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A Meta-analysis of Clinical Screening Tests for Obstructive
Sleep Apnea
Satya Krishna Ramachandran, M.D., F.R.C.A.,* Lydia A. Josephs, M.D.†

The purpose of this meta-analysis is to compare clinical

screening tests for obstructive sleep apnea and establish an

evidence base for their preoperative use. Diagnostic odds ratios

were used as summary measures of accuracy, and false-negative

rates were used as measures of missed diagnosis with each

screening test in this review. Metaregression revealed that clin-

ical models, logarithmic equations, combined techniques, ceph-

alometry, and morphometry are significant characteristics,

whereas body mass index, history of hypertension, and noctur-

nal choking are significant test elements associated with higher

diagnostic accuracy. Test accuracy in repeated validation stud-

ies of the same screening test is variable, suggesting an under-

lying heterogeneity in either the clinical presentation of ob-

structive sleep apnea or the measured clinical elements of these

models. Based on the false-negative rates, it is likely that most of

the clinical screening tests will miss a significant proportion of

patients with obstructive sleep apnea.

OBSTRUCTIVE sleep apnea (OSA) affects 2–4% of the pop-
ulation1 in the United States and is now considered a
significant risk factor for perioperative morbidity and mor-
tality.2,3 The risks of OSA in the general population are well
known and include hypertension,4 coronary artery dis-
ease,5,6 stroke,7 pulmonary hypertension,8 sudden cardiac
death,9 and deep vein thrombosis,10 to name a few that
directly impact on perioperative outcome. Overnight poly-
somnography is the standard for diagnosis of OSA, but its
value in the management of patients scheduled to undergo
surgery is reduced by significant issues with resource avail-
ability.11 Full polysomnography involves an overnight stay
in a designated sleep laboratory with multichannel moni-
toring to measure electro-oculogram, chin and leg electro-
myography, electro-oculography, chest and abdominal re-
spiratory effort, nasal airflow via a thermistor and/or nasal

cannula, oxygen saturation, and heart rate monitoring, in
addition to several sleep architecture measures. Tradition-
ally, the apnea–hypopnea index (AHI) or the respiratory
disturbance index has been used as a measure of the pres-
ence of OSA and its severity. Accepted diagnostic thresh-
olds for OSA have varied between AHI values of 5 or more
per hour1,12 and 10 or more per hour.13

Current guidelines by the American Society of Anes-
thesiologists (ASA) recommend preoperative polysom-

nography when indicated.12 Although it may indeed be

the most cost-effective strategy in diagnosing OSA,14

urgency of the planned operative procedure is an impor-

tant limiting factor in pursuing a policy of liberal preop-

erative polysomnography.15 It is estimated that 93% of

females and 82% of males with OSA are possibly undiag-

nosed.16 Further, it will take several years to complete

the current requirement for polysomnography in the

general population with existing resources.11 All of

these points make a compelling argument in favor of

cost-effective prediction models to help anesthesiolo-

gists assess risk of OSA preoperatively. It is with this

background information that we set out to systematically

review alternatives to polysomnography in published

literature. Indeed, there have been numerous efforts in

the past to devise alternate clinical methods of predict-

ing OSA, primarily by experts in sleep medicine, looking

to aid in screening patients for high risk of OSA. These

methods are broadly classified as questionnaires and

clinical prediction models (algorithms, artificial neural

networks, cephalometry, morphometry, and other com-

bined techniques and regression models). There is no

consensus in the ASA or the American Academy of Sleep

Medicine about the best screening tests, with the excep-

tion of portable devices for diagnosis of OSA.15 Most of

the current screening methods have been validated in

the sleep laboratory population. It is important to rec-

ognize that basic differences exist between the study

populations in sleep laboratories and preoperatively. On

the one hand, patients are referred to sleep laboratory

because of a perceived high risk of OSA, and a question-

naire or clinical screening test administered in the sleep

laboratory essentially functions as a second highly spe-

cific step to rule in the diagnosis of OSA. Anesthesiolo-

gists, on the other hand, need a highly accurate clinical

test with high sensitivity to rule out OSA robustly in a

lower-risk population, without recourse to confirmatory

polysomnography. In addition, screening test results

from high-risk populations often report higher sensitivity

than is seen when the test is used in a lower-risk popu-

lation. Identifying the most accurate screening test, with

reproducible low false-negative rates, is of critical impor-

tance in this context. A previous meta-analysis on screen-

ing tests for OSA17 was published in 2000 and described

the analysis of several screening methods, including par-

tial time polysomnography, partial channel polysomnog-

raphy, oximetry, portable devices, prediction equations,

flow–volume loops, global impression, questionnaires,

and other clinical, chemical, and radiologic screening

tests. Methodologically, it suffers from a major inade-
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quacy in that several largely heterogeneous studies were
pooled without analysis of relative merits and demerits
of the individual tests. This lack of discriminatory analy-
sis makes it difficult for an anesthesiologist to make an
evidence-based choice of preoperative screening test.
Further, there have been several new validation studies
on prediction models for OSA in the ensuing years after
the last meta-analysis. The purpose of the current sys-
tematic review is, therefore, to update the literature and
identify the best approach to clinical prediction of OSA,
by comparing clinical screening tests for ease and accuracy
of prediction of both diagnosis and severity of OSA. We
investigated this question using quantitative methods to
retrieve and analyze the relevant published literature.

Materials and Methods

The reviewers (S.K.R. and L.A.J.) searched the elec-
tronic databases PubMed and Ovid for articles published
in English from 1966 to May 2008 using the phrases sleep

apnea, obstructive sleep apnea, prediction, diagnosis,
screening, and combinations of these phrases. We then
manually searched the associated articles and bibliogra-
phy of any relevant published article we retrieved for
additional pertinent references. We also checked the
Cochrane Controlled Trials register and hand searched
the journals Sleep, American Journal of Respiratory

and Critical Care Medicine, Thorax, Chest, Interna-

tional Journal of Obesity, Obesity, Obesity Reviews,
Obesity Surgery, and Annals of Internal Medicine for
additional articles.

