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Abstract 

The role of insulin-like growth factors (IGFs) in prostate cancer development is not fully understood. To 

investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, 

IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two 

cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. 

Conditional logistic regression was used to estimate the odds ratios (ORs) for prostate cancer based on the 

study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were 

positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was weakly inversely 

associated with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional 

studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies 

(with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest 

versus the lowest fifth of each analyte was 1.29 (95% confidence interval=1.16-1.43) for IGF-I, 0.81 (0.68-

0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-

to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I 

remained associated with risk. Our collaborative study represents the largest pooled analysis of the 

relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence 

that IGF-I is highly likely to be involved in prostate cancer development.  
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Introduction 

Insulin-like growth factors (IGFs) and their associated binding proteins (IGFBPs) are involved in the 

regulation of cell proliferation, differentiation and apoptosis and there has been considerable interest in their 

role in the development of prostate cancer. Previous individual prospective studies and our 2008 pooled 

analysis of individual participant data from 3,700 men with prostate cancer in the Endogenous Hormones 

and Prostate Cancer Collaborative Group (EHPCCG) have indicated that men with high IGF-I 

concentrations have an elevated risk for the disease (1). However, there were insufficient data (both in 

terms of numbers of cases and the range of analytes studied) to provide reliable estimates of risk for overall 

prostate cancer in relation to concentrations of other IGF-axis biomarkers (IGF-II, IGFBP-1 and IGFBP-2), 

either individually or in combination. Furthermore, previous studies did not have sufficient numbers of 

advanced or high-grade disease to determine whether circulating IGF concentrations influence prostate 

cancer initiation or progression, or both (2)(3).  The possible role of reverse causality in explaining the 

observed association between IGF-I and prostate cancer risk also requires further investigation, with 

preclinical tumours potentially influencing IGF concentrations at blood draw in both cross-sectional 

screening studies and prospective studies, particularly in those with a short time lag between blood 

collection and diagnosis and a relatively high proportion of clinically detected advanced cases.  

The EHPCCG (now expanded as the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer 

Collaborative Group, EHNBPCCG) was established to conduct collaborative re-analyses of individual data 

on the relationships between prediagnostic circulating concentrations of sex hormones and IGFs and 

subsequent risk for prostate cancer (1, 4). In the current report we examine the role of circulating IGFs 

using individual participant data on up to 10,554 men with prostate cancer from up to 19 studies of IGF-I 

and IGFBP-3, as well as on other IGF-axis analytes including IGF-II, IGFBP-1 and IGFBP-2 (2, 3, 5-21), 

and investigate whether the association of IGFs with risk differs by tumour characteristics and with time 

from blood collection to diagnosis. 
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Methods 

Data collection 

The EHNBPCCG is described in detail elsewhere (1, 4). Studies were eligible for the current collaborative 

individual participant meta-analysis if they had data on circulating levels of IGF-I, IGF-II, IGFBP-1, IGFBP-2 

or IGFBP-3 and subsequent prostate cancer risk. Studies were identified through searches using the 

search terms “insulin-like growth factor”, and “prostate cancer” on computerized bibliographic systems, 

including PubMed, Web of Science, Cochrane Library, and CancerLit, through the reference lists of 

publications identified in this search, and through correspondence with study investigators. Further details 

of data collection and processing are provided in Supplementary Methods.  

 

Individual participant data were available from 19 studies by the dataset closure for these analyses on 

November 8th, 2012; Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC) (5); Baltimore 

Longitudinal Study of Aging (BLSA) (6), British United Provident Association Study (BUPA) (7), the 

Cardiovascular Health Study (CHS) (8), the CLUE 1 Study (9), European Prospective Investigation into 

Cancer and Nutrition (EPIC) (10), European Randomized Study of Screening for Prostate Cancer (ERSPC) 

(11), Health Professionals Follow-up Study (HPFS) (12), Japan Collaborative Cohort Study (JACC) (13), 

Kaiser Permanente Medical Care Programme (KPMCP) (14), Melbourne Collaborative Cohort Study 

(MCCS) (15), Multiethnic Cohort (MEC) (16), Northern Sweden Health and Disease Cohort (NSHDC) (17), 

Prostate Cancer Prevention Trial (PCPT) (3), Physicians’ Health Study (PHS) (18), Prostate, Lung, 

Colorectal, and Ovarian Cancer Screening Trial (PLCO) (19), the Prostate Testing for Cancer and 

Treatment (ProtecT) feasibility study (20) and main study (2), and the SUpplémentation en VItamines et 

Minéraux AntioXydants (SU.VI.MAX) trial (21). In total, these 19 studies included data on IGF-I and IGFBP-

3 from up to 10554 prostate cancer cases and 13618 control participants, representing more than 98% of 

the worldwide data. Of these studies, 11 also provided data on circulating IGF-II and 6 provided data on 

IGFBP-1 and IGFBP-2. The characteristics of these studies and the assay methods are shown in 

Supplementary Tables S1 and S2, respectively. Most of the studies are case-control studies nested within 

traditional prospective cohort studies, with some variation in the case mix of these studies according to the 

prevalence of prostate-specific antigen (PSA) testing within that population during follow-up. Four of the 
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studies (ERSPC, PCPT, PLCO and ProtecT) are observational investigations using data from trials that 

included organized screening for prostate cancer, and have distinct characteristics. In three of these trials, 

men with a raised PSA or abnormal digital rectal examination at recruitment-screening were excluded, and 

the eligible cases were diagnosed during subsequent follow-up (for ERSPC and PCPT the majority being 

diagnosed at the end of the study, 4 and 7 years after recruitment, respectively), with the majority of cases 

being detected either through PSA-screening (ERSPC and PLCO) or by routine end of study biopsy 

(PCPT). The ProtecT studies include participants from a trial of different prostate cancer treatments, in 

which (mostly asymptomatic) men were screened with PSA and those with PSA ≥3 ng/mL were offered a 

diagnostic biopsy; men diagnosed at this time were included as cases for the observational study of 

biomarkers and prostate cancer. The data from ProtecT are reported here because on average the blood 

was collected several years before the cancer would have been diagnosed in an unscreened population 

(22), although the study is cross-sectional rather than prospective. 

