
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A meta-environment for generating programming environments

Klint, P.

Publication date
1993

Published in
ACM Transactions on Software Engineering and Methodology

Link to publication

Citation for published version (APA):
Klint, P. (1993). A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2), 176-201.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/a-metaenvironment-for-generating-programming-environments(de2af6fe-9079-4761-bc61-12aef8af0231).html

A Meta-Environment for Generating

Programming Environments

PAUL KLINT

CWI, Amsterdam and the University of Amsterdam

Over the last decade, considerable progress has been made in solving the problems of automatic

generation of programmmg/development envmonments, Wven a formal definition of some

programming or specification language. In most ca~es, research has focused on the functlonahty

and efficiency of the generated environments, and, of course, these aspects WI1l ultimately

determme the acceptance of envmonment generators. However, only marginal attention has been

paid to the development process of formal language defimtlons Itself. Assummg that the quality

of automatically generated environments wdl be satisfactory wlthm a few years, the develop-

ment costs of formal language definitions wdl then become the next limiting factor determmmg

ultlmate success and acceptance of envu-onment generators.

In this paper we describe the des]gn and Implementation of a meta-enwronment (a develop-

ment emnronment for formal language definitions) based on the formalism ASF + SDF This

meta-environment IS currently being mlplemented as part of the Centaur system and is, at least

partly, obtained by applying environment generation techniques to the language defimtlon

formahsm itself. A central problem is providing fully interactive editmg of modular language

definltlons such that modlilcatlons made to the language defimtion during editing can be

translated immediately to modifications m the programming environment generated from the

original language definition. Therefore, some of the issues addressed are the treatment of

formahsms with user-definable syntax and incremental program generation techniques

Categories and Subject Descriptors: D,2. 1 [Software Engineering] Requirements/

Specifications-languages; D 2.6 [Software Engineering]: Programmmg Envmonments;

D 31 [Programming Languages] Formal Detinltions and Theory—,~ rztax. semantzcs: D.3.4

[Programming Languages]: Processors

General Terms: Design, Languages

Addltlonal Key Words and Phrases: Algebralc speclficatlon, application generators, application

languages, concrete and abstract syntax, incremental program generation, language defimtlon

formalism, meta-environment, programming environment generation, programming language

semantics, user-definable syntax

Partial support recewed from the European Commumtles under ESPRIT project 2177 (Genera-

tion of Interactive Programming Environments 11–GIPE II) This 1s a completely rev]sed and

extended version of a paper that appeared earlier in Algebralc Methods II Theory. Tools and

Applzcutzons, VO1. 490. J. A. Bergstra and L. M. G. Feijs, Eds, Lecture Notes in Computer

Science, Sprmger-Verlag, 1991, 105-124.

Author’s address. CWI (Centrum Voor Wiskunde en Informat,ca), P. O. Box 4079, 1009 AB

Amsterdam, The Netherlands. email klint@cwi.nl

Permission to copy without fee all or part of this material m granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is ~ven that copying m by permission of the

Association for Computing Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or

specific permission.

G 1993 ACM 1049-331x/93/0400-0176 $01.50

ACM Transactions on Software Eng’meenng and Methodology Vol 2, No 2, Aprd 1993, Pages 176–201

A Mets-Environment for Generating Programming Environments . 177

1. INTRODUCTION

Over the last decade, several research projects have focused on the automatic

generation of programming environments given a formal specification of a

desired language (for instance, Mentor [6], PSG [1], Synthesizer Generator

[27], Gandalf [101, GIPE [14], Genesis [8], Graspin [7], and Pan [2]). A

programming environment is here understood as a coherent set of interactive

tools such as syntax-directed editors, debuggers, interpreters, code genera-

tors, and pretty printers to be used during the construction of texts in the

desired language. This approach has been used to generate environments for

languages in different application areas such as programming, formal specifi-

cation, proof construction, text formatting, process control, and statistical

analysis. All these projects are based on the assumption that major parts of

the generated environment are language independent and that all language-

dependent parts can be derived from a suitable high-level formal specifica-

tion. Various problems have been studied:

—integration of text-oriented editing and syntax-oriented editing;

—automatic generation of incremental tools from nonincremental specifica-

tions;

—a single integrated language definition formalism versus several separate

formalisms;

—generation of interpreters and compilers;

—fixed versus user-definable user interfaces;

—fixed versus user-definable logic in language definition formalisms;

—descriptive power of the language definition formalism (specification of

polymorphic type systems, concurrency, etc.).

