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Summary

 

• Numerous field studies have measured mycorrhizal dynamics under additions of
nitrogen (N), phosphorus (P), or atmospheric CO

 

2

 

 to test the hypothesis that plants
should invest in mycorrhizal fungi when soil nutrients are limiting.
• Here meta-analyses were used to integrate nutrient responses across independent
field-based studies. Responses were compared between ecto- and arbuscular mycor-
rhizal fungi, and among fertilizer types, methods of measurement, biomes, and lead
investigators. Relationships between degree of response and study length, fertilization
rates, total amounts of nutrients applied, and numbers of replicates were also tested.
• Across studies, mycorrhizal abundance decreased 15% under N fertilization and
32% under P fertilization. Elevated CO

 

2

 

 elicited a 47% increase. Nitrogen effects
varied significantly among studies, and P effects varied significantly among lead
investigators. Most other factors did not affect mycorrhizal responses.
• These results support the plant investment hypothesis, and suggest that global
standing stocks of mycorrhizal fungi may increase substantially under elevated CO

 

2

 

but decline moderately under P additions. Effects of N deposition may be difficult to
predict for individual ecosystems, with a slightly negative influence overall.
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Introduction

 

Since nitrogen (N), phosphorus (P), and carbon (C) are each
required by mycorrhizal fungi, the availability of each nutrient
could control mycorrhizal abundance. Plants provide C by
transferring carbohydrates via roots; soils supply N and P.
One of the more widely tested hypotheses within the field of
mycorrhizal ecology is that plants should invest more C in
mycorrhizal fungi where N or P are limiting to plant growth,
since mycorrhizal fungi contribute to nutrient uptake by
plants (Mosse & Phillips, 1971). Conversely, if N or P
availability rises, a decline in mycorrhizal abundance is
expected as plants allocate carbohydrates elsewhere and
mycorrhizal fungi become C-limited (Read, 1991). An
alternate possibility is that mycorrhizal fungi are directly
limited by soil nutrient availability and should proliferate
following additions of N or P (Treseder & Allen, 2002). These

mechanisms apply to both arbuscular mycorrhizal (AM) and
ectomycorrhizal (ECM) fungi.

Controls over mycorrhizal dynamics by C, N, and P are
germane to global change studies. Enrichment of atmospheric
CO
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 typically augments photosynthesis (Bazzaz, 1990;
Poorter, 1993) and increases nutrient limitation in plants
(Oren 

 

et al

 

., 2001; Schlesinger & Lichter, 2001; Finzi 

 

et al

 

.,
2002), while fertilization with N and P (as land is converted
to agriculture) and anthropogenic N deposition enhance soil
fertility (Vitousek, 1994). Humans may be altering global and
regional distributions of this ecologically and economically
important microbial group.

To what extent do large-scale field experiments support the
hypothesis that mycorrhizal fungi will increase under elevated
CO
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 but decrease under additions of N and P? By contrast to
glasshouse studies, field-based manipulations of CO
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, N and
P can capture complex conditions that could influence
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mycorrhizal abundance, including natural climatic variability,
intact soil fauna and microbial communities, and established
soil structure. As such, results from field experiments are
particularly useful in predicting mycorrhizal feedbacks in eco-
systems under global change. Previous reviews have reported
high variation among studies in AM colonization of roots
under elevated CO
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 (Staddon & Fitter, 1998) and in external
hyphal lengths of AM and ECM fungi under N enrichment
(Treseder & Allen, 2000), so that delineations of general
responses are difficult. Meta-analysis provides a quantitative,
statistical means of integrating independent results, and of
identifying aspects of experimental design that might contri-
bute to variation among studies (Gurevitch 

 

et al

 

., 1992; Gure-
vitch & Hedges, 1993, 1999; Arnqvist & Wooster, 1995).
This study applied this approach to a dataset compiled from
31 published N fertilization studies, 20 P fertilization studies,
and 14 elevated CO

 

2

 

 studies. It focused on below-ground
changes in standing crops of the fungi. Separate meta-analyses
were conducted for N, P, and CO

 

2

 

.