 

Details of recruitment, informed consent and ethics approvals are provided in the original publications (2, 3, 

5-21). Information sought about prostate cancer included date of diagnosis and stage and grade of disease. 

In order to provide a common definition across studies, prostate cancer was defined as being early stage if 

it was TNM stage <T2 with no reported lymph node involvement or metastases, or stage I; other localized 

stage if it was TNM stage T2 with no reported lymph node involvement or metastases, stage II, or 

equivalent (i.e. a tumour which does not extend beyond the prostate capsule); advanced stage if it was 

tumor-node-metastasis (TNM) stage T3 or T4 and/or N1+ and/or M1, stage III–IV, or equivalent (i.e. a 

tumour extending beyond the prostate capsule and/or lymph node involvement and/or distant metastases); 

or stage unknown. Aggressive disease was categorized as “no” for TNM stage ≤T3 with no reported lymph 

node involvement or metastases or equivalent, “yes” for TNM stage T4 and/or N1+ and/or M1 and/or stage 

IV disease or death from prostate cancer, or unknown. Prostate cancer was defined as low-intermediate 

grade if the Gleason sum was <8 or equivalent (i.e. extent of differentiation good, moderate or poor), high 

grade if the Gleason sum ≥8 or equivalent (i.e. undifferentiated), or grade unknown.  
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Statistical analyses 

The methods of analysis were similar to those described previously by this collaborative group (1, 4, 23 and 

see Supplementary Methods). Concentrations of IGFs were positively skewed, therefore, log-transformed 

concentrations were used for all parametric analyses.  

 

For each IGF analyte, men were categorized into fifths of its distribution, with cut-points defined by the 

study-specific quintiles of the distribution within control participants to allow for any systematic differences 

between the studies in assay methods and blood sample types (1). The main method of analysis was 

logistic regression conditioned on the matching variables within each study. To provide a summary 

measure of the odds ratio (for subgroup analyses) and to calculate a P for trend, the categorical variable 

representing the fifths of the IGF analyte was replaced with a continuous variable that was scored as 0, 

0.25, 0.5, 0.75, and 1; because the mid-points of the lowest and highest fifths are the 10th and 90th 

percentiles of the study-specific IGF concentration, a unit increase in this variable can be taken to represent 

an 80 percentile increase in the study-specific concentration of IGF. To examine the effects of potential 

confounders (other than the matching criteria, controlled for by design), the logistic regression analyses 

were repeated including additional variables that were found to be associated with prostate cancer risk in 

this analysis, which included age at blood collection, body mass index (BMI), height, marital status, 

educational status, and cigarette smoking.  

 

For each IGF analyte, heterogeneity in linear trends between studies was assessed by comparing the χ2 

values for models with and without a (study) x (linear trend) interaction term. Tests for heterogeneity for 

case-defined factors were obtained by fitting separate models for each subgroup and assuming 

independence of the ORs using a method analogous to a meta-analysis. Tests for heterogeneity for non-

case defined factors were assessed with a χ2-test of interaction between subgroup and the continuous 

trend test variable. A χ2-test of interaction was also used to determine whether risks by study-specific thirds 

of one analyte varied according to the study-specific third of another analyte.  
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All tests of statistical significance were 2-sided, and statistical significance was set at the 5% level. All 

statistical tests were carried out with Stata Statistical Software, Release 12 (StataCorp, LP, College Station, 

Texas). 

 

Results 

The 19 studies included approximately 10,500 case patients with prostate cancer and 13,600 control 

participants (Table 1).  All the studies had data available on circulating IGF-I concentrations (10,554 cases) 

and 18 studies had data on IGFBP-3 concentration (9359 cases). Data were available from 11 studies for 

IGF-II (5523 cases) and 6 studies for IGFBP-1 (2490 cases) and IGFBP-2 (4952 cases) (Supplementary 

Figures S1 to S3).  The mean age at baseline across the studies ranged from 54 to 72 years (Table 1). 

Geometric mean concentrations of all the analytes, with the exception of IGFBP-1, for most of the studies 

were higher for cases than for controls (Supplementary Table S3). Blood collection preceded prostate 

cancer diagnosis by an average of 5.2 years, though there was wide variation between the studies with 

more than 95% of cases in the cross-sectional ProtecT study being diagnosed within the first 3 years of 

follow-up, whereas for ATBC, BLSA and BUPA more than 80% of cases were diagnosed ≥7 after blood 

collection. On average, cases were 68 years of age at diagnosis and were diagnosed after 1994 (Table 2). 

The majority of cases with information on stage and grade of disease had localised (early or other 

localised) disease (ranging from 62% to 98% of cases across studies) and low-intermediate grade tumours 

(83% to 100% of cases).  

 

IGF-I and IGF-II were strongly correlated with IGFBP-3 (r = 0.6 for both), and IGF-I and IGF-II were 

moderately positively correlated (r = 0.4) (Supplementary Table S4). These correlations were similar after 

additional adjustment for BMI (data not shown). All of the IGF analytes were correlated with SHBG; positive 

correlations were observed with IGFBP-1 (r = 0.3) and IGFBP-2 (r = 0.4), while inverse associations with 

SHBG were seen for IGF-I (r = -0.1), IGF-II (r = -0.3) and IGFBP-3 (r = -0.3). IGFBP-1 and IGFBP-2 were 

also positively correlated with testosterone concentrations (r = 0.3 for both). These correlations with SHBG 

and testosterone were weakened slightly by additional adjustment for BMI (data not shown).  
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Associations between circulating IGF concentrations and prostate cancer risk 

Figure 1 shows the ORs by fifths of the IGF analytes and Figure 2 and Supplementary Figures S1-S4 show 

the relationships of the analytes with prostate cancer risk for the individual studies, together with overall 

estimates and tests for heterogeneity between studies and by study design. The relationships of the 

analytes with risk subdivided by clinical and other characteristics are shown in Figure 3 and Supplementary 

Figures S5-S12.  