As a general observation, systems with fixed, built-in solutions for some

of the problems mentioned above are very easy to use in the application

area they were designed for—and probably in some unanticipated areas as

well—but it may be difficult or even impossible to use them in other areas.

Therefore, we currently see a trend toward systems with more open architec-

tures consisting of cooperating sets of replaceable components. In this way

one can obtain very general and flexible systems.

An example of such a general architecture is the Centaur system [4]

developed in the GIPE project. It can be characterized as a set of generic

components for building environment generators. These generic components

support, among other things, operations for

—manipulating abstract syntax trees, and

—creating graphical objects and user interfaces.

The kernel thus provides a number of useful data types but does not make

many assumptions about, for instance, the logic underlying the language

definition formalism. This generality is achieved by permitting a simple

interface between the kernel and logical engines such as a Prolog interpreter

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No. 2, Aprd 1993.

178 . Paul Kllnt

or a rewrite rule interpreter. Note that these logical engines are not gener-

ated from specifications but are implemented separately.

The kernel has already been extended with compilers for various language

definition subformalisms such as METAL [21], SDF [13], and TYPOL [5, 20],

as well as interactive tools such as the structure-oriented editor CTEDIT, the

generic syntax-directed editor GSE with integrated text-oriented and syntax-

oriented editing capabilities, and a tool for controlling the execution of

TYPOL specifications. The system thus resembles an extendible toolkit rather

than a closed system.

The current Centaur system gives some support for the interactive develop-

ment of language definitions (e.g., the interactive editing and debugging of

TYPOL specifications), but major efforts are still needed to obtain a true

interactive development environment for language definitions.

In this paper, we describe our own contributions to the GIPE project that

aim at constructing a “programming environment based on language defini-

tions” as already sketched in [II]. Some ideas on “monolingual programming

environments” [12] have also guided our work. We distinguish three phases:

(1) design of an integrated language definition formalism (ASF + SDF);

(2J implementation of a generator that generates environments given a

language definition;

(3) design and implementation of an interactive development environment

for As~ + SDF.

The latter leads to a meta-environment in which language definitions can be

edited, checked, and compiled just like programs can be manipulated in a

generated environment (i.e., an environment obtained by compiling a lan-

guage definition), Both the generator itself and the meta-environment have

been implemented on top of the current Centaur system. Coming back to the

issue of closed versus open systems, our system takes a middle position:

many mechanisms are built-in and cannot be changed by the user (this leads

to an easy-to-use system but probably blocks off certain applications),

but there is a well-defined mechanism to connect tools to the generated

environments.

The main topics to be discussed are

—interactive editing of modular language definitions with immediate

translation of modifications in the language definition to modifications in

the programming environment generated for it (this requires in our case,

for instance, incremental type checking, incremental scanner and parser

generation, and incremental compilation of algebraic specifications);

—treatment of formalisms with variable (i.e., user-definable) syntax.

The plan of the paper is as follows. In Section 2, we give an overview of the

features of the formalism ASF + SDF that have influenced the design of

the meta-environment. In Section 3, we present the global organization

of the ASF + SDF meta-environment. In Section 4, we address the issue of

defining the syntax of the equations in modules, and in Section 5 we give a

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No 2, April 1993.

A Meta-Environment for Generating Programming Environments . 179

look inside the generic syntax-directed editor that forms the essential build-

ing block in our design. After these preparations, we describe the actual

construction of the ASF + SDF meta-environment in Section 6, We describe

the implementation techniques needed for the system in Section 7 and

conclude the paper with a description of the current state of the implementa-

tion as well as a discussion of the relative merits of our approach in Section 8.