 

Materials and Methods

 

Sources of data

 

Selection criteria

 

Meta-analyses were performed on data
acquired from published sources that met specific criteria
(Table 1). In particular, the present study focused on field
studies in which mycorrhizal abundance was measured in
response to long-term (> 2-months), large-scale (> 1-m
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)
manipulations of N, P, or CO

 

2

 

 availability, in comparison
with an unmanipulated control. Short-term or smaller-
scale studies were not included, because it is possible that
mycorrhizal fungi could temporarily proliferate to exploit
small ‘hot spots’ of nutrients ( Jackson 

 

et al

 

., 1990; Hagerberg

 

et al

 

., 2003). If so, short-term responses would not necessarily
reflect long-term effects. In CO

 

2

 

 experiments, this study
included free-air CO

 

2

 

 enrichment (FACE), open-top
chamber, and closed-chamber designs if they were established
on pre-existing soil. Planted vegetation was accepted in the
case of agricultural systems only, because my objective was to
include studies that represented natural systems as closely as
possible in order to best approximate widespread effects of
global change. In addition, I limited my data collection to
results in which means, standard deviations, and replicate
numbers were reported or could be determined. This latter
specification unavoidably excluded six N-fertilization studies
and eight P-fertilization studies that were otherwise qualified.
In all cases, the unit of replication was the plot. Correlations
between pre-existing levels of soil N or P and mycorrhizal
biomass were not considered.

Because one assumption of meta-analysis is that studies are
independent from one another (Gurevitch & Hedges, 1999),
I used only one set of data from a given system. For instance,
mycorrhizal abundance was often measured several times

within a given study. In these cases, I restricted my analyses to
the latest sampling date, since global change is often long-
term. (Mycorrhizal responses did not vary significantly with
study length in the ensuing meta-analyses.) If more than one
publication presented results from the same field plots, I relied
upon data from the most recent paper. In addition, several
studies applied nutrients at a range of levels; in these cases,
I only included data associated with the highest application
rates. Conversely, if a particular publication reported results
from more than one study system that could reasonably be
considered independent (e.g. different geographical location,
fertilizer type, ecosystem, or dominant vegetation), each sys-
tem was designated as a different study. Effects of N, P, and
CO

 

2

 

 were examined in individual meta-analyses in order to
avoid redundancy of control groups within studies that simul-
taneously tested more than one effect (Gurevitch & Hedges,
1993).

 

Data acquisition

 

For each study, meta-analysis requires the mean, standard
deviation (SD), and replicate number (

 

n

 

) for the control as
well as the nutrient-addition treatment. When means and
errors were presented in a graph, the image was digitized and
Grab-It! software was used to estimate values (Preble, 1998).
If standard errors (SE) were reported, these were transformed
according to the equation: . Unidentified
error bars were assumed to represent standard error.

 

Indices of mycorrhizal abundance

 

The most common measures of mycorrhizal abundance
were percentage root length colonized (for AM fungi) or
percentage root tips colonized (for ECM fungi), both of
which are hereafter referred to as ‘% colonization’. Other
approaches included spore counts per gram soil (AM) and
hyphal length per gram soil (AM and ECM). When more
than one index of mycorrhizal abundance was reported within
a given study, percentage colonization data were selected
in order to facilitate comparisons with other studies that
measured colonization only. Data regarding production of
ECM sporocarps was not included, as the analysis focused on
below-ground dynamics.

 

Statistics

 

Meta-analyses were used to determine the significance of
mycorrhizal responses to nutrient enrichment. For each study
and each type of nutrient addition (N, P, or CO

 

2

 

), the effect
size was calculated as the natural log of the response ratio (‘R’),
which is the mean of the treatment divided by the mean of the
control (Hedges 

 

et al

 

., 1999). An R of 1 indicates that the
nutrient addition had no effect. The estimate of variance
within each study was represented as 

 

ν

 

ln R

 

, which is a function

  SE SD    ( )= ⋅ n− 1
2
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Table 1

 

Characteristics of studies included in meta-analyses, including response ratios (R) and variation within studies (

 

ν

 

ln 

 

R

 

)

Study Identifier
Mycorrhizal
type

 

a

 

Additions

 

b

 

Study
length (yr)

Repli-
cates

 

c

 

Unit of measure Biome

 

R

 

ln 

 

R

 

ν

 

ln 

 

R

 

Nitrogen fertilization

 