 

Concentrations of IGF-I and IGFBP-3 were positively associated with risk in a linear dose-response 

relationship (Ptrend <0.001, Figure 1 and Supplementary Table S5).  However, there was evidence of 

heterogeneity in the linear trend in risk between the prospective and cross-sectional studies (i.e. ProtecT 

studies) for both analytes (Figure 2 and Supplementary Figure S4; Pheterogeneity by study design ≤0.03). 

The OR for men in the highest versus the lowest fifth of IGF-I for all studies combined was 1.21 (95% CI 

1.11-1.31), but was 1.29 (1.16-1.43) when restricted to the prospective studies, with no evidence of 

heterogeneity between the prospective studies. There was no association with IGF-I in the ProtecT cross-

sectional studies (1.06, 0.92-1.23). For IGFBP-3, the OR for prostate cancer in the highest fifth was 1.45 

(1.32-1.59) for all studies combined (Pheterogeneity by study design <0.001). When restricted to 

prospective studies only, the corresponding OR was 1.25 (1.12-1.40), with no evidence of heterogeneity 

between studies. In addition, there was no evidence of statistical heterogeneity in the linear associations 

with IGF-I or IGFBP-3 by other factors such as time-to-diagnosis and stage and grade of disease 

(Pheterogeneity for both analytes all ≥0.05, Figure 3 and Supplementary Figure S1). The only exception 

was for age at diagnosis, for which there was some borderline significant weakening of the linear trend of 

IGF-I with risk by increasing age at diagnosis; with a stronger association for men diagnosed before the 

age of 60 years (OR for 80 percentile increase in IGF-I = 1.80, 1.34-2.42, Pheterogeneity/trend by age at 

diagnosis = 0.05/0.04, Figure 3). We also assessed overall risk for prostate cancer in relation to deciles of 

IGF-I and IGFBP-3 concentrations for the prospective studies: results were consistent with a linear trend for 

both analytes (Ptrend <0.001 for both, Supplementary Table S6). The risk in the highest versus lowest 

decile was 1.43 (1.24-1.65) for IGF-I and 1.39 (1.19-1.63) for IGFBP-3.  
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 IGF-II concentration was positively associated with prostate cancer risk (OR in highest versus lowest fifth = 

1.29 [95% CI 1.14-1.46], Ptrend <0.001, Figure 1); however, there was heterogeneity in the association 

with risk between all studies combined (Pheterogeneity = 0.005, Supplementary Figure S1), which 

persisted when the analyses were restricted to prospective studies only (Pheterogeneity = 0.02). There was 

also some evidence for heterogeneity in the association of IGF-I and prostate cancer risk by grade of 

disease (Pheterogeneity by grade = 0.03); the OR associated with an 80% increase in IGF-II was 1.19 

(0.99-1.43) for low-intermediate grade disease and 0.49 (0.23-1.05) for high-grade disease (Supplementary 

Figure S7). 

 

The risk of prostate cancer was lower for men with the highest levels of IGFBP-1 concentration (OR for 

highest versus lowest fifth = 0.81, 95% CI 0.68-0.96, Ptrend = 0.05). There was no evidence of 

heterogeneity between studies (data were available for IGFBP-1 from prospective studies only, 

Pheterogeneity = 0.9, Supplementary Figure S2) or by any of the participant or tumour characteristics 

(Supplementary Figure S6, Pheterogeneity for all ≥0.19).  

 

IGFBP-2 was associated with an increased risk of prostate cancer with an OR for the highest versus lowest 

fifth of 1.17, 95% CI 1.03-1.32 (Ptrend = 0.005).  However, there was evidence of heterogeneity among all 

studies (Pheterogeneity = 0.03, Supplementary Figure S3) and also borderline heterogeneity among both 

prospective and cross-sectional studies (Pheterogeneity ≤0.07), with a significantly elevated risk in the 

PCPT study but no association in the other prospective studies. Correspondingly, there was some evidence 

of a difference in trends in risk with IGFBP-2 concentration by tumour stage at diagnosis and by PSA at 

blood draw, as well as by BMI (Pheterogeneity ≤0.02, Supplementary Figure S10).  

 

Figure 4 and Supplementary Figure S13 show analyses of the risk for aggressive prostate cancer in study-

specific fifths of concentration for all IGF analytes; there were no statistically significant associations with 

any of the analytes, although there were relatively few cases with aggressive disease, with fewer than 350 

aggressive cases with data on IGF-II, IGFBP-1 or IGFBP-2 
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Adjustment for confounders and mutual adjustment for other biomarkers 

Adjustment for potential confounders made no appreciable difference to the associations with prostate 

cancer risk for any of the analytes (Supplementary Figures S14-S15). Additional adjustment for family 

history of prostate cancer in the studies for which data were available also made no material difference to 

the odds ratios. In the prospective studies, after mutual adjustment for each of the other IGF analytes and 

testosterone and SHBG separately, IGF-I remained associated with prostate cancer, whereas after 

adjustment for IGF-I, only the association of IGFBP-2 with risk remained (Supplementary Table S7). After 

adjustment for IGF-I, the association with risk for an 80 percentile increase in analyte concentration was 

1.09 (95% CI 0.91-1.30) for IGF-II, 0.90 (0.76-1.06) for IGFBP-1, 1.35 (1.13-1.62) for IGFBP-2, and 1.09 

(0.96-1.24) for IGFBP-3. After adjustment for IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3, the ORs for an 80 

percentile difference of IGF-I were 1.19 (1.00-1.42), 1.33 (1.11-1.58), 1.36 (1.13-1.63) and 1.18 (1.04-1.33), 

respectively. 