2. ASF + SDF

The global design of the meta-environment for ASF + SDF to be discussed in

the next section can, to a large extent, be used for a variety of specification

formalisms. We make a number of assumptions about specifications and

the modules in specifications (e.g., assumptions about the mechanisms for the

import and parameterization of modules, for the renaming of names in

modules, and assumptions about the specific form of conditional equations).

There is, however, one specific feature that has largely determined our

design: modules cannot only introduce new functions and define their seman-

tics, but they can introduce new notations for these functions as well. The

implications of this feature are far reaching, since one has to provide for the

(syntax-directed) editing of specifications with a variable syntax.

Although a detailed understanding of the formalism ASF + SDF is not

necessary for understanding the remainder of this paper, a brief sketch of the

formalism may help the reader to see the benefits (and associated implemen-

tation problems) of user-definable syntax,

ASF + SDF is the result of the marriage of the formalisms ASF (Algebraic

Specification Formalism) and SDF (Syntax Definition Formalism). ASF [3]

is based on the notion of a module consisting of a signature defining the

abstract syntax of functions and a set of conditional equations defining their

semantics. Modules can be imported in other modules and can be parametri-

zed. SDF [13] allows the simultaneous definition of concrete (i.e., lexical and

context-free) and abstract syntax and implicitly defines a translation from

text strings (via their associated parse trees) to abstract syntax trees.

The main idea of ASF + SDF [13, 19, 29] is to identify the abstract syntax

defined by the signature in an ASF specification with the abstract syn-

tax defined implicitly by an SDF specification, thus yielding a standard

mapping from strings to abstract-syntax trees. This gives the possibility to

associate semantics with (the tree representation of) strings and to introduce

user-defined not ation in specifications.

Two (trivial) examples may help to clarify this general description. Figure 1

shows a definition of two modules. Module Booleans defines a sort BOOL,

constants true and false, and left-associative operator &. The equations define

& as the ordinary and operator on Boolean values. Module Naturals defines a

sort NAT, constant O, successor function SUCC, and infix operator <. The

equations define < as the ordinary less than operator on natural numbers.

This example shows how new syntax rules are introduced in a module

(appearing under the heading context-free syntax) and how they can be used

in the equations. The result is that, for instance, the equation [BI] can only

ACM Transactions on Software Engineering and Methodology, Vol 2, No. 2, Aprd 1993

180 . Paul Klmt

module Booleans

exports
sorts BOOL

lexical syntax

[\t \ n] + LAYOUT

context-free syntax

true - BOOL

false ~ BOOL

BOOL “W BOOL - BOOL {left}

equations

[Bl 1 true & true = true

[B2] true & false = false
[B3] false & true = false

[B4] false & true = false

module Naturals

imports Booleans

exports

sorts NAT

context-free syntax

“o ~ NAT

succ ‘((” NAT “)” - NAT

NAT “ < “ NAT + BOOL

variables
N - NAT

M ~ NAT

equations

[Nl] O <0 = false

[N2] SUCC (N) <0 = false

[N3] O < SUCC(N) = true

[N4] SUCC(N) < SUCC(M) = N < M

Fig. 1 An AbF + SDF specification of Booleans and Naturals

be parsed given the preceding syntax definition of the & operator. Since

arbitrary context-free grammars can be defined in this way, we cannot give a

fixed grammar for each module. Instead, all syntax rules defined in a module

(together with all syntax rules defined in imported modules) contribute to the

grammar of that particular module (see also Section 4).

Being interested in formal language definitions, we give an example of a

(trivial) type-checking problem. Consider the language L of programs of the

form

def {a lzst of zdent@rs} In {a lzst of identzfzers}

satisfying the constraint that each identifier appearing in the second list

appears in the first list as well. A definition of L is given in Figure 2 and

consists of three modules. Module Identifiers defines sorts ID (identifiers)

and ID-LIST (lists of identifiers) together with a membership function in. The

sort L-PROGRAM introduced in module L-syntax consists of all syntactically

correct L-programs. In module L-tc, we define the type-checking function tc[]

on L-programs that checks the constraint mentioned above.

ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 181

module Identifiers

imports Booleans

exports

sorts ID ID-LIST
lexical syntax

[a-z] [a-zO-91* + ID

context-free syntax

“{” { ID “,”}* “}” + ID-LIST

ID in ID-LIST + BOOL

variables

Id [’]* + ID

Ids [’I* + {ID “,”}*

equations

[ldll Id in { } = false

[ld2] Id in {Id, Ids} = true

[ld3] Id != Id’
———. —————____—— ——————————— ———————

Id in {Id’, Ids} = Id In {Ids}

module L-syntax

imports Identifiers

exports

sorts L-PROGRAM

context-free syntax

def ID-LIST In ID-LIST + L-PROGRAM

module L-tc

imports L-syntax

exports

context-free syntax

tc “[” L-PROGRAM “]” -+ BOOL

equations

[Tell tc [def {Ids} in { }] = true

[Tc2] tc[def {Ids} m {Id, Ids’} 1=
Id in {Ids} & tc[def {Ids} in {Ids’}]

Fig. 2. A simple language and its type checker

3. THE META-ENVIRONMENT

Decomposing large systems into manageable pieces is, of course, an old

and well-known engineering technique. Applying modular decomposition

techniques to formal language definitions is, however, relatively new. In

principle, the benefits to be expected from this approach are the gradual

construction of a library of language definition modules that can be reused in

the formal definition of different languages, e.g., reusing parts of the defini-

tion of Fortran expressions in the definition of Pascal (but also see the

discussion in Section 8.3).

In this section, we present the architecture of a system for the interactive

development of modular language definitions. The main question will be how

to give support for the interactive editing of modules and how to update the

implementations of these modules automatically after each edit operation.

As already illustrated by the examples in the previous section, we are here

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No. 2, April 1993.

182 . Paul Klint

considering a specification formalism in which

—a formal language definition consists of a set of modules;

—a module may import other modules from the language definition;

—each module may define syntax rules as well as semantic rules;

—the notation used in the semantic rules depends on the definition of the

syntax rules.

3.1 General Architecture

Figure 3 shows the overall organization of the system. First of all, we make a

distinction between the meta-environment (i.e., the interactive development

environment for constructing language definitions and for generating and

testing particular programming environments) and a generated environment

(i.e., an environment for constructing programs in some programming lan-

guage L, obtained by compiling a language definition for L in the meta-

environment). In the meta-environment one can distinguish:

—a language definition (in ASF + SDF) consisting of a set of modules;

—the environment generator itself, which consists of three components dis-

cussed below.

The output of the environment generator is used in conjunction with GSE

(Generic Syntax-directed Editor), a generic building block that we use to

construct environments. GSE not only supports (text-oriented and syntax-

oriented) editing operations on programs but can also be extended by attach-

ing “external tools” which perform operations on the edited program such as

type checking and evaluation. The main inputs to the Generic Syntax-directed

Editor are

—a program text P,

—the modules that define the syntax of P,

—connections with external tools.

One language definition can thus result in more than one generated

environment by connecting a number of instances of GSE to different sets of

external tools. Since both the syntax description of P and the definition

of external tools may be distributed over several modules we are faced with

the problem of managing several sets of grammar rules and equations

simultaneously. It may even happen that subsets of these grammar rules and

equations are used for other purposes in the same generated environment.

We will first motivate the architecture sketched in Figure 3 and discuss

some details of the environment generator itself. A detailed discussion of GSE

is postponed to Section 5.

Our point of departure is a formalism (AsF) in which the operations

for module composition (import, export, renaming, parameter binding) are

defined in terms of textual expansion: with each module one can associate

a new module that does not contain any module composition operations

(its so-called normal form) by textually expanding each composition opera-

tion that appears in the original module. This conceptually simple model is

ACM TransactIons on Software Engmeenng and Methodology, Vol. 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 183

Met a-environment

t Generated Enwronment
I
1
1
1 Name of module defining
1
1 the syntax of L

1

t I
L-Program

(text)
Gener]c Syntax-directed Echtor

Fig. 3. Global organization.

inadequate as a basis for implementation since the actual copying of modules

is not only expensive (both in compilation time and in size of the generated

code), but also difficult to extend to incremental compilation of modules.