Inclusion Criteria and Assessment of Study Quality

Studies that measured the diagnostic value of question-
naires, clinical scales, or prediction equations (algo-
rithms or regression equations) compared with standard

overnight polysomnography were included. We ex-
cluded from review studies that did not provide preva-
lence (pretest probability) of OSA with raw data in 2 �

2 tables, sensitivity and specificity, or positive and neg-
ative likelihood ratios. We also excluded studies where
the reference standard was not overnight monitored
polysomnography in a hospital or laboratory facility. We
therefore excluded studies that used portable monitor-
ing as the standard. Two reviewers (S.K.R. and L.A.J.)
independently screened the titles and abstracts of all
articles identified by the search strategy and individually
determined inclusion of studies for the analysis, guided
by previously established methodologic standards for
diagnostic test research in OSA.18 Full copies of all se-
lected articles were retrieved. Disagreements regarding
inclusion and exclusion were resolved by discussion,
which involved manually rechecking the data extraction
from each disputed article. In those situations where
there was lack of agreement or clarity even after this

discussion, further advice was sought from our institu-
tion’s specialist on OSA (Ronald D. Chervin, M.D.). The
quality of studies accepted for this review was analyzed
under the Quality Assessment of Diagnostic Accuracy
Studies19 framework for completeness and accuracy of
reporting.

Definitions and Statistical Analysis

A questionnaire was defined as a set of questions with
no additional physical measurement involved. A clinical
model combined elements of history and physical exam-
ination, with or without additional measurements and
investigations (radiologic, oximetry, or laboratory). Of
these, we arbitrarily chose three elements to define ease
of use of a given test and reflect its applicability as a
preoperative screening tool: number of variables, use of
linear or log scales, and description of the clinical meth-
ods. An ease-of-use scale was thus developed, with 0
defining easy and 3 meaning complex methodology. One
point was added for the presence of each of the follow-
ing: four or more test elements or variables; log scale;
and need for additional techniques, measurements, or
investigations.

The frequency of true-positive, true-negative, false-pos-
itive, and false-negative (FN) results were abstracted
from all selected studies. True positives were defined as
the frequency of patients with OSA with a positive
screening test. False positives were the frequency of
patients with positive screening test but no OSA. FNs
were the frequency of patients with OSA and a negative
screening test. True negatives referred to the frequency
of patients with negative screening test and no OSA.
Where raw 2 � 2 tables were not presented, these data
were derived from the relevant results. From each 2 � 2
table, we computed sensitivity, specificity, likelihood
ratios, and the diagnostic odds ratio (DOR), which com-
bines data on sensitivity and specificity to give an indi-
cation of a test’s ability to rule in or rule out a condition.
The DOR was chosen as the primary summary measure
of test accuracy for comparison, the reasons for which
are described in further detail in the Discussion. A DOR
of greater than 81 was chosen to identify an excellent
test, because this indicated that the specificity and sen-
sitivity were both greater than 0.9.20 A DOR of 10–80
was termed a good test,21 5–10 was arbitrarily termed
average, 2–5 was considered poor, and less than 2 was
considered to be of no value in prediction. These sum-
mary measures of diagnostic accuracy were reported as
point estimates with 95% confidence intervals. The FN
rate was derived as (1 � sensitivity) and was used as a
measure of the rate of missed diagnosis for any given
screening test. An ideal test was one that had a DOR
greater than 81 and an FN rate of 0%.

In addition, the following unique descriptors of the
test were collected: questionnaire or clinical model, year
of publication, Quality Assessment of Diagnostic Accu-
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racy Studies score, number of patients in the study, age,
sex balance, prevalence of OSA, mean body mass index,
number of variables, linear scale or log equation, and
presence of additional diagnostic modalities (cephalom-
etry, morphometry, or oximetry). Elements of the screen-
ing tests were also collected as binary yes/no data, includ-
ing body mass index, snoring, age, sex, hypertension,
witnessed apnea, neck circumference, choking or gasping
in sleep, tiredness, and daytime somnolence. We com-
puted statistics for individual studies and combined them
using Meta-DiSc (version 1.2; Ramon y Cajal Hospital, Ma-
drid, Spain).22 We planned to use the Mantel–Haenszel
fixed effects model if the studies were homogeneous for
the diagnostic performance indices and the DerSimonian–
Laird random effect model if they showed heterogeneity. A
further within-test subanalysis was performed for screening
tests with more than one validated study, to assess whether
the reported accuracy of the test in one study was repro-
ducible across all studies. The homogeneity of likelihood
ratios and DORs were traditionally assessed using the Coch-
ran Q test based on inverse variance weights, which also
has a chi-square distribution with k � 1 degrees of free-
dom.22 A P value less than 0.05 was considered to indicate
the presence of statistically significant heterogeneity be-
tween the studies. In addition, the I2 index was used to
quantify any heterogeneity. A value of 0% indicates no
heterogeneity, and larger values indicate increasing heter-
ogeneity. Low, moderate, and high I2 values of 25, 50, and
75% were chosen to quantify heterogeneity as described by
Higgins et al.23

Finally, a random effects metaregression of the previ-
ously listed screening test elements was undertaken, by
adding these elements as covariates to the regression
model. The resulting parameter estimates were back-
transformed (antilogarithmic transformation) to relative
diagnostic odds ratios (rDORs).24 An rDOR of 1 indicates
that the particular screening test element does not affect

the overall DOR of the test. An rDOR of greater than 1
means a particular element bestows a higher DOR on a
test, compared with tests without this particular vari-
able. For the purposes of description, rDOR � 2 was
arbitrarily chosen to identify significant variables. Diag-
nostic threshold effect was studied using Littenberg and
Moses’ fitted model,25 D � a � bS, where D is the
natural logarithm of the DOR and S is the natural loga-
rithm of the product of the odds of true-positive test
results and the odds of false-positive test results. The
statistical significance of the regression coefficient b (P
� 0.05) was tested to assess whether diagnostic accu-
racy varies significantly with changes in threshold.

Results

Our initial search strategy (fig. 1) retrieved 6,816 po-
tentially relevant diagnostic studies, which were then

screened by title first and then by abstract. These in-
cluded the unduplicated results of multiple search en-
gines and hand-searched journals as listed previously.
After review of the relevant articles and their bibliogra-
phy, 115 studies were considered potentially appropri-
ate for the study. On a more detailed review of these
publications, a further 89 articles were excluded from
the final analysis, either because the standard reference
test used was not overnight polysomnography or clinical
methods were not used in the screening tests. Therefore,
a total of 26 articles were accepted for final analysis. Of
these, 8 pertained to questionnaires, and the remaining
18 described clinical prediction tests. These included
linear scales, algorithms, regression models, morphome-
try, cephalometry, combined prediction models, and
neural networks. The 26 studies included a total 6,794
patients with suspected OSA (median sample size, 123;
range, 33–1,409). The study prevalence of OSA ranged
from 0.09 to 0.847. The proportion of male subjects
ranged from 24% to 100%.