 

The molar ratio of IGF-I to IGFBP-3 was not associated with prostate cancer risk (OR for an 80 percentile 

increase was 1.02, 95% CI 0.92-1.13, Ptrend = 0.67; data not shown).  

 

The joint effects of IGF-I and IGFBP-3 in relation to prostate cancer risk 

We also examined the joint effects of IGF-I and IGFBP-3 in relation to prostate cancer and found no 

interaction (Pinteraction = 0.6) (Supplementary Table S8). 
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Discussion  

The results of this large collaborative analysis of individual participant data confirm moderate positive 

associations between prediagnostic circulating concentrations of IGF-I and prostate cancer risk.  However, 

there was evidence of heterogeneity in the association between prospective and cross-sectional studies 

and, when ProtecT was excluded, men with high IGF-I concentrations had a 29% higher risk compared to 

those with low concentrations. These analyses include nearly all (>98%) of the published worldwide 

prospective data on IGFs and prostate cancer risk. The results from one small nested case-control study of 

IGF-I and IGFBP-3 in relation to prostate cancer risk (96 cases and 416 matched controls, OR for IGF-I = 

1.26, 95% CI 0.66-2.41; OR for IGFBP-3 = 1.35, 0.15-6.59), which were unavailable for this re-analysis are 

compatible with our findings and their inclusion would not have materially altered our summary relative risk 

estimates (25). The large numbers of cases and corresponding matched controls make it possible not only 

to estimate prostate cancer risk associated with IGFs with greater precision but also to examine risks at 

extremes of the distribution. Results from an analysis of risk in relation to deciles of IGF-I and IGFBP-3 

provide no suggestion that the association is anything but linear. In the prospective studies, risk for prostate 

cancer was approximately 40% higher in men with IGF-I or IGFBP-3 concentrations in the highest tenth of 

the distribution than in men with concentrations in the lowest tenth. 

One goal of the collaborative group is to assemble sufficient data to examine associations between IGF 

levels and prostate cancer risk by tumour subtype, with the differences in study designs (prospective 

versus cross-sectional studies) and case mix (predominantly due to differences in PSA-testing leading to 

different proportions of advanced and high-grade disease across the studies) potentially providing useful 

insights into the role of IGFs in prostate cancer development. It has previously been suggested that the null 

findings from three large studies with predominantly screen-detected early disease (ERSPC, PCPT and 

ProtecT) (2, 3, 11) indicate that circulating IGF-I might not be associated with very early stage screen-

detected disease and might instead be important for the progression of the disease. Evidence from a large 

study of protein expression in prostate tumour tissue has also suggested that activation of the IGF-pathway 

(either through increased IGF-IR expression or the loss/inactivation of PTEN and consequent constitutive 

activation of the IGF-I/PI3K/Akt pathway) is associated with progression of prostate cancer to lethal disease 
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(26). However, it may be that for the subset of tumours with PTEN loss, because the IGF/PI3K/Akt pathway 

is constitutively activated, the actual concentration of circulating IGF-I may be less important for prostate 

cancer risk than for tumours without reduced/absent PTEN expression. In this large collaborative analysis, 

with more than three times as many cases as the previous collaborative analysis (1), we found no evidence 

that the associations of IGF-I with incident prostate cancer differed markedly by tumour stage and grade, 

although neither the association of IGF-I nor any other analyte with risk for aggressive disease was 

statistically significant. These findings suggest that IGF-I may have a role not just in the growth and 

progression of existing prostate tumours but also in the earlier stages of tumour development. There was 

some evidence that the association of IGF-I with prostate cancer risk was stronger for men diagnosed at an 

earlier age but this may be a chance finding given the many significance tests conducted.  

The interpretation of our current findings for low or intermediate grade and localised prostate cancer is 

challenging as these will include both screen-detected and clinically detected tumours, and some that will 

never progress and some that, with time, will progress to become aggressive disease that is difficult to 

treat. Because of the large size of the collaboration, we were able to examine early T1 (screen-detected) 

localised disease from other localised (T2) disease and found an association of IGF-I with risk for both 

localised subtypes, further suggesting that IGF-I is not just a marker of early progression (2). We also found 

that the association of IGF-I with risk did not differ by time from blood collection to diagnosis, suggesting 

that the existence of pre-clinical tumours at blood draw, and hence reverse causality, is unlikely to explain 

the association of IGF-I with risk or the heterogeneity by study design.  

The role of IGFs in prostate carcinogenesis is given some support by results from experimental studies, 

which identified a number of cancer promoting properties of IGF-I, including mitotic and anti-apoptotic 

effects (27) and by findings from an agnostic pathway analysis in a large study of common prostate cancer 

susceptibility polymorphisms that identified the IGF pathway as being related to prostate cancer risk (28). 

However, there may be other explanations for the apparent associations between IGFs and risk. The 

relationship between circulating IGFs and benign prostatic hypertrophy (BPH) is not well-established (29-

31) , but should higher IGF-I concentrations be associated with an increased risk of BPH then the apparent 

association of IGF-I with prostate cancer risk might be partly due to increased detection of tumours among 
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men undergoing examinations and PSA-testing because of the symptoms associated with BPH. To 

understand fully this potential confounding by BPH, more large prospective studies of IGFs and BPH are 

required.  Residual confounding by other factors is unlikely to explain the results given the few established 

risk factors for prostate cancer and the similar results from the multivariable model after adjusting for a 

range of potential confounders.  