An ideal implementation model is illustrated in Figure 4. At the specifica-

tion level, we assume a composition operation + on modules. At the imple-

mentation level, we assume both an implementation function 3 that maps a

module to its implementation and a composition operation @ on implementa-

tions. Given two modules Ml and Mz, the following equality has to hold:

From the perspective of interactive editing of modules this property is

attractive since we can reuse implementations of unchanged modules. For

example, when Ml is changed into M; we can reuse &(Mz), since

Y(M{ + MJ =Y(Mj) @Y(Mz) (2)

Unfortunately, in practice it is hard to find combinations of +, @, and -Y

with this property, since for reasons of efficiency most implementation func-

tions Y will perform global optimizations when constructing Y’(Ml + Mj)

which need global information from both Ml and Ma. The types of modules

and the instances of @ and Y that we will encounter are summarized

in Figure 5. In all these cases, + represents the operator for the textual

composition of modules.

We propose therefore the following, alternative, implementation model

sketched in Figure 6. Instead of composing implementations we build one

implementation for all modules in the specification and make a selection from

this global implementation to obtain implementations for individual modules.

ACM TransactIons on Software Engineering and Methodology, Vol. 2, No. 2. Aprd 1993.

184 Paul Klint

Ml

+

m(l) e I 4(M2)

I

—— W!fl + Mz)

1 I

Fig. 4. Ideal implementation scheme.

. .

lexical grammar scanner generator composition of scanners

context-free grammar parser generator composition of parsers

cond] tlonal equations equation compher composition of

cornphed equations

Fig. 5, Types of modules with associated operators .7 and 6

mm ‘-‘j(Ml + Mz)

I

select Ml select MZ

Fig. 6 Actual implementation scheme based on selection

More specifically, each module in the language definition contains a num-

ber of “rules” such as declarations, lexical and context-free grammar rules,

and conditional equations. We collect all rules from all modules in a single,

global set of rules. Each rule in this global set is tagged with the name of the

module in which it was defined. We use these tags to enable or disable

individual rules in the global set. Instead of constructing the normal form for

each module, we only have to calculate which rules in the global set must be

enabled to obtain the same effect as the desired normal form. After selecting

certain rules from the global set, these can be used immediately, for instance,

ACM Transactions on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Enwronments . 185

for parsing input sentences according to the selected set of grammar rules,

or for rewriting an input term according to the selected set of conditional

equations.

Consider, in Figure 7, a sequence of named modules which may contain

names of other modules to be imported as well as a number of unspecified

“rules” which we denote by lower-case letters. The names declared in an

imported module may optionally be renamed before it is imported. The

corresponding normal forms are shown in Figure 8 and the corresponding

global set of rules in Figure 9. The global set of rules contains the original

rules as they appear in the specification together with renamed versions

of the rules as needed for the normalization of all the modules in the

specification. As an optimization, we could remove from the global set those

renamed rules that are identical to the original one, i.e., rules that are not

affected by the renaming.

The success of this implementation model is determined by the efficiency of

the following operations:

—calculation of the set of rules corresponding to a normal form;

—enabling/disabling rules in the global set;

—selecting parts of the implementation of the rules in the global set for a

given set of enabled/disabled rules;

—modifying the global set of rules (and the corresponding implementation)

in response to editing operations on the specification.

The viability of this implementation model is further discussed in Section 7.

Returning to the global architecture shown in Figure 3, we distinguish

three components in the environment generator that maintain information at

a global level:

—The Module Manager (MM) administers the overall modular structure of

the language definition. This amounts to maintaining the import relations

between modules and keeping track of definition and use of individual

rules.

—The Syntax Manager (SM) administers the (lexical and context-free) func-

tions as well as the declarations of priorities (not further discussed here)

and variables defined in each module. It also creates and updates the

scanners and parsers derived from all modules.

—The Equation Manager (EQM) administers the equations defined in each

module together with the rewrite rules that have been derived from them.