The study quality of the included articles was variable
with Quality Assessment of Diagnostic Accuracy Studies
scores ranging from 6 to 13. In addition, there was evi-
dence of verification bias as described by Irwig et al.,18

because several studies were derived from nonrandomly
chosen populations and did not describe the cases that

Fig. 1. Flow diagram of the systematic review process.
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were not included in sufficient detail. Tables 1–4 describe
the sensitivity, specificity, and likelihood ratios of the vari-
ous screening tests for prediction of OSA. Random effects
models were used because of the significant heterogeneity
between studies, as measured by both the Cochran Q test
(P � 0.05) and the I2 index (74.4–90.6%).

An additional subgroup analysis was undertaken of the
screening tests with more than one validation study.
Three tests were identified for this purpose, namely the
Berlin questionnaire, the Maislin multivariable apnea in-
dex (algorithm), and the Kushida index (morphometry).
There was a high degree of heterogeneity within each

Table 1. Test Characteristics of Questionnaires Predicting the Diagnosis of Obstructive Sleep Apnea

Study
Prevalence

of OSA
AHI

Threshold Study n
Sensitivity
(95% CI)

Specificity
(95% CI)

LR�

(95% CI)
LR�

(95% CI)

ASA checklist; 0.696 5 177 0.721 0.382 1.167 0.730

Chung et al.,38 2008 (0.633–0.799) (0.254–0.523) (0.922–1.476) (0.470–1.135)

Berlin questionnaire; 0.262 5 130 0.676 0.490 1.325 0.661

Ahmadi et al.,39 2008 (0.495–0.826) (0.386–0.594) (0.978–1.796) (0.390–1.120)

Berlin questionnaire; 0.262 10 130 0.618 0.427 1.078 0.895

Ahmadi et al.,39 2008 (0.436–0.778) (0.327–0.532) (0.786–1.479) (0.551–1.456)

Berlin questionnaire; 0.596 5 104 0.855 0.952 17.952 0.152

Sharma et al.,40 2006 (0.742–0.931) (0.838–0.994) (4.624–69.691) (0.083–0.280)

Berlin questionnaire; 0.596 10 104 0.855 0.857 5.984 0.169

Sharma et al.,40 2006 (0.742–0.931) (0.715–0.946) (2.833–12.641) (0.091–0.314)

Berlin questionnaire; 0.696 5 177 0.689 0.545 1.515 0.571

Chung et al.,38 2008 (0.598–0.769) (0.406–0.680) (1.108–2.072) (0.399–0.816)

Epworth Sleepiness Scale; 0.457 5 46 0.286 0.520 0.595 1.374

Osman et al.,41 1999 (0.113–0.522) (0.313–0.722) (0.270–1.311) (0.864–2.184)

Sleep questionnaire; 0.429 10 42 0.778 0.792 3.733 0.281

Haraldsson et al.,42 1992 (0.524–0.936) (0.578–0.929) (1.647–8.460) (0.115–0.682)

SDQ females; 0.552 5 55 0.800 0.667 2.400 0.300

Weatherwax et al.,43 2003 (0.593–0.932) (0.472–0.827) (1.395–4.130) (0.132–0.684)

SDQ males; 0.552 5 70 0.750 0.654 2.167 0.382

Weatherwax et al.,43 2003 (0.597–0.868) (0.443–0.828) (1.244–3.775) (0.213–0.685)

Snoring questionnaire; 0.423 10 1,409 0.304 0.988 24.690 0.705

Bliwise et al.,13 1991 (0.267–0.342) (0.977–0.994) (13.178–46.259) (0.668–0.744)

STOP questionnaire; 0.696 5 177 0.656 0.600 1.639 0.574

Chung et al.,31 2008 (0.564–0.739) (0.459–0.730) (1.157–2.322) (0.414–0.795)

Symptoms; 0.28 5 406 0.518 0.685 1.643 0.704

Gurubhagavatula et al.,44 2004 (0.422–0.612) (0.628–0.738) (1.286–2.099) (0.574–0.865)

Pooled estimates 0.28–0.696 0.520 0.800 2.468 0.642

(0.493–0.546) (0.779–0.819) (2.210–2.757) (0.608–0.678)

AHI threshold � diagnostic threshold of apnea–hypopnea index used in each study; ASA � American Society of Anesthesiologists; CI � confidence interval;

LR�
� positive likelihood ratio; LR�

� negative likelihood ratio; OSA � obstructive sleep apnea; SDQ � Sleep Disorders Questionnaire; STOP � acronym from

Chung et al.31

Table 2. Test Characteristics of Questionnaires Predicting the Presence of Severe Obstructive Sleep Apnea

Study Prevalence of OSA AHI Threshold Study n Sensitivity (95% CI) Specificity (95% CI) LR� (95% CI) LR� (95% CI)

ASA checklist; 0.696 30 177 0.877 0.364 1.378 0.338

Chung et al.,38 2008 (0.805–0.930) (0.238–0.504) (1.117–1.701) (0.188–0.609)

Berlin questionnaire; 0.596 30 104 0.919 0.667 2.758 0.121

Sharma et al.,40 2006 (0.822–0.973) (0.505–0.804) (1.787–4.257) (0.051–0.288)

Berlin questionnaire; 0.696 30 177 0.870 0.463 1.620 0.28

Chung et al.,38 2008 (0.797–0.924) (0.326–0.604) (1.253–2.094) (0.164–0.482)

Sleep questionnaire; 0.429 25 43 0.895 0.750 3.579 0.140

Haraldsson et al.,42 1992 (0.669–0.987) (0.533–0.902) (1.760–7.279) (0.037–0.531)

SDQ females; 0.090 25 187 0.882 0.812 4.688 0.145

Douglass et al.,45 1994 (0.636–0.985) (0.745–0.868) (3.280–6.700) (0.039–0.534)

SDQ males; 0.424 25 332 0.851 0.759 3.534 0.196

Douglass et al.,45 1994 (0.781–0.905) (0.692–0.818) (2.722–4.588) (0.131–0.293)

STOP questionnaire; 0.696 30 177 0.795 0.491 1.562 0.417

Chung et al.,31 2008 (0.713–0.863) (0.354–0.629) (1.187–2.056) (0.269–0.649)

Pooled estimates 0.09–0.696 0.858 0.679 2.177 0.231

(0.828–0.885) (0.639–0.71) (1.941–2.441) (0.183–0.292)

AHI threshold � diagnostic threshold of apnea–hypopnea index used in each study; ASA � American Society of Anesthesiologists; CI � confidence interval;

LR�
� positive likelihood ratio; LR�

� negative likelihood ratio; OSA � obstructive sleep apnea; SDQ � Sleep Disorders Questionnaire; STOP � acronym from

Chung et al.31
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test across various studies (I2
� 75%). Only the Kushida

index reproducibly performed as an excellent predictor
(DOR � 81) in all validated studies. A summary table of
the range of FN rates was generated for each screening

test (table 5), with summary recommendation for the
test utility. No single questionnaire or clinical model
satisfied the criteria for the ideal preoperative screening
test.