The majority of circulating IGF-I (99%) is bound to IGFBPs (32). The largest fraction of IGF-I is bound to 

IGFBP-3, which is also strongly positively associated with prostate cancer risk in the current analysis. This 

finding is difficult to interpret with respect to the possible independent role, if any, of IGFBP-3 in prostate 

cancer aetiology because of the complex interrelationships between the IGF-axis analytes. It has been 

suggested both that elevated IGBP-3 levels may have adverse effects because of its role in prolonging the 

half-life of IGF-I in serum (33) and that IGFBP-3 might influence risk via IGF-I independent mechanisms 

(34). However, after mutual adjustment of IGF-I and IGFBP-3 in our analyses, only associations of IGF-I 

with prostate cancer remained. Given the moderate inter-correlations, it is possible that this mutual 

adjustment may represent statistical over-adjustment (2, 35) and equally in terms of explanatory biological 

pathways, adjusting IGFBP-3 for IGF-I may represent over-adjustment if the main effect of IGFBP-3 on risk 

is via its regulation of IGF-I levels in the circulation. Nonetheless, taken at face value our results suggest 

that association of IGFBP-3 and risk for prostate cancer may be simply due to its correlation with IGF-I.  

There has been interest in the possible role of IGF-II in prostate carcinogenesis because, like IGF-I, IGF-II 

functions as a growth factor. Results from individual prospective studies have been generally null (3, 7, 16, 

21), but interest in the role of IGF-2 has been reactivated by the finding of a higher risk for prostate cancer 

in men with high circulating IGF-2 concentration in the ProtecT study (2) and the identification of a common 

prostate cancer susceptibility allele in the region of the IGF-II gene (36). Based on over 5000 cases, our 

findings suggest a moderate association of IGF-II with prostate cancer risk but interpretation of these 

findings is difficult because of the heterogeneity in the association between individual studies. Our findings 

also suggest that raised IGF-II levels may be associated with an increased risk of PSA-screen detected 

disease, with the strongest associations being observed among men who had a high PSA at baseline, who 

were diagnosed with low-intermediate grade disease and who were diagnosed after the introduction of 
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PSA-testing. However, many of the studies with IGF-II measurements were small (7 had IGF-II 

measurements on fewer than 250 men with prostate cancer) and the variation between studies and by 

grade may be due to chance findings in individual studies. A number of studies have suggested that IGF-II 

levels may serve as a tumour marker rather than an aetiological risk factor, with circulating levels 

increasing as disease progresses, consistent with the loss of imprinting of the IGF-II gene during the 

development of the disease (37).  In the current analyses, however, we found no evidence of reverse 

causality, with similar associations across different durations of follow-up. More data are required to 

investigate the role of IGF-II, if any, in the development of prostate cancer. 

There are relatively few published data on circulating IGFBP-1 in relation to prostate cancer risk (16, 17) 

and this is the first report on findings from a collaborative analysis of individual participant data. The current 

analysis includes both published (16, 17) and unpublished (CLUE, EPIC, HPFS and PHS) data. IGFBP-1 

binds with IGF-I in the circulation, though only to a relatively small proportion compared to IGFBP-3, and is 

only weakly negatively correlated with IGF-I levels. It has been hypothesised that IGFBP-1 has a role in 

fine-tuning the availability of IGF-I to tissues because IGFBP-1 binds IGF-I with a higher affinity than that of 

the IGF-I receptor and reduces free IGF-I levels resulting in the inhibition of IGF-I receptor signalling (38). 

Our finding of a possible reduction in risk of prostate cancer in men with high IGFBP-1 concentrations is of 

particular interest given IGFBP-1 levels vary substantially in response to diet and obesity (39, 40), and may 

therefore be a modifiable risk factor. However, the association with IGFBP-1 was somewhat attenuated and 

no longer statistically significant after adjustment for IGF-I.  

IGFBP-2 has been proposed as a mediator of the positive association between adiposity and risk for 

aggressive prostate cancer observed in several studies (41), while experimental evidence has suggested a 

role for IGFBP-2 in the prevention of obesity and regulation of glucose metabolism (42). It has also been 

suggested though that circulating IGFBP-2 might be a prostate tumour marker; several case-control studies 

have found circulating concentrations to be elevated in men diagnosed with prostate cancer and to 

increase as prostate cancer progresses (43), and IGFBP-2 can inactivate PTEN (44) and in a reciprocal 

manner PTEN can negatively regulate IGFBP-2 expression which thus may serve as a potential serum 

biomarker of PTEN status (45). While the overall positive association in the current study is consistent with 
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this hypothesis of IGFBP2 being a tumour marker, there was no evidence that the IGFBP-2 risk association 

was more pronounced in men with advanced or high-grade disease or in men diagnosed soon after blood 

collection, and no material difference in the risk associations after adjustment for BMI. Rather, the risk 

association was stronger among men with early disease and varied by BMI, with an inverse association in 

men with a normal BMI and a positive association in men with a high BMI. However, interpretation of our 

results for IGFBP-2 is difficult because of the heterogeneity in findings between studies (which in part at 

least is likely attributable to differences in study design between the contributing studies) in that the null 

findings from case-control studies nested within population-based cohort studies contrast with a strong 

positive association from the PCPT study, a large case-control study nested in a randomised trial in which 

the mean BMI was relatively high (27.6 kg/m2 for controls) and the majority of cases were low-grade and 

localised tumours diagnosed through a routine end of study biopsy on average 7 years after blood 

collection. 