Anderson & Liberta (1992) AM 56 1.25 5 % colonization Temperate grassland 1.18 0.16 0.01
Bentivenga & Hetrick (1992) AM 100 6.00 4 % colonization Temperate grassland 0.86

 

−

 

0.15 0.00
Cornwell 

 

et al

 

. (2001) AM 60 0.33 5 % colonization Woodland/shrubland 0.98

 

−

 

0.02 0.08
Egerton-Warburton & Allen (2000) AM 60 2.67 10 spore count Woodland/shrubland 0.32

 

−

 

1.14 0.01
Ellis 

 

et al

 

. (1992) AM 90 8.00 4 % colonization Agricultural 0.87

 

−

 

0.14 0.02
Grogan & Chapin (2000) AM 200 0.17 3 % colonization Temperate grassland 0.12

 

−

 

2.16 0.24
Hutchinson 

 

et al

 

. (1998) Dorset AM 1000 2.00 8 % colonization Temperate forest 1.11 0.11 0.04
Hutchinson 

 

et al

 

. (1998) Loring AM 1000 3.00 8 % colonization Temperate forest 0.30

 

−

 

1.20 0.03
Johnson 

 

et al

 

. (2003) Kellogg AM 120 9.00 5 hyphal length Agricultural 0.57

 

−

 

0.56 0.07
Johnson 

 

et al

 

. (2003) Cedar Creek AM 170 10.00 5 hyphal length Agricultural 0.51

 

−

 

0.68 0.13
Johnson 

 

et al

 

. (2003) Sevilleta AM 100 3.00 10 hyphal length Desert 0.73

 

−

 

0.32 0.10
Lansing (2003) Juniper AM 100 4.00 3 % colonization Temperate forest 1.14 0.13 0.01
Lansing (2003) Sugar maple AM 100 4.00 3 % colonization Temperate forest 0.88

 

−

 

0.13 0.01
Lansing (2003) Poplar AM 100 4.00 3 % colonization Temperate forest 1.13 0.12 0.01
Treseder & Vitousek (2001) N-limited site AM 100 12.00 4 % colonization Tropical forest 1.02 0.02 0.15
Treseder & Vitousek (2001) fertile site AM 100 4.00 3 % colonization Tropical forest 0.72

 

−

 

0.32 0.11
Treseder & Vitousek (2001) P-limited site AM 100 6.00 3 % colonization Tropical forest 0.75

 

−

 

0.29 0.08
Baum & Makeschin (2000) ECM 100 11.00 9 % colonization Agricultural 0.87

 

−

 

0.14 0.03
Baum 

 

et al

 

. (2002) Abbachhof ECM 100 9.00 9 % colonization Agricultural 0.35

 

−

 

1.05 0.06
Baum 

 

et al

 

. (2002) Wildeshausen ECM 100 4.00 9 % colonization Agricultural 1.73 0.55 0.05
Fransson 

 

et al

 

. (2001) ECM 80 14.00 3 % colonization Boreal forest 0.95

 

−

 

0.05 0.00
Karen and Nylund (1997) ECM 100 4.00 4 % colonization Temperate forest 1.33 0.29 0.17
Lansing (2003) Balsam poplar ECM 100 4.00 3 % colonization Boreal forest 0.97

 

−

 

0.03 0.00
Lansing (2003) Oak ECM 100 4.00 3 % colonization Temperate forest 0.92

 

−

 

0.08 0.00
Lansing (2003) Pinyon pine ECM 100 4.00 3 % colonization Temperate forest 1.00 0.00 0.00
Lansing (2003) Red pine ECM 100 4.00 3 % colonization Temperate forest 0.98

 

−

 

0.02 0.00
Lansing (2003) White spruce ECM 100 4.00 3 % colonization Boreal forest 1.00 0.00 0.00
Termorshuizen (1993) Dwingeloo NH

 

4

 

ECM 60 3.00 3 % colonization Temperate forest 0.57

 

−

 

0.56 0.10
Termorshuizen (1993) Dwingeloo NO

 

3

 

ECM 60 3.00 3 % colonization Temperate forest 0.99

 

−

 

0.01 0.30
Termorshuizen (1993) Liessel NH

 

4

 