Table 3. Test Characteristics of Clinical Models Predicting the Diagnosis of Obstructive Sleep Apnea

Clinical Model
Prevalence

of OSA
AHI

Threshold Study n
Sensitivity
(95% CI)

Specificity
(95% CI)

LR�

(95% CI)
LR�

(95% CI)

BMI; 0.281 5 406 0.702 0.610 1.797 0.489

Gurubhagavatula et al.,44 2004 (0.609–0.784) (0.551–0.666) (1.491–2.166) (0.364–0.658)

Clinical assessment 1; 0.702 10 114 0.688 0.706 2.338 0.443

Schafer et al.,46 1997 (0.574–0.787) (0.525–0.849) (1.360–4.016) (0.300–0.654)

Clinical assessment 2; 0.702 10 114 0.413 0.912 4.675 0.644

Schafer et al.,46 1997 (0.304–0.528) (0.763–0.981) (1.538–14.210) (0.522–0.796)

Clinical and oximetry 1; 0.702 10 114 0.413 0.912 4.675 0.644

Schafer et al.,46 1997 (0.304–0.528) (0.763–0.981) (1.538–14.210) (0.522–0.796)

Clinical and oximetry 2; 0.702 10 114 0.338 0.971 11.475 0.683

Schafer et al.,46 1997 (0.236–0.452) (0.847–0.999) (1.624–81.074) (0.578–0.807)

Clinical and oximetry; 0.570 10 150 1.000 0.313 1.452 0.018

Pradhan et al.,47 1996 (0.958–1.000) (0.202–0.441) (1.230–1.714) (0.001–0.296)

Clinical data model; 0.570 10 150 1.000 0.188 1.231 0.03

Pradhan et al.,47 1996 (0.958–1.000) (0.101–0.305) (1.092–1.388) (0.002–0.496)

Clinical decision rule; 0.720 5 243 1.000 0.471 1.885 0.006

Rodsutti et al.,48 2004 (0.979–1.000) (0.348–0.596) (1.509–2.355) (0.000–0.097)

Clinical score; 0.606 10 33 0.750 1.000 20.667 0.272

Williams et al.,49 1991 (0.509–0.913) (0.753–1.000) (1.343–318.08) (0.132–0.561)

Crocker validation; 0.670 10 370 0.839 0.393 1.383 0.410

Rowley et al.,50 2000 (0.787–0.882) (0.306–0.486) (1.187–1.611) (0.286–0.587)

Flemons validation; 0.670 10 370 0.759 0.537 1.640 0.449

Rowley et al.,50 2000 (0.701–0.811) (0.444–0.628) (1.337–2.012) (0.341–0.591)

Generalized regression

neural network;

0.690 10 405 0.989 0.802 4.986 0.013

Kirby et al.,51 1999 (0.969–0.998) (0.721–0.867) (3.509–7.083) (0.004–0.041)

Kushida index; 0.771 5 70 0.938 0.889 14.222 0.119

Jung et al.,52 2004 (0.698–0.998) (0.774–0.958) (2.127–95.095) (0.055–0.255)

Kushida index; 0.847 5 300 1.000 0.976 91.604 0.026

Kushida et al.,33 1997 (0.923–1.000) (0.949–0.991) (5.815–1443.1) (0.012–0.055)

Linear regression model 1; 0.730 5 309 0.947 0.214 1.205 0.249

Vaidya et al.,53 1996 (0.909–0.972) (0.132–0.317) (1.073–1.353) (0.125–0.494)

Linear regression model 2; 0.730 5 309 0.964 0.226 1.246 0.157

Vaidya et al.,53 1996 (0.931–0.985) (0.142–0.330) (1.107–1.403) (0.072–0.345)

MAP index bootstrapping algorithm; 0.680 5 75 0.941 0.667 2.824 0.088

Gurubhagavatula et al.,54 2001 (0.838–0.988) (0.447–0.844) (1.597–4.992) (0.028–0.274)

MAP index; 0.694 5 359 0.819 0.700 2.731 0.258

Gurubhagavatula et al.,54 2001 (0.766–0.865) (0.605–0.784) (2.041–3.655) (0.193–0.346)

MAP index; 0.670 10 370 0.871 0.344 1.328 0.375

Rowley et al.,50 2000 (0.823–0.910) (0.261–0.436) (1.158–1.524) (0.250–0.562)

MAP index and oximetry; 0.281 5 406 0.746 0.890 6.804 0.286

Gurubhagavatula et al.,44 2004 (0.656–0.823) (0.849–0.924) (4.823–9.598) (0.208–0.392)

MAP index; 0.281 5 406 0.719 0.757 2.958 0.371

Gurubhagavatula et al.,44 2004 (0.627–0.799) (0.703–0.805) (2.344–3.733) (0.274–0.501)

Prediction model validation; 0.405 10 116 0.936 0.449 1.700 0.142

Rauscher et al.,55 1993 (0.825–0.987) (0.329–0.574) (1.356–2.131) (0.046–0.438)

Prediction model; 0.558 10 129 0.597 0.895 5.674 0.450

Dealberto et al.,56 1994 (0.475–0.711) (0.785–0.960) (2.600–12.380) (0.335–0.605)

STOP-BANG; 0.696 5 177 0.836 0.546 1.916 0.291

Chung et al.,31 2008 (0.758–0.897) (0.423–0.679) (1.405–2.614) (0.183–0.462)

Symptoms; 0.281 5 406 0.518 0.685 1.643 0.704

Gurubhagavatula et al.,44 2004 (0.422–0.612) (0.628–0.738) (1.286–2.099) (0.574–0.865)

Viner prediction model; 0.460 10 410 0.941 0.279 1.306 0.210

Viner et al.,57 1991 (0.898–0.970) (0.221–0.343) (1.195–1.428) (0.114–0.386)

Viner validation; 0.670 10 370 0.959 0.137 1.112 0.297

Rowley et al.,50 2000 (0.927–0.980) (0.082–0.210) (1.032–1.198) (0.140–0.628)

Pooled estimates 0.281–0.847 0.835 0.575 2.003 0.302

(0.823–0.847) (0.557–0.593) (1.682–2.385) (0.232–0.393)

AHI threshold � diagnostic threshold of apnea–hypopnea index used in each study; BMI � body mass index; CI � confidence interval; LR�
� positive likelihood

ratio; LR�
� negative likelihood ratio; MAP � multivariable apnea prediction; OSA � obstructive sleep apnea; STOP-BANG � acronym from Chung et al.31
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Figures 2–5 describe the DOR characteristics of the indi-

vidual questionnaires and clinical screening tests for pre-

diction of diagnosis and severity of OSA. Although cumu-

lative analyses were performed for all tests characteristics,

the large heterogeneity precluded a more specific com-

ment on the pooled results. Broadly, clinical models had

marginally better pooled DOR than questionnaire models

for both OSA diagnosis (pooled DOR 10.49 vs. 5.02) and

severity (pooled DOR 17.24 vs. 10.12) prediction.

