected across habitats. The same
protocols and standards of quality across data sets
were necessary for this undertaking, and though
there are 76 microbial communities that span 8
distinct microbial biomes, there are obviously many
habitats that were not represented in the meta-
analysis simply because data were not available.
Further, some of the available time series were
limited in duration or sampling intensity, and
therefore, it cannot be determined whether temporal
patterns were not discovered because they truly do
not exist or because of a limitation in the sampling
effort. For example, we may observe seasonality in
soil microbial communities sampled over 6 years
instead of over 6 months. With the increased
availability of high-throughput sequencing, the
number of higher-resolution, longer-term time series
will only increase. For example, the Earth Micro-
biome Project is leading a concerted effort to collect
and curate high-quality microbial community
sequencing data and corresponding contextual data
from diverse environments (Gilbert et al., 2010).
Placing microbial community dynamics within the
rich context of environmental dynamics will pro-
vide insight into the key drivers of those commu-
nities, help to explain discrepancies in patterns
across communities from similar habitats, and allow
ecologists to begin predicting microbial dynamics.
Efforts like these will help to build theory for
microbial ecology, advancing beyond system-specific
observations (Prosser et al., 2007). Additional dis-
cussion about challenges with sampling microbial

communities in time (including defining a microbial
community, sampling the same community long-
itudinally and accounting for micro-scale spatial
heterogeneity) is available as a Supplementary
Discussion.

This meta-analysis highlights that microbial com-
munities, like plant and animal communities, are
variable with time; that microbial temporal
dynamics are dependent on the habitat type in
question; and, furthermore, that microbial temporal
dynamics are often predictable. Perhaps more
importantly, this work demonstrates the utility of
time course analyses in microbial ecology. Likewise,
this meta-analysis highlights that microbial commu-
nities represent a useful system for studying
temporal dynamics in communities, dynamics that
would be very difficult to explore in plant and
animal communities where generation times are
often far longer. For example, it is often easier to
execute disturbance experiments with microbial
communities than with plant and animal commu-
nities, and microbial responses can be detected over
relatively short-time periods (for example,
Dethlefsen et al., 2008; Shade et al., 2012b). These
kinds of directed, in situ experiments with microbial
communities may provide key empirical validation
(or invalidation) of theoretical paradigms.

Just as comparing the spatial patterns exhibited by
microorganisms versus larger organisms has yielded
interesting findings that have allowed us test
paradigms in biogeography (for example, Horner-
Devine et al., 2004; Fuhrman et al., 2008; King et al.,
2010), paradigms almost wholly derived from
research on plant and animal communities, we
can use microbial communities to build a more
comprehensive understanding of time–biodiversity
relationships. The continued integration of micro-
organisms into the broader field of ecology will
clearly be advantageous for both ‘macro’-bial and
microbial ecologists, providing rich insight into the
common forces that shape patterns of distribution
and diversity for organisms of all sizes.
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