The general principle is that the Module Manager manages all modu-

lar information and that the Syntax Manager and the Equation Manager

can access only the pieces of information that they need to carry out their

respective tasks.

Applying this organization to the example specification discussed above, we

obtain the situation shown in Figure 7. The Module Manager passes all

information related to syntactic issues to the Syntax Manager, which in turn

maintains two global sets of rules: lexical rules and context-free rules. All

ACMTransactIons on Software Engmeermg and Methodology, Vol. 2, No 2, Aprjl 1993

186 . Paul Kllnt

Lexical Rules

~ ~Rl =R2 =R1R2 b bRl bR2 bRl R2 c CRl CR1R2 d dR2
_—— ——

900090 0 0900 ;0

Language Definition Context-free Rules

module Ml: ~ ~R1 ~R2 ~R1R2 b bR1 bR2 bR1R2 , ,Rl ~R1R2 d ~

a, b
eoooeo 009000 0

module M2:

imports Ml Environment Generator

c

module F13:

imports

Ml a

k12 renamed by RI

d

module M4:

imports

Ml ~

M2
~R2 =R1R2 b bRl bR2 ~Rl R2 c ~R1 CR1R2 ~~R2

M3 renamed by R2 : ~yy;~~y:~y;y

Flg,7, Processing ofamodular specification (module M2 is selected)

module Ml: a,b

module M2: a,b, c

module M3: a b aR1 bRl, cRl, d
U’b’c ai2 bR2 aRl R2, bRl R2, cRl R2, dRz

module M4: , , , , ,

Flg.8 Normal forms ofspeclficatlon in Flgure7.

information related to equations is passed to the Equation Manager,

maintains one global set of rewrite rules derived from the equations.

3.2 Major Components

which

The Module Manager, the Syntax Manager, and the Equation Manager all

adhere to a similar protocol based on the following operations:

add, delete: Add/delete an entity to/from the language definition. Depend-

ing on the component, these entities nlay be a module declaration, a sort

ACM TransactIons on Software En~neermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 187

m

EIK
Ml ● o

M2 e o

M3 ● e

M4 ● o—

Fig. 9.

~R2 #lR2 b @ bR2 bRlR2 ~ # ~RlR2 d

0 0 e 0 0 0 0 0 0 0

0 0 ● o 0 0 ● o 0 0

0 0 ● e o 0 0 ● o ●

● 0 ● 0 e ● 0 0 ● o

Rules and selections corresponding to specification in Figure 7.

J&2

7
0

0

0

●

declaration, a lexical function definition (a lexical grammar rule), a con-

text-free function definition (a context-free grammar rule), a priority

declaration, an import, a variable declaration, or an equation.

select: Select a module as current module. For the Syntax Manager this

implies (1) determining all SDF functions (and their renamed versions)

belonging to the normal form of the current module in order to determine

the current grammar and (2) selecting the parts of the generated scanner

and parser accepting that grammar. For the Equation Manager this implies

(1) determining all equations (and their renamed versions) belonging to the

normal form of the current module in order to determine the current set of

equations and (2) selecting those parts of the compiled term-rewriting

system corresponding to the selected set of equations.

parse: Parse a string according to the grammar defined by the currently

selected module.

rewrite: Rewrite an abstract syntax tree (usually called “term” in the context

of term rewriting) using the rewrite rules derived from the equations

defined in the current module.

Most of the operations of the Module Manager depend on the corresponding

operations defined in, respectively, the Syntax Manager and the Equation

Manager.

4. THE SYNTAX OF EQUATIONS

When constructing the meta-environment based on ASF + SDF, we are con-

fronted with the question of how the syntax of equations can be represented.

Defining the syntax of equations in the form of an ordinary module is not

only elegant, but it is efficient in terms of implementation effort as well. The

syntax of equations should be explicit and localized in a single module,

as opposed to, for instance, being dispersed over the implementation of

the Module Manager. In this way, it will be easy to change the syntax

of equations. This might become relevant when we want to combine SDF with

some logical formalism other than ASF.

There are two possible approaches to represent the syntax of equations:

—Use a general grammar to describe the form of equations. In its simplest

ACM TransactIons on Software Engineering and Methodology, Vol. 2, No. 2, April 1993.