ECM 60 3.00 3 % colonization Temperate forest 1.00 0.00 0.02
Termorshuizen (1993) Liessel NO

 

3

 

ECM 60 3.00 3 % colonization Temperate forest 0.99

 

−

 

0.01 0.02

 Phosphorus fertilization  

Anderson & Liberta (1992) AM 56 1.25 5 % colonization Temperate grassland 0.88  −  0.13 0.03
Bentivenga & Hetrick (1992) AM 10 6.00 4 % colonization Temperate grassland 0.69

 

−

 

0.37 0.01
Cornwell 

 

et al

 

. (2001) AM 20 0.33 5 % colonization Woodland/shrubland 0.48

 

−

 

0.73 0.13
Gavito & Miller (1998) AM 30 0.17 16 % colonization Agricultural 0.92

 

−

 

0.08 0.02
Grogan & Chapin (2000) AM 200 0.17 3 % colonization Temperate grassland 0.88

 

−

 

0.12 0.04
Hicks & Loynachan (1987) AM 112 1.00 19 % colonization Agricultural 0.20

 

−

 

1.61 0.06
Kahiluoto 

 

et al

 

. (2001) Maaninka AM 45 20.00 6 % colonization Agricultural 0.66

 

−

 

0.42 0.24
Kahiluoto 

 

et al

 

. (2001) Mietoinen AM 45 20.00 4 % colonization Agricultural 0.64

 

−

 

0.45 0.20
Martensson & Carlgren (1994) Ultuna AM 45 28.00 4 spore count Agricultural 0.01

 

−

 

4.21 69.48
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Martensson & Carlgren (1994) Offer AM 45 28.00 4 spore count Agricultural 0.14

 

−

 

1.97 0.77
Pellet & El-Sharkawy (1993) AM 100 2.00 12 % colonization Agricultural 0.70

 

−

 

0.36 0.02
Sanginga 

 

et al

 

. (1996) Degraded AM 7 0.27 8 % colonization Agricultural 1.33 0.29 0.10
Sanginga 

 

et al

 

. (1996) Compound AM 7 0.27 8 % colonization Agricultural 1.62 0.48 0.09
Thomson 

 

et al

 

. (1992) AM 352 2.00 3 % colonization Agricultural 0.66

 

−

 

0.42 0.04
Treseder & Vitousek (2001) N-limited site AM 100 12.00 4 % colonization Tropical forest 0.23

 

−

 

1.46 0.13
Treseder & Vitousek (2001) Fertile site AM 100 4.00 4 % colonization Tropical forest 0.50

 

−

 

0.69 0.18
Treseder & Vitousek (2001) P-limited site AM 100 6.00 3 % colonization Tropical forest 0.41

 

−

 

0.90 0.48
Vanlauwe 

 

et al

 

. (2000) AM 7 0.31 6 % colonization Agricultural 1.63 0.49 0.02
Baum & Makeschin (2000) ECM 50 11.00 9 % colonization Agricultural 0.69

 

−

 

0.38 0.07
Pampolina 

 

et al

 

. (2002) ECM 1000 2.00 4 hyphal length Agricultural 0.52

 

−

 

0.66 0.20

 

Elevated CO

 

2

 

Allen, MF (unpublished data) AM 550 1.50 3 % colonization Woodland/shrubland 2.26 0.82 0.04
Rillig 

 

et al

 

. (1999a) Serpentine AM 700 4.00 10 % colonization Temperate grassland 1.56 0.44 0.01
Rillig 

 

et al

 

. (1999a) Sandstone AM 700 4.00 10 % colonization Temperate grassland 1.73 0.55 0.03
Rillig 

 

et al

 