Finally, a metaregression of several study covariates and

elements was undertaken to identify the source of this

heterogeneity (table 6). Study characteristics with rDOR �

2 were identified to be log equations (nonlinear scales),

clinical models, clinical–cephalometry, combined tech-

niques, and morphometry in ascending order of magni-

tude. Clinical elements associated with rDOR � 2 were

body mass index, hypertension, and history of choking or

gasping. Covariates associated with rDOR � 2 were prev-

alence of OSA, AHI threshold for diagnosis, publication

year, number of variables, oximetry, age, witnessed apnea,

neck circumference, tiredness, and daytime somnolence.

History of snoring and sex balance in the study population

had rDORs of 1.93 and 1.81, respectively. On diagnostic

threshold analysis (table 7), the statistical significance of

the regression coefficient b was found to be 0.189, suggest-

ing that there is no influence of diagnostic threshold on

diagnostic accuracy. That is, DOR is independent of the

chosen diagnostic AHI threshold.

Discussion

We report the results of a meta-analysis of clinical
screening tests for the prediction of diagnosis and sever-
ity of OSA. Severe OSA can be predicted by question-
naires and clinical tests with a high degree of accuracy.
The Berlin questionnaire, the Sleep Disorders Question-
naire, morphometry (Kushida index), and the combined
clinical–cephalometry model (Battagel) were the most
accurate questionnaires and clinical models. However,

there is high degree of heterogeneity and FN rate with all
questionnaires and most clinical prediction models, mak-
ing it possible that a significant proportion of patients
with OSA will be missed by all questionnaires and most
of the clinical models. Metaregression revealed that clin-
ical models, log equations, combined techniques, ceph-
alometry, and morphometry are significant test char-
acteristics, whereas body mass index, history of hyper-
tension, and nocturnal choking are significant test
elements in the more accurate prediction models.

Importance of Test Accuracy: Implications for

Anesthesiologists

There are several described summary measures for
meta-analyses of diagnostic tests, namely sensitivity,
specificity, predictive values, likelihood ratios, DOR, re-
ceiver operating characteristic curve analysis, and area
under the curve. Each of these summary measures has
unique advantages and disadvantages. An ideal diagnos-

Table 4. Test Characteristics of Clinical Models Predicting the Presence of Severe Obstructive Sleep Apnea

Study
Prevalence

of OSA
AHI

Threshold Study n
Sensitivity
(95% CI)

Specificity
(95% CI)

LR�

(95% CI)
LR�

(95% CI)

BASHIM; 0.717 30 99 0.958 0.714 0.059 3.352

Dixon et al.,30 2003 (0.881–0.991) (0.513–0.868) (0.019–0.183) (1.862–6.033)

BMI; 0.281 30 406 0.772 0.705 0.323 2.621

Gurubhagavatula et al.,44 2004 (0.684–0.845) (0.650–0.757) (0.229–0.457) (2.138–3.213)

Clinical–cephalometry; 0.593 25 59 1.000 1.000 0.014 49.306

Battagel and L’Estrange,58 1996 (0.900–1.00) (0.858–1.000) (0.001–0.222) (3.170–766.83)

MAP index; 0.694 30 359 0.804 0.633 0.310 2.191

Gurubhagavatula et al.,54 2001 (0.749–0.851) (0.535–0.723) (0.232–0.413) (1.699–2.825)

MAP index bootstrapping algorithm; 0.680 30 75 0.824 0.958 0.184 19.765

Gurubhagavatula et al.,54 2001 (0.691–0.916) (0.789–0.999) (0.101–0.335) (2.889–135.21)

Multivariable prediction; 0.281 30 406 0.807 0.729 0.265 2.983

Gurubhagavatula et al.,44 2004 (0.723–0.875) (0.675–0.780) (0.181–0.388) (2.421–3.675)

Multivariable prediction with oximetry; 0.281 30 406 0.912 0.908 0.097 9.866

Gurubhagavatula et al.,44 2004 (0.845–0.957) (0.868–0.938) (0.053–0.175) (6.857–14.195)

Predicted AI offspring; 0.361 25 105 0.316 0.940 0.728 5.289

Pillar et al.,59 1994 (0.175–0.48) (0.854–0.983) (0.581–0.911) (1.834–15.256)

Predicted AI validation; 0.840 25 50 0.881 0.250 0.476 1.175

Pillar et al.,59 1994 (0.744–0.960) (0.032–0.651) (0.111–2.040) (0.775–1.779)

STOP-BANG; 0.696 30 177 1.000 0.364 0.011 1.571

Chung et al.,31 2008 (0.970–1.000) (0.238–0.504) (0.001–0.180) (1.287–1.918)

Symptoms; 0.281 30 406 0.614 0.620 0.623 1.615

Gurubhagavatula et al.,44 2004 (0.518–0.70) (0.561–0.676) (0.486–0.79) (1.314–1.986)

Pooled estimates 0.281–0.717 0.818 0.732 0.293 2.755

(0.793–0.841) (0.709–0.755) (0.257–0.334) (2.511–3.023)

AHI threshold � diagnostic threshold of apnea–hypopnea index used in each study; AI � apnea index; BMI � body mass index; CI � confidence interval; LR�
�

positive likelihood ratio; LR�
� negative likelihood ratio; MAP � multivariable apnea prediction; OSA � obstructive sleep apnea; STOP-BANG � acronym from