Variation in circulating IGF concentrations between the studies contributing to this collaborative analysis 

may be partly due to differences in assay methodology, as well to differences in the other factors including 

the characteristics of the participants and the blood samples, although the majority of assays were 

conducted using immunoassays from one company (Diagnostic Systems Laboratories, Webster, Texas) 

and were enzyme-linked immunoassays (11 of 19 studies for IGF-I), conventional radioimmunoassays or 

immunoradiometric assays (as shown in Supplementary Table S2). However, any differences between 

assay methods are not expected to impact on the overall findings of these analyses because all 

comparisons were made within study using study-specific cut-points (46). 

A potential limitation of these analyses is their reliance on a single measurement of IGF in each participant, 

the assumption being that the measurement of the IGF concentration in a single blood sample is a good 

indicator of levels of IGF in blood over the medium to long-term. Several studies with repeat samples 

collected up to 5 years apart have shown moderately good temporal reproducibility for IGF-I (correlations of 

0.7 to 0.9) (18, 47, 48). Less is known about intra-individual variation in other IGF analytes (i.e. IGF-II, 

IGFBP-1, IGFBP-2 and IGFBP-3) over time but the limited published data suggest the reproducibility of 

these analytes may be similar to that for IGF-I; results from two studies with samples collected 
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approximately 1 year apart reported correlations ranging from 0.6 to 0.9 (47). Intra-individual variation in 

IGF levels results in the observed association with prostate cancer risk being smaller than the true 

association. Given the intra-class correlation coefficients for IGF-I over 3 to 5 years of approximately 0.60 

and an observed odds ratio of 1.29 for men in the highest compared to the lowest fifth of IGF-I, we estimate 

that men with the highest IGF-I levels may have an approximately 70% increase in risk for prostate cancer. 

With the lack of other established modifiable risk factors for prostate cancer and given the evidence that 

IGF-I levels are to an extent modifiable, being related for example to dietary intake of protein (49, 50), the 

IGF axis remains an important area for further research on prostate cancer. 

In summary, the results of this collaborative pooled analysis of over ten thousand cases and thirteen 

thousand controls support the hypothesised role of IGF-I in the development of prostate cancer. Further 

data from studies of risk for aggressive prostate cancer are needed to confirm the associations of IGFs and 

IGFBPs with clinically relevant prostate cancer and its progression, and to help us better understand 

whether any of the observed associations are causal.  
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Legends for Figures 

Figure 1. Odds ratios (95% confidence intervals) for prostate cancer associated with study-specific fifths of 

concentrations of selected insulin-like growth factors and their binding proteins in all studies and then 

restricted to prospective studies. Estimates are from logistic regression conditioned on the matching variables 

within each study and without mutual adjustment for the other analytes. Ptrend was calcuated by replacing the fifths of 

concentration with a continuous variable that was scored 0, 0.25, 0.5, 0.75 and 1 in the conditional logistic regression 

model. 80%le = 80 percentile; CI = confidence interval; Ptr = Ptrend. 

Figure 2. Study-specific odds ratios (95% confidence intervals) for prostate cancer associated with an 80 
percentile increase in IGF-I. Estimates are from logistic regression conditioned on the matching variables within 
each study and without mutual adjustment for the other analytes. Heterogeneity in linear trends between studies was 
tested by comparing the X2 values for models with and without a (studies) x (linear trend) interaction term. For 
expansion of study names see Table 1.  
 

Figure 3. Figure 3. Odds ratios (95% confidence intervals) for prostate cancer associated with an 80 percentile 

increase in IGF-I in prospective studies, subdivided by various factors. Estimates are from logistic regression 

conditioned on the matching variables within each study and without mutual adjustment for the other analytes. Odds 

ratios are for risk of prostate cancer overall, unless otherwise specified. Tests for heterogeneity for case-defined 

factors were obtained by fitting separate models for each subgroup and assuming independence of the ORs using a 

method analogous to a meta-analysis Tests for heterogeneity for non-case defined factors were assessed with a χ2-

test of interaction between subgroup and the continuous trend test variable. 

Figure 4. Odds ratios (95% confidence intervals) for aggressive prostate cancer associated with study-

specific fifths of concentrations of selected insulin-like growth factors and their binding proteins.  Estimates 

are from logistic regression conditioned on the matching variables within each study and without mutual adjustment for 

the other analytes. 
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Table 1. Participant characteristics by study and case-control statusa  

Study (Year, Reference) Case-

control 

status 

Number  

Age at 

recruitment 

(y) 

BMI 

(kg/m2) 

Married or 

cohabiting 

(%) 

Higher 

education 

(%) 

Current 

smokers 

(%) 

Intake of 

alcohol 

(g/d) 

Family 

history of 

prostate 

cancer   (%) 
  

Prospective Studies          

ATBC (2003)(5) Case 100 58.9 (4.6) 26.5 (4.5) 83.0 5.0 100.0 17.1 (23.9) 7.5 

 
Control 311 58.0 (4.5) 26.5 (3.9) 81.4 5.5 100.0 17.2 (19.6) 4.2 

BLSA (2000)(6) Case 72 64.4 (8.9) 25.5 (3.0) 94.8 63.9 5.6 N/A N/A 

 
Control 111 64.7 (9.4) 26.4 (3.7) 83.5 57.7 7.2 N/A N/A 

BUPA (2006)(7) Case 140 54.5 (6.2) 25.0 (2.4) N/A N/A 15.0 21.0 (16.9) N/A 

 
Control 419 54.6 (6.2) 25.4 (2.9) N/A N/A 18.9 19.2 (16.7) N/A 

CHS (2005)(8) Case 174 72.5 (4.4) 26.8 (3.5) 87.4 17.3 8.6 N/A N/A 

 
Control 174 72.4 (4.4) 26.7 (4.1) 83.3 14.5 13.8 N/A N/A 

CLUE 1 (2001)(9) Case 30 58.5 (9.1) N/A 93.3 16.7 16.7 N/A N/A 

 
Control 60 58.4 (8.9) N/A 90.0 1.7 26.7 N/A N/A 

EPIC Phase 1 ( 2007) (11) 
Case 630 60.9 (6.2) 26.7 (3.5) 87.5 25.4 23.5 20.7 (24.5) N/A 