. (2000) AM 569 20.00 4 % colonization Temperate grassland 3.45 1.24 0.12
Rillig et al. (2001) AM 566 0.50 4 hyphal length Agricultural 3.50 1.25 0.01
Rogers et al. (1992) AM 550 0.12 3 % colonization Agricultural 1.18 0.17 0.03
Runion et al. (1994) AM 550 0.33 8 % colonization Agricultural 1.03 0.03 0.00
Fransson et al. (2001) ECM 700 3.00 3 % colonization Boreal forest 0.93 −0.07 0.00
Kasurinen et al. (1999) ECM 595 3.00 4 % colonization Temperate forest 0.75 −0.28 0.06
Langley et al. (2003) ECM 696 3.00 8 #colonized tips/

cm−1 root 
Woodland/shrubland 1.21 0.19 0.01

Lukac et al. (2003) Populus alba ECM 550 3.00 3 % colonization Agricultural 1.56 0.45 0.00
Lukac et al. (2003) Populus nigra ECM 550 3.00 3 % colonization Agricultural 1.25 0.22 0.03
Lukac et al. (2003) Populus x 

euramericana
ECM 550 3.00 3 % colonization Agricultural 1.00 0.00 0.10

Rey et al. (1997) ECM 700 4.50 6 % colonization Temperate forest 1.72 0.54 0.05

aAM, arbuscular mycorrhizal; ECM, ectomycorrhizal.
bFor N or P fertilization: kg ha−1 yr−1. For elevated CO2: ppm CO2 in enriched treatment. Ambient was typically 350–370 ppm.
cWhere replicate number was uneven between control and treatment, lower replicate number is reported.

Study Identifier
Mycorrhizal
typea Additionsb

Study
length (yr)

Repli-
catesc Unit of measure Biome R ln R νln R

Table 1 continued
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of means, standard deviations and replicate numbers for
controls and treatments (Hedges et al., 1999). To determine
if R deviated significantly from 1 across studies (i.e. nutrient
additions had a significant general effect), a random effects
model using MetaWin software was applied (Rosenberg et al.,
2000). Random effects models allow comparisons among
groups in a framework similar to analysis of variance ().
In addition, significant variation in R among studies can
be assessed. Responses between AM and ECM fungi were
sequentially compared, among types of N or P fertilization
applied (e.g. ammonium nitrate vs. ammonium sulphate),
among methods of measurement, among biomes, and among
lead investigators (i.e. first authors). Continuous model meta-
analyses was also used to test for relationships between R and
study length, levels of nutrient addition, total amounts of
nutrients applied (in the case of N or P fertilization), the
product of study length and CO2 concentration in the
enriched treatment (in the case of elevated CO2), or numbers
of replicate plots. Statistical results reported include R; 95%
confidence intervals for R (CI); degrees of freedom ( d.f.); total
heterogeneity in R among studies (QT); and in the case of
comparisons among groups, the difference among group
cumulative effect sizes (QM), and the residual error (QE)
(Rosenberg et al., 2000).

Results

Nitrogen fertilization

Across studies, N fertilization reduced mycorrhizal abundance
by an average of 15% (Fig. 1), but with significant variation

among studies (QT = 100, d.f. = 30; P < 0.00001). Moreover,
a meta-analysis restricted to percentage colonization data
indicated a smaller, but still significant, decrease of 5.8%
(Table 2), again with significant heterogeneity among studies
(QT = 84.8, d.f. = 26, P < 0.00001). Aspects of experimental
design influenced how mycorrhizal fungi responded to N. In
particular, declines in mycorrhizal abundance were slightly
more pronounced under higher rates of N application (R =
−2.54 × 10−4 * [rate] + 0.905, P = 0.020), although two studies
with application rates of 1000 kg N ha−1 h−1 (Hutchinson
et al., 1998) had large leverage. When these two studies
were omitted, no significant effects of application rate were
apparent. Replicate number was weakly negatively related
to R (R = −0.0372 * [replicate number] + 0.964, P = 0.007),
potentially because studies with more replicate plots also had
higher rates of N additions (Table 1). Neither the total
amount of nitrogen added nor the duration of fertilization
was a significant factor. Likewise, we found no significant
effects of mycorrhizal type, fertilization type, measurement
index, biome, or lead investigator (Table 2).

Phosphorus fertilization

Mycorrhizal fungi declined moderately under P fertilization,
with an average reduction of 32% (Fig. 1). Moreover, variation
among studies was nonsignificant (QT = 22.5, d.f. = 19, P =
0.259), indicating consistency among systems in mycorrhizal
responses to P. Response ratios did not differ between AM and
ECM fungi, among type of fertilizer applied, among biomes,
among measurement types, or as a function of fertilization
rate, fertilization duration, total amount of P added, or
replicate number. However, R varied significantly among lead
investigators (Table 2). When analysis was restricted to studies
that reported percentage colonization, P effects were still
significant (Table 2).