Chung et al.31
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tic test in a healthy population should have a relatively
high sensitivity with sufficient specificity and also be
minimally intrusive, be relatively inexpensive, and iden-
tify patients early in the disease process.17 Although high
sensitivity helps to rule out OSA preoperatively, it is
incomplete and potentially inaccurate as a summary sta-
tistic on its own, especially in the presence of spectrum
bias and study heterogeneity. Combining sensitivity with
specificity improves this, arguably at the cost of increas-
ing complexity in terms of comparison. Although false
positives could significantly increase costs directly and
indirectly, because of prolonged postanesthesia care
unit stay as mandated by the ASA practice guidelines12 or
more conservative local discharge policies, the bigger
priority during the perioperative period is preventing

mortality and morbidity related to OSA. Using FN rates as
a summary measure of robustness of each screening test,
we were able to describe the proportion of missed
diagnosis among patients with OSA. Because sensitivity
is considered prevalence independent, it follows that FN
rates are also independent of prevalence of OSA. The FN
rate is typically expressed as a conditional probability or
a percentage. The Berlin questionnaire, which is com-
monly used in several hospitals now, has FN rates of
14.5–38.2%, clearly making it undependable to robustly
rule out OSA preoperatively. Similar FN rates were ob-
served with the ASA model (12.3–37.9%), STOP ques-
tionnaire (20.5–34.4%), and STOP-BANG model (0.0–
16.4%) for diagnosis of OSA. FN rates tended to be
marginally lower when predicting presence of severe

Table 5. Screening Test Reliability and Summary Recommendation for Preoperative Use

Study
Pooled
Study n FN Rate

Ease of Use,
0–3

Test Accuracy
by DOR Summary Recommendation

ASA checklist 177 0.123–0.279 1 Poor No preoperative value, unacceptable FN rate

BASHIM–Dixon 99 0.042 2 Good No preoperative value, requires fasting insulin

and HbA1c levels

Berlin questionnaire 692 0.081–0.382 1 Poor–excellent May have role in screening for severe OSA,

unacceptable FN rate for diagnosis of OSA

BMI alone 406 0.228–0.298 0 Poor No preoperative value, unacceptable FN rate

Clinical–cephalometry 59 0.0 3 Excellent No preoperative value, requires skull and face

x-ray analysis

Clinical and oximetry–Pradhan 114 0.0–0.622 3 Average–good Requires preoperative overnight oximetry

Clinical assessment–Schafer 114 0.312–0.587 3 Average No preoperative value, unacceptable FN rate

Clinical data model–Pradhan 150 0 3 Good Complex methodology, may be cumbersome

for routine preoperative evaluation

Clinical decision rule–Rodsutti 243 0 3 Excellent Complex methodology, may be cumbersome

for routine preoperative evaluation

Clinical score–Williams 33 0.25 3 Good No preoperative value, unacceptable FN rate

Crocker validation 370 0.161 3 Poor No preoperative value, unacceptable FN rate

Epworth Sleepiness scale 46 0.714 1 Poor Unacceptable FN rate

Flemons validation 370 0.241 3 Poor No preoperative value, unacceptable FN rate

Generalized regression neural

network

405 0.011 3 Excellent Complex methodology, may be cumbersome

for routine preoperative evaluation

Kushida index 370 0.0–0.062 3 Excellent Complex methodology, may be cumbersome

for routine preoperative evaluation

Log regression model–Vaidya 309 0.036–0.053 3 Poor–average No preoperative value, unacceptable FN rate

MAP index 1,210 0.059–0.281 3 Poor–good No preoperative value, unacceptable FN rate

MAP index and oximetry 406 0.088–0.254 3 Good No preoperative value, unacceptable FN rate

Predicted AI–Pillar 155 0.119–0.684 3 Poor–average No preoperative value, unacceptable FN rate

Prediction model–Dealberto 129 0.403 3 Good Complex methodology, may be cumbersome

for routine preoperative evaluation

Prediction model–Rauscher 116 0.064 3 Good Complex methodology, may be cumbersome

for routine preoperative evaluation

SDQ–Weatherwax 242 0.149–0.25 1 Average–good Unacceptable FN rate

Sleep questionnaire 85 0.105–0.222 1 Good Unacceptable FN rate

Snoring questionnaire 1,409 0.696 1 Good No preoperative value, unacceptable FN rate

STOP questionnaire 177 0.205–0.344 0 Poor No preoperative value, unacceptable FN rate

STOP-BANG 177 0–0.164 2 Average–excellent Excellent screening test for severe OSA,

unacceptable FN rate for diagnosis of OSA

Symptoms 406 0.386–0.482 1 Poor No preoperative value, unacceptable FN rate

Viner prediction model 780 0.041–0.059 3 Poor–average Complex methodology, may be cumbersome

for routine preoperative evaluation

Ease-of-use scale, with 0 defining easy and 3 meaning complex methodology: 1 point each for four or more test elements or variables, log scale, and need for

additional techniques measurements or investigations.

AI � apnea index; ASA � American Society of Anesthesiologists; BASHIM � acronym from Dixon et al.30; BMI � body mass index; DOR � diagnostic odds ratio;

FN rate � rate of missed diagnosis for any given screening test, calculated as (1 � sensitivity); Hb � hemoglobin; MAP � multivariable apnea prediction;

OSA � obstructive sleep apnea; SDQ � Sleep Disorders Questionnaire; STOP � acronym from Chung et al.31; STOP-BANG � acronym from Chung et al.31
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OSA across all studies. Of the remaining summary mea-
sures, positive and negative predictive values are highly
dependent on disease prevalence and therefore have
limited value in comparing tests. Summary receiver op-
erating characteristic curve analysis is recommended for
studies that exhibit threshold effect, but it is difficult to
interpret and apply to practice. Likelihood ratios de-
scribe a user-friendly way of providing convincing diag-
nostic evidence (� 10 positive likelihood ratio with �

0.1 negative likelihood ratio) or strong diagnostic evi-
dence (� 5 positive likelihood ratio with � 0.2 negative
likelihood ratio). Again, the need for pairing these sum-
mary measures reduces its utility in comparative analy-
ses. The DOR is defined as the ratio of the odds of
positivity in patients with OSA relative to the odds of
positivity in the nondiseased. It can also be calculated as
the ratio of the positive and negative likelihood ratios
and represents the best single point estimate of the
receiver operating characteristic curve. Importantly,
DOR used as single indicator of test performance is
considered to be not prevalence dependent.26 It pro-
vides an assessment of how well a decision tool or
doctor performs in distinguishing healthy from un-
healthy patients; the bigger the DOR is, the better the
diagnostic accuracy is. As a result of these points, we
chose the DOR as a primary measure of test accuracy.
Although independent of disease prevalence, the clinical
value of DOR varies with disease prevalence. A test with
a DOR of 10.00 is considered to be a very good test by
current standards in populations at high risk. A DOR of
10.00 in a low-risk population, on the other hand, may

represent a very weak association between the experi-
mental test and the standard test.21 Therefore, the ex-
pectation that a highly accurate prediction tool validated
for screening in sleep clinics will provide the same
functionality in the preoperative period may be falla-
cious. One of the additional criticisms of DOR is that it
ignores the relative weights of sensitivity and specificity.
We accounted for this shortcoming by choosing a DOR
threshold of 81, thereby ensuring that the robustness
extends across both sensitivity and specificity.