Control 630 60.9 (6.2) 27.1 (3.6) 89.2 23.1 27.8 20.5 (23.9) N/A 

EPIC Phase 2 (2012)(10) Case 1107 58.6 (6.2) 26.5 (3.4) 88.4 25.7 22.8 20.1 (24.1) N/A 

 
Control 1107 58.6 (6.2) 26.8 (3.6) 88.4 24.5 24.8 19.5 (21.3) N/A 

ERSPC (2004)(12) Case 197 61.8 (4.4) N/A N/A N/A N/A N/A 18.7 

 
Control 197 61.8 (4.4) N/A N/A N/A N/A N/A 16.2 

HPFS Phase 1 (2005)(13) 
Case 682 65.3 (7.4) 25.9 (3.6) 93.4 100.0 4.8 11.9 (14.7) 14.2 

Control 682 65.1 (7.4) 26.0 (3.5) 93.0 100.0 3.9 11.4 (15.0) 10.3 

HPFS Phase 2 (2010)(14) 
Case 629 62.0 (7.8) 25.9 (3.2) 91.7 100.0 3.8 12.4 (16.3) 14.8 

Control 629 62.0 (7.8) 26.1 (3.6) 93.0 100.0 3.0 12.2 (16.8) 10.8 

JACC (2010)(15) Case 39 68.9 (6.1) 22.3 (2.6) 100.0 10.0 50.0 17.0 (19.2) 2.6 

 
Control 98 68.2 (5.5) 22.4 (2.7) 91.9 2.7 37.5 13.7 (17.5) 0.0 

KPMCP (1998)(16) Case 45 71.5 (5.1) 25.7 (2.5) 86.8 7.5 20.0 18.7 (30.3) N/A 

  Control 218 71.9 (4.5) 25.8 (3.1) 82.8 5.4 17.8 14.9 (22.9) N/A 

MCCS (2006)(17) Case 554 60.9 (6.4) 27.2 (3.5) 80.2 22.0 9.6 19.0 (24.4) N/A 

 
Control 1048 58.3 (7.2) 27.2 (3.7) 81.0 22.2 13.2 21.0 (25.8) N/A 

MEC (2010)(18) Case 386 68.7 (7.1) 26.7 (4.1) 78.1 33.2 14.4 23.0 (42.6) 14.0 

 
Control 769 68.5 (7.2) 26.9 (4.1) 78.9 32.0 11.9 21.5 (37.9) 8.3 

NSHDC (2000, 2004)(19, 

20) 

Case 281 58.0 (4.5) 26.1 (2.8) 86.6 13.4 18.8 7.6 (6.0) N/A 

Control 569 58.0 (4.4) 26.6 (3.7) 80.1 12.3 21.2 7.5 (6.0) N/A 

PCPT (2013)(3) Case 1032 63.3 (5.5) 27.4 (4.2) 87.3 38.4 6.8 9.7 (16.1) 21.0 

 
Control 1032 63.3 (5.5) 27.6 (4.0) 87.8 36.9 7.6 8.9 (13.7) 20.9 

PHS (1998, 2002, 2010) Case 756 58.6 (8.1) 24.7 (2.5) N/A 100.0 9.1 7.1 (6.2) N/A 

 
Control 756 58.4 (8.0) 24.7 (2.5) N/A 100.0 8.9 7.2 (6.3) N/A 

PLCO (2007)(24) Case 728 65.1 (4.8) 27.1 (3.6) 87.1 43.7 6.9 16.6 (30.8) 10.8 

 
Control 886 64.9 (4.7) 27.4 (2.5) 86.7 42.2 8.8 16.2 (29.3) 6.1 

SU.VI.MAX (2005) (26) Case 100 55.1 (4.6) 25.7 (3.1) 93.9 35.4 13.3 25.2 (20.7) 13.8 

 Control 400 55.0 (4.6) 25.4 (2.9) 87.2 35.2 13.2 28.1 (20.1) 5.2 

Cross-sectional Studies          

ProtecT -Feasibility 

Phase (2004)(25) 

Case 282 61.6 (4.9) 26.5 (3.1) N/A N/A 9.9 21.6 (21.9) 6.6 

Control 774 61.6 (5.1) 26.5 (3.6) N/A N/A 10.8 23.5 (23.8) 4.0 

ProtecT (2012)(2) Case 2590 61.8 (5.1) 26.9 (3.5) N/A N/A 13.7 24.0 (25.3) 8.4 

 
Control 2748 61.6 (5.1) 26.9 (3.7) N/A N/A 13.9 24.3 (24.9) 5.2 
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aValues are mean (SD) unless otherwise indicated, percentages exclude men with missing values. Numbers are for men with an IGF-I 

measurement and in completed matched case-control sets for analysis.  

Abbreviations: ATBC, Alpha-Tocopherol Beta-Catotene Cancer Prevention Study; BLSA, Baltimore Longitudinal Study of Aging; BMI, body mass 

index; BUPA, British United Provident Association Study; CHS, Cardiovascular Health Study; CLUE, Campaign Against Cancer and Stroke (“Give 
Us a Clue to Cancer”) Study; EPIC, European Prospective Investigation into Cancer and Nutrition; ERSP, European Randomized Study of 

Screening for Prostate Cancer; HPFS, Health Professionals Follow-up Study; JACC, Japan Collaborative Cohort Study; KPMCP, Kaiser 

Permanente Medical Care Program; MCCS, Melbourne Collaborative Cohort Study; MEC, Multiethnic Cohort; N/A, data not available for this 

study; NSHDC, Northern Sweden Health and Disease Cohort; PCPT, Prostate Cancer Prevention Trial; PHS, Physicians Health Study; PLCO, 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; ProtecT, Prostate Testing for Cancer and Treatment Study; PSA, prostate-

specific antigen; SU.VI.MAX, Supplémentation en Vitamines et Minéraux Antioxydants. 