Elevated CO2

By contrast to N and P fertilization, CO2 enrichment
consistently and strongly increased mycorrhizal growth, by an
average of 47% across all studies (Fig. 1), and by 36% within
studies that measured percentage colonization (R = 1.36,
CI of 1.11–1.68, number of studies = 12). Among the study
characteristics examined, none contributed significantly to
differences among studies (Table 2), and there was no
significant variation among studies in general (QT = 14.5,
d.f. = 13, P = 0.342). We could not test for differences among
measurement types, since percentage colonization was the
only metric used by more than one study.

Discussion

For each nutrient examined, results from the meta-analyses
supported the hypothesis that mycorrhizal fungi are more

Fig. 1 Responses of mycorrhizal fungi to nitrogen fertilization, 
phosphorus fertilization, and elevated CO2 in field studies. A 
response ratio > 1 indicates an increase in abundance relative to the 
control, and < 1 indicates a decrease. Symbols are means ± 95% 
confidence intervals. Responses were significant in each case, as 
confidence intervals did not overlap with 1. Thirty-one studies were 
represented for N, 20 for P, and 14 for elevated CO2.
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abundant where plants are more limited by soil nutrients.
However, responses to N were less consistent than were
responses to P and elevated CO2, given the heterogeneity in
N effects among studies. Replicate numbers within N studies
influenced response ratios, but not substantially. What other
characteristics of the studies might be responsible for the
remaining variation in N effects? It is possible that mycorrhizal
fungi may not be as effective in facilitating plant uptake of
inorganic N compared with inorganic P (Mosse & Phillips,

1971; Smith & Read, 1997). In particular, nitrate is more
mobile in the soil than is phosphate, so diffusion or mass flow
may supply N at adequate rates in nitrate-rich systems. Under
these circumstances, plant investment in mycorrhizal fungi
may be minimal even in control plots. Alternately, mycorrhizal
growth may be N-limited in some ecosystems (Treseder &
Allen, 2002) so that N fertilization increases mycorrhizal
abundance. Nitrogen effects were positive in 23% of studies
(Table 1). Regardless of the mechanism, the significant variation

Table 2 Statistical results of comparisons among groups

Comparison Groupa R 95% CI
Number 
of studies QM QE P-value

Nitrogen fertilization
Mycorrhizal type AM fungi 0.761 0.675–0.858 17 8.03 99.1 0.081

ECM fungi 0.947 0.845–1.06 14
Fertilizer type NaNO3 1.08 0.598–1.94 3 5.18 83.5 0.492

NH4NO3 0.858 0.779–0.944 18
(NH4)2SO3 0.711 0.506–0.999 5
NH4NO3 + urea 0.808 0.325–2.01 3

Measurement % colonization 0.942 0.890–0.997 27 6.56 85.8 0.091
Hyphal length 0.577 0.256–1.30 3

Biome Temperate grassland 0.897 0.562–1.43 3 37.3 84.2 0.094
Woodland/shrubland 0.402 0.071–2.27 2
Agricultural 0.777 0.593–1.02 6
Temperate forest 0.932 0.834–1.04 13
Tropical forest 0.807 0.333–1.96 3
Boreal forest 0.972 0.694–1.36 3

Lead authors Hutchinson 0.540 0.082–3.54 2 24.4 50.8 0.096
Johnson 0.577 0.259–1.29 3
Lansing 0.984 0.916–1.06 8
Treseder 0.805 0.348–1.87 3
Baum 0.849 0.482–1.50 3
Termorshuizen 0.938 0.674–1.31 4

Phosphorus fertilization
Mycorrhizal type AM fungi 0.687 0.523–0.902 18 0.078 21.9 0.789

ECM fungi 0.611 0.004–94.4 2
Fertilizer type Superphosphate 0.694 0.520–0.926 16 2.78 17.6 0.185

Ca(H2PO4)2 0.134 0.000–32 180 2
Measurement % colonization 0.707 0.544–0.920 17 2.92 19.7 0.151

Spore count 0.135 0.000–27 677 2
Biome Temperate grassland 0.819 0.252–2.67 3 3.94 17.0 0.236