The lack of reproducibility with the diagnostic perfor-
mance of all the studied screening tests is an important
finding of this study. Based on this study’s findings,
case–control studies or clinical protocols that depend
on simple prediction models like the Berlin question-
naire, the ASA model, or the STOP questionnaire for
assessment of high-risk groups are bound to suffer from
significant FN error. Further research into predictive
modeling should compare the most accurate tests in this
analysis with one another in a true representative surgi-
cal population. Perhaps more importantly, anesthesiolo-
gists need to consider the importance of identifying a
critical outcome measure for defining significant OSA.
There is insufficient prospective evidence in the litera-
ture to support the view that mild to moderate OSA is
associated with significant adverse outcome postopera-
tively. Indeed, regular continuous positive airway pres-
sure therapy for mild OSA (with excessive daytime som-
nolence) and moderate OSA has not been shown to have
the same impact on systemic disease as compared with
severe OSA.27 Further research into defining the subset

Fig. 2. Plot of diagnostic odds ratios (ORs)
and 95% confidence intervals (CIs) of
questionnaires predicting the diagnosis
of obstructive sleep apnea. SDQ � Sleep
Disorders Questionnaire; STOP � acro-
nym from Chung et al.31

Fig. 3. Plot of diagnostic odds ratios (ORs)
and 95% confidence intervals (CIs) of
questionnaires predicting presence of se-
vere obstructive sleep apnea. SDQ �

Sleep Disorders Questionnaire; STOP �

acronym from Chung et al.31
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of OSA patients at higher risk of perioperative mortality
or morbidity is a much-needed crucial step to further
avoid both unnecessary costs and potential disaster from
excessive resource utilization on one hand and missed
diagnoses on the other.

Analysis of Screening Test Characteristics and

Elements

The characteristics of the screening tests that be-
stowed higher accuracy included clinical models, log
equations, all combined techniques, cephalometry, and
morphometry. Although questionnaires were inferior to
clinical models, they are widely used currently as screen-
ing tools and therefore warrant further discussion. The
Berlin questionnaire28 was the most accurate question-
naire for predicting diagnosis of OSA. The least accurate
questionnaire was the Epworth Sleepiness Scale,29 pos-
sibly because excessive daytime sleepiness occurs com-

monly in obese individuals without OSA, driven by
mechanisms other than nighttime sleep deprivation.30

Regardless of the abnormal sleep physiology in obese
patients, most questionnaire models have the generic
problem of increasing the burden of the user for addi-
tional data collection. The simplest questionnaire, the
STOP questionnaire,31 was a poor predictor of OSA
(DOR 2.9) compared with other published question-
naires. Similarly, the recently validated ASA screening
tool was either of no value (DOR 1.6) or poor value
(DOR 4.08) in predicting diagnosis and severity of OSA
respectively. In contrast, several other clinical models
trended toward significantly better performance than
questionnaires in predicting diagnosis of OSA. Clinical
models typically use several elements that clearly iden-
tify the OSA phenotype more robustly than question-
naires alone. A similar trend to improved accuracy was
seen in clinical models versus questionnaires in predict-

Fig. 4. Plot of diagnostic odds ratios (ORs)
and 95% confidence intervals (CIs) of
clinical models predicting the diagnosis
of obstructive sleep apnea. ASA � Amer-
ican Society of Anesthesiologists; BMI �

body mass index; MAP � multivariable
apnea prediction; SDB � sleep-disordered
breathing; STOP-BANG � acronym from
Chung et al.31

Fig. 5. Plot of diagnostic odds ratios (ORs)
and 95% confidence intervals (CIs) of
clinical models predicting presence of se-
vere obstructive sleep apnea. ASA �

American Society of Anesthesiologists;
BASHIM � acronym from Dixon et al.30;
BMI � body mass index; MAP � multiva-
riable apnea prediction; SDB � sleep-dis-
ordered breathing; STOP-BANG � acro-
nym from Chung et al.31
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ing severe OSA. The two most accurate clinical models
used additional cephalometry32 and morphometry,33

suggesting that using upper airway measurements could
improve the accuracy of currently used clinical methods.
However, the complexity of these tests could hinder
their addition into standard preoperative evaluation. The
STOP-BANG clinical scale31 was identified as an excel-
lent method for prediction of severe OSA with DOR
141.5 in one study. The ease of use of this clinical test
(linear scale, and no need for additional investigations)
makes it a user-friendly option for screening for severe
OSA in the immediate preoperative period, although it is
an average predictor of diagnosis of OSA (DOR 6.59). As
with other models, further validation of this screening
test is essential before final comment on its preoperative
utility.

Study Limitations

Before we consider the implications of these results for
clinical practice, it is important to consider some of the

limitations and strengths of our methods and those of the

clinical studies in our review. Although we cannot be

absolutely certain that we retrieved all published mate-

rial in this area, we are confident that our methodology

allowed for the most thorough review of all publications

from within all accessible large databases. This risk was

minimized by two independent searches by the two

authors. Aside from these points, there were several

shortcomings in the reviewed publications, namely

threshold variability, study heterogeneity, verification

bias, and spectrum bias. Threshold variability refers to

the influence of variable AHI threshold used explicitly or

implicitly by the reference test for the validation pro-

cess. Indeed, based on pooled DOR values, clinical mod-

els and questionnaires seemed to be more accurate

when predicting severe OSA (AHI threshold 25 or 30). It

appeared on first glance that there was sufficient vari-

ability in the chosen threshold AHI for making a diagno-

sis of OSA, to explain at least some of the heterogeneity

seen in this meta-analysis. However, on metaregression,

AHI diagnostic threshold was not seen to be a significant

contributor to study accuracy in comparison with other

variables. The use of a threshold AHI of 5 per hour

assumes that all patients with AHI � 5 per hour are

morphologically and physiologically distinct from those

with AHI � 5 per hour. This also places mild, moderate,

and severe OSA patients in one group, thereby assuming

that they carry similar traits. Similarly, a threshold of AHI

� 30 per hour for defining severe OSA also assumes that

normal, mild OSA, and moderate OSA are one homoge-

nous group with traits uniquely different from those

Table 6. Metaregression (Inverse Variance Weights)

Variable Coefficient SE P Value rDOR (95% CI)

Study characteristics

Oximetry �1.545 1.0985 0.1687 0.21 (0.02–1.99)