188 . Paul Kllnt

form, this grammar would consist of a single rule

(equation):: = (term)”= “(term)

where (term) describes all well-formed terms that may appear at the left-

or right-hand side of the “ = “ sign as defined by the SDF section of the

current language definition. However, this rule permits equations in which

the sorts of both terms are unequal. Therefore these have to be rejected in

a separate (very simple) type-checking phase.

—Reject type-incorrect equations already during parsing by adding syntax

rules to the grammar for equations of all sorts S1, Sn declared in the

language definition. This grammar has the form:

(equation)::= (S1)”= “ (Sl)l l(Sn)”= “(Sn)

We will now consider the second alternative in more detail. Not only

because this is a nonstandard approach deserving some investigation, but

also because we can then further exploit the incremental parser generator

we already need at the implementation level for handling additions and

deletions of grammar rules (see Sections 3 and 7).

4.1 Type Checking Using a Specialized Equation Grammar

Consider an ASF + SDF language definition consisting of the modules

Ml,.. ., M.. In order to define the syntax of equations, this language defini-

tion is extended in the following way. First, the module Equations is added

that introduces a sort (EQ) for an individual equation and a sort (EQ-SECTION)

for a complete equations section. We only discuss a simplified version of the

definition of unconditional equations; conditional equations can be defined in

a similar way. The definition is

module Equations

exports

sorts EQ EQ-SECTION

context-free syntax

EQ- + EQ-SECTION

Next, we generate for each module M, in the language definition a module

EQ-M, that consists of three parts:

(1) For all exported sorts S,, S~ declared in M, we generate declarations

for exported functions of the form S,”= “S, - EQ; .

(2) For all hidden sorts T,, . . ., T, declared in M, we generate declarations for

hidden functions of the form T,’L= “T, ~ EQ; .

(3) For all modules N1,.. ., N~ imported by M, we generate imports of the

“equation version” of each module N,. In case of importing and renaming

a module, we simply rename the equation version of N, and import that

renamed module. If the module has no imports, only an import for the

module Equations is imported.

ACM TransactIons on Software Engmeermg and Methodology, VOI 2, No. 2, AprJ 1993

A Meta-Environment for Generating Programming Environments . 189

The result is as follows:

module EQ-M,

exports

context-free syntax
S1”= “S1 + EQ
. ..

Sk”= “S, + EQ

hiddens

context-free syntax
T,”= “T, + EQ

.

T/’c= “T, + EQ
Imports

EQ-N1 . . . EQ-N~

Parsing an equation in module M, can now be done in the context of the

dynamically generated module EQ-M,.

4.2 Example of a Specialized Equation Grammar

Consider the specification of Booleans and Naturals given earlier in Figure 1

(Section 2). Using the scheme described in the previous paragraph, this

specification will be extended with the following modules (apart from the

module Equations given earlier):

module EQ-Booleans

exports

context-free syntax

BOOL’r = “BOOL + EQ

imports Equations

module EQ-Naturals

exports

context-free syntax

NAT” = “NAT + EQ

imports EQ-Booleans

An equation like O < SUCC(0) = SUCC(0) < SUCC(SUCC(0)) that could legally

appear in module Naturals, can be parsed using EQ-Naturals. More interest-

ingly, an equation like true = SUCC(0) would be syntactically incorrect.

5. LOOKING INSIDE GSE

The Generic Syntax-directed Editor (GsE) is a generic building block providing

the following functionality:

—syntax-directed editing of strings (programs) in a given language L;

—connecting “external tools” operating on the L program in the editor.

As we will see, some of these “external tools” will be derived from the

language definition itself (e.g., type checker, evaluator, code generator).

5.1 Syntax-Directed Editing

GSE aims at integrating text-oriented editing and structure-oriented editing

as smoothly as possible. See [24], [25], and [31] for a detailed description

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 2, Aprd 1993.

190 . Paul Klmt

and Section 8 for some remarks on the relative merits of these two editing

paradigms.