Agricultural 0.735 0.521–1.04 13
Tropical forest 0.347 0.070–1.73 3

Lead investigator Kahiluoto 0.647 0.009–47.1 2 23.9 2.13 0.017
Martensson 0.135 0.000–8238 2
Sanginga 1.45 0.094–22.3 2
Treseder 0.331 0.112–0.977 3

Elevated CO2
Mycorrhizal type AM fungi 1.84 1.22–2.77 7 3.39 9.29 0.108

ECM fungi 1.19 0.785–1.79 7
Biome Woodland/shrubland 1.62 0.025–104 2 1.58 8.66 0.701

Temperate grassland 1.98 0.592–6.60 3
Agricultural 1.48 0.907–2.40 6
Temperate forest 1.15 0.014–96.4 2

Lead investigator Rillig 2.31 1.19–4.48 4 3.03 3.57 0.178
Lukac 1.32 0.464–3.75 3

aGroups are included only when represented by two or more studies.
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in N responses among studies indicates that predictability of
N deposition effects on mycorrhizal biomass for any given
ecosystem is relatively low. The smaller confidence intervals
for N effects vs P or CO2 effects (Fig. 1) reflect the larger
number of N studies included in the meta-analyses.

Although most study variables did not significantly influ-
ence mycorrhizal responses to P fertilization, in many cases
the number of studies represented within groups was low
(Table 2). For example, ECM responses to P were determined
in two studies only. Likewise, all but two studies applied
superphosphate as the source of P. Hyphal length was used as
an index of abundance in two P studies, compared with 17 P
studies reporting percentage colonization. Tropical forests and
temperate grasslands were represented by three P studies each.
These small sample sizes limit my ability to determine
whether these variables are important factors in mycorrhizal
responses to P.

Seven biomes were included in the meta-analyses, albeit
unequally. Agricultural systems were the most common, com-
prising 25 of 65 cases (Table 1). Deserts were the least common,
with one study represented. Moreover, all data from natural
tropical forests were collected in Hawaii. A more diverse
sampling of nutrient effects within tropical forests, deserts,
boreal forests, and woodlands/shrublands would improve the
possibility of establishing general patterns among and within
biomes.

To include studies that encompassed as broad a range of
regions and biomes as possible, data on hyphal lengths and
spore counts was incorporated, in addition to % colonization.
However, % colonization is not necessarily comparable with
the others, since this parameter is a function of standing root
length as well as mycorrhizal biomass (Allen, 2001). Coloni-
zation levels can be interpreted as an assessment of relative
allocation toward mycorrhizal fungi by plants. For this reason,
additional meta-analyses were conducted on % colonization
data only. Effects of N, P, and CO2 remained significant – but
smaller – despite the reduction in sample size. Standing stocks
of fine roots tend to increase under elevated CO2 (Rogers
et al., 1994). Thus, total mycorrhizal biomass may be more
strongly affected by CO2 enrichment than would be indicted
by % colonization alone. Root responses to N and P are more
variable (Ostertag, 2001), so it is difficult to relate % colon-
ization to mycorrhizal biomass in fertilization studies without
specific data from each study. Even though percentage colon-
ization tended to be associated with smaller response ratios,
there was no evidence for significant differences among types
of measurements used.

In summary, mycorrhizal abundance generally increases
under elevated CO2 and declines in response to N and P
fertilization across studies. Plants may adjust allocation of C
to mycorrhizal fungi according to the degree to which plant
growth is N or P limited, as hypothesized (Mosse & Phillips,
1971; Read, 1991). Direct limitation of mycorrhizal fungi
by soil nutrients appears to be at most a secondary control,

evident in a subset of studies. In respect of environmental
change, global standing stocks of mycorrhizal fungi may be
substantially augmented by atmospheric CO2 enrichment
and moderately reduced by P fertilization. Anthropogenic
N deposition effects might vary among ecosystems, with a
slightly negative influence overall. These shifts in mycorrhizal
dynamics may elicit corresponding shifts in ecosystem
dynamics, including nutrient uptake by plants (Smith &
Read, 1997), trace gas emissions (Redeker et al., 2004), carbon
sequestration in glomalin (Treseder & Allen, 2000), and
aggregate formation in the soil (Rillig et al., 1999b).
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