Publication year �1.021 0.3128 0.0025 0.36 (0.19–0.68)

Prevalence of OSA �0.341 0.8039 0.6745 0.71 (0.14–3.64)

Study n �0.004 0.0014 0.0068 1.00 (0.99–1.00)

Number of variables 0.056 0.0485 0.2564 1.06 (0.96–1.17)

Severity of OSA 0.303 0.1835 0.1077 1.35 (0.93–1.97)

Log equations 0.746 0.5828 0.2093 2.11 (0.64–6.89)

Clinical model 0.928 0.2854 0.0026 2.53 (1.42–4.52)

Cephalometry 2.553 2.4601 0.3067 12.84 (0.09–1,905.39)

Combined technique 2.918 1.0932 0.0116 18.50 (2.01–170.62)

Morphometry 5.659 1.2136 0.0000 286.96 (24.36–3,379.89)

Screening test elements

Neck circumference �0.997 0.3307 0.0048 0.37 (0.19–0.72)

Age �0.324 0.6260 0.6085 0.72 (0.20–2.58)

Apnea 0.018 0.3754 0.9613 1.02 (0.47–2.18)

Daytime somnolence 0.325 0.4860 0.5088 1.38 (0.52–3.71)

Tiredness 0.412 0.4552 0.3723 1.51 (0.60–3.81)

Sex 0.595 0.5012 0.2434 1.81 (0.65–5.02)

Snoring 0.658 0.5013 0.1984 1.93 (0.70–5.35)

BMI 0.838 0.3891 0.0386 2.31 (1.05–5.10)

History choking or gasping 0.869 0.3766 0.0272 2.39 (1.11–5.13)

Hypertension 1.325 0.3759 0.0012 3.76 (1.75–8.08)

BMI � body mass index; CI � confidence interval; OSA � obstructive sleep apnea; rDOR � relative diagnostic odds ratio calculated by antilogarithmic

transformation of covariates.

Table 7. Analysis of Diagnostic Threshold

Variable Coefficient SE T P Value

a 2.258 0.191 11.838 0.0000

b(1) 0.106 0.080 1.329 0.1893

Moses’ weighted regression (inverse variance) model (D � a � bS), where D

is the natural logarithm of the diagnostic odds ratio and S is the natural logarithm

of the product of the odds of true-positive test results and the odds of false-

positive test results. The statistical significance of the regression coefficient b

was tested to assess whether diagnostic accuracy varies significantly with

changes in threshold. No evidence of threshold effect was seen.
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with severe OSA. Both these assumptions are probably
fallacious, because OSA encompasses a spectrum of
physical and physiologic traits that overlap with normal
patients. There is also some evidence that AHI � 5 per
hour does not necessarily mean that the patient does not
have OSA, because repeated sleep studies on consecu-
tive days have shown discordance in diagnosis.34 First-
night effect describes the variance in AHI between the
first and second nights of polysomnography, indepen-
dent of duration of sleep time. There are several plausi-
ble reasons for first-night effect, including AHI, anxiety,
presence of psychiatric disorders, psychoactive medica-
tions, alcohol intake, and age of the patient. The per-
centage of patients misdiagnosed based purely on a sin-
gle-night study has been reported to be as high as 43%,35

but these effects are seen exclusively in the mild end of
the OSA spectrum. Subsequent studies have shown a
significantly lower misdiagnosis rate than described
above, and the American Academy of Sleep Medicine
and the ASA currently recognize single-night testing as
the standard for diagnosis of sleep apnea. All of these
factors may explain the significant intratest heterogene-
ity seen with the three tests specifically analyzed for
reproducibility, namely the Berlin questionnaire, multi-
variable apnea prediction, and the Kushida index. Any
intratest heterogeneity that results in FNs is a clinically
important problem for anesthesiologists, because pa-
tients with OSA may be exposed to harm. Of the studied
models, only the Kushida index was deemed to be an
excellent test in repeated studies.

Two main biases observed in this meta-analysis deserve
further mention, namely verification bias and spectrum
effect or spectrum bias. To avoid verification bias, it is
important that diagnostic accuracy is assessed in consec-
utive patients who present with the clinical problem of
interest. Clearly, all of the analyzed studies in this meta-
analysis did not meet these standards. There are two
types of verification bias: “partial verification,” which
occurs when the reference standard was not applied to
all participating patients, and “differential verification,”
which occurs when results from a decision tool influ-
ence the choice of reference standards to apply. Esti-
mates of sensitivity tend to be overestimated when par-
tial verification bias is present. Both sensitivity and
specificity tend to be overstated when differential veri-
fication bias is present.36 One critical consideration com-
mon to most of the studied OSA prediction question-
naires and models is the high pretest probability of OSA,
i.e., all of the study patients typically attended a sleep
clinic for suspected OSA or other sleep-related breathing
disorders. This is a very different clinical scenario com-
pared with the typical surgical population, where the
clinical distinction between patients with and without
OSA is possibly more apparent. In essence, these could
be considered as two distinct study populations. Predic-
tion models that are derived and validated in high-risk

populations are subject to spectrum effect or spectrum
bias, and these tests report higher sensitivity than is seen
when the test is used in a lower-risk population. The
advantage of deriving the screening tests in a represen-
tative healthy population is that this is exactly how the
tests will be used in practice. The disadvantage is that
the absolute frequency of abnormalities is much lower,
meaning that confidence intervals for the results are
wider unless the study has far more patients.36,37

In summary, this review provides a comprehensive
and up-to-date synthesis of the literature regarding the
accuracy of clinical screening methods in the diagnosis
of OSA. It is possible to predict severe OSA with a high
degree of accuracy by clinical methods that could be
used preoperatively, but no single prediction tool func-
tions as an ideal preoperative test. The Berlin question-
naire and the Sleep Disorders Questionnaire were the
two most accurate questionnaires, whereas morphome-
try and combined clinical–cephalometry were the most
accurate clinical models. However, test accuracy, as de-
fined by DOR, has poor reproducibility in multiple vali-
dation studies of the same screening tool. Based on FN
rates and heterogeneity, it is possible that all of the
studied questionnaires and most of the clinical models
will not correctly identify a significant proportion of
patients with OSA. Because of significant differences
between the validation study patients and surgical pa-
tients, further validation of the most accurate screening
tests as defined in this meta-analysis is essential in a
typical surgical population to identify the best preoper-
ative method of screening for OSA.

The authors thank Ronald D. Chervin, M.D. (Professor, Department of Neu-
rology, University of Michigan, Ann Arbor, Michigan), for his help with questions
during the study and overall support of the authors’ endeavor.
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