28 

 

Table 2. Characteristics of case participants with prostate cancer (N = 10554)a 

Study  Time from blood collection 

diagnosis (%) 

 Age at diagnosis (%)  Diagnosis year (%)  Disease stage (%)  Disease grade (%) 

 <3 y 3-6 y ≥7 y  <60 y 60-69 y ≥70 y  Before 

1990 

1990-

1995 

1995-

Onward 

 Localisedb Advancedb Aggressive 

diseaseb 

Unavailable  Low-

intermediateb 

Highb Unavailable 

Prospective Studies 
                  

ATBC 0.0 7.0 93.0  0.0 60.0 40.0  0.0 9.0 91.0  69.7 30.3 15.2 1.0  100.0 0.0 3.0 

BLSA 0.0 18.1 81.9  2.8 29.2 68.1  34.7 52.8 12.5  72.2 27.8 19.4 50.0  83.3 16.7 25.0 

BUPA 2.9 14.3 82.9  17.1 50.7 32.1  45.7 42.9 11.4  N/A N/A N/A 100.0  N/A N/A 100.0 

CHS 46.6 51.1 2.3  0.0 8.6 91.4  0.0 62.1 37.9  76.1 23.9 7.7 32.8  99.3 0.7 18.4 

CLUE 1 3.3 6.7 90.0  10.0 50.0 40.0  100.0 0.0 0.0  78.9 21.1 10.5 36.7  92.0 8.0 16.7 

EPIC Phase 1 42.4 53.0 4.6  19.2 63.0 17.8  0.0 1.0 99.0  68.6 31.4 18.2 30.3  88.9 11.1 25.6 

EPIC Phase 2 5.2 47.1 47.7  17.6 59.0 23.4  0.0 0.4 99.6  74.5 25.5 16.8 20.9  85.7 14.3 30.4 

ERSPC 0.0 100.0 0.0  5.1 69.0 25.9  0.0 0.0 100.0  94.4 5.6 0.5 0.0  97.4 2.6 1.5 

HPFS Phase 1 45.3 54.4 0.3  13.6 38.3 48.1  0.0 11.3 88.7  82.9 17.1 3.6 43.3  89.9 10.1 9.7 

HPFS Phase 2 0.5 29.4 70.1  11.9 35.9 52.1  0.0 0.2 99.8  96.6 3.4 1.1 10.2  91.6 8.4 10.8 

JACC 17.9 53.8 28.2  0.0 33.3 66.7  5.1 51.3 43.6  N/A N/A N/A 100.0  N/A N/A 100.0 

KPMCP 17.8 17.8 64.4  0.0 6.7 93.3  100.0 0.0 0.0  61.9 38.1 28.6 53.3  100.0 0.0 77.8 

MCCS 26.2 35.7 38.1  12.5 54.5 33.0  0.0 15.2 84.8  90.5 9.5 1.8 1.4  86.2 13.8 2.0 

MEC 79.8 17.4 2.8  7.3 36.3 56.5  0.0 0.0 100.0  N/A N/A N/A 100.0  99.7 0.3 4.9 

NSHDC 26.7 49.8 23.5  17.1 77.6 5.3  0.0 10.3 89.7  81.0 19.0 13.3 0.7  97.2 2.8 74.7 

PCPT 11.6 27.2 61.1  1.6 50.8 47.6  0.0 0.4 99.6  98.3 1.7 0.6 2.4  95.2 4.8 2.4 

PHS 7.1 16.7 76.2  12.4 45.5 42.1  24.3 51.6 24.1  85.0 15.0 8.1 5.4  89.9 10.1 3.4 

PLCO 59.6 40.0 0.4  5.5 56.0 38.5  0.0 0.0 100.0  87.6 12.4 2.7 0.0  94.1 5.9 0.5 

SU.VI.MAX 14.0 38.0 48.0  34.0 66.0 0.0  0.0 0.0 100.0  N/A N/A N/A 100.0  89.4 10.6 6.0 

Cross-sectional Studies                    

ProtecT feas. 95.7 3.9 0.4  29.8 68.4 1.8  0.0 0.0 100.0  81.5 18.5 0.4 3.9  93.6 6.4 0.7 

ProtecT main 99.6 0.4 0.0  30.7 65.8 3.4  0.0 0.0 100.0  90.0 10.0 1.0 10.0  94.3 5.7 0.1 

aData are for percentages of case patients among those with a known value for the characteristic and an IGF-I measurement and are in completed matched case-control sets for analysis. Percentages may not 

add up to 100 because of rounding. Stage and grade of disease are unavailable for some case patients, and the percentages shown are among case patients with known information as well as those with 

unknown information.  
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bAs a percentage of those with known stage or grade. A tumour was categorised as advanced stage if it was tumor-node-metastasis (TNM) stage T3 or T4 and/or N1+ and/or M1, stage III–IV, or the equivalent; 

localized if it was TNM stage T0 or T1 or T2 with no reported lymph node involvement or metastases, stage 0–II, or the equivalent, or stage unknown. Individuals with aggressive disease include men who have 

advanced stage prostate cancer who had tumours that were TNM stage T4 and/or N1+ and/or M1 and/or stage IV disease, and men who had died from prostate cancer. Prostate cancer was defined as high 

grade if the Gleason sum was at least 8 or the equivalent (undifferentiated), low-intermediate grade if the Gleason sum was less than 8 or the equivalent (extent of differentiation good, moderate or poor), or 

grade unknown. 

 

For expansion of study names see Table 1. Abbreviations: N/A, data not available for this study.  