By syntax-directed navigation (or just by pointing) the user can position a

focus on a part of the program being edited. The text outside the focus is

always syntactically correct, but the contents of the focus can be modified by

conventional text-editing operations. The user can move the focus to another

part of the program, with or without parsing the text in the current focus.

When, in the former case, syntax errors are found, the new focus will simply

cover both the old (erroneous) part of the program and the new part the user

wants to move to. In addition, GSE provides commands for the template-driven

creation of program fragments.

Other aspects of GSE worth mentioning are the following:

—Unlike most other syntax-directed editors, GSE does not use pretty print-

ing to recreate the text of programs from its internal-tree representation.

Instead, a two-way mapping is maintained between the text as typed in

by the user and the tree representation. In this way, the user has com-

plete control over the layout of the program (but can of course request to

reformat parts of it), and the well-known problem of pretty printing

comments can be solved in a straightforward manner.

—To support editing in the meta-environment (see Section 6), GSE can

handle the case that modifications are made to the syntax of the input

language L currently in use. After such a modification, it should be

verified that the current program in the editor is still a valid L program.

The naive implementation we currently use is to completely (re)parse the

program.

—The possibility to extend GSE’S user interface to connect external tools as

described below.

5.2 Attaching External Tools to the Editor

The formal definition of a language may contain rules specifying certain

operations on programs such as type checking and evaluation. After compila-

tion of the specification this leads to a number of functions that can operate

on programs. From the viewpoint of the editor these functions form “external

tools,” and the question now arises as to how they can be attached to an

instance of GSE. The following points should be considered (see also Figure

lo):

Activate external tool. Add a button or menu entry to GSE’S standard

user-interface which activates the external tool. Activation of the external

tool takes the form of a possibly parameterized function call. Some external

tools (like, for instance, an incremental type checker) need to be called

implicitly whenever the program in the editor is changed. For this we need

a notion of change propagation, to be discussed in Section 5.5.

Make information available to external tool. Depending on the informa-

tion required by the external tool, information like the focus or the whole

ACM TransactIons on Software Engmeermg and Methodology, Vol. 2, No. 2, Aprd 1993.

A Mets-Environment for Generating Programming Environments . 191

1 1,1 I
T I Mod IGrains I MM Syntax-changed I

-i

e
Generic Syntax-directed Editor

x

t External Tools Chamzes

Fig. 10. Generic Syntax-directed Editor (GsE) with Its parameters.

program in the current (or another named) GSE instance can be passed as

parameters.

Retrieve results of the external tool. There are several possible destinations

for the output of the external tool such as the focus or the whole program

in the current or another, named or a newly created, GSE instance.

The essential design decision here is that the form of the input and output

data of the external tool will be defined in ASF + SDF and that they are

therefore treated as “input language” and “output language” of the external

tool.

5.3 Customization

Having identified the need to add external tools to GSE’S syntax-directed user

interface, the question now arises how to describe such customizations.

A first approach we tried was to define a collection of built-in data types for

describing the user interface and add these in the form of a library of modules

to ASF + SDF. However, the number of new notions required as well as the

interfacing problems involved led us to the conclusion that we could better

design a little, special-purpose, language.

We have developed such a language and have called it SEAL [23], which

stands for Semantics-directed Environment Adaptation Language. Its main

purpose is to “seal” together the user interface and semantic functions

described in the language definition. A SEAL script describes which user

interface elements should be added to which editor. For instance, the typical

definition of a button contains the following information:

—A name used as label to identify the button in the user interface.

—Enabling conditions determining when the button can be activated or

not. Enabling conditions may be purely syntactic (e.g., the focus is cur-

rently positioned at a statement) but may also be semantic in nature (e.g.,

the focus is currently positioned at a type-incorrect expression). In the

latter case, arbitrary functions may be called to compute the enabling

condition.

ACM TransactIons on Software Engineering and Methodology, Vol. 2, No. 2, April 1993.

192 . Paul Klint

—Actions to be performed when the button is activated by the user. Actions

can be composed of the following primitives:

—focus expressions, to extract and replace subterms from the current (or

a named other) editor instance;

—application of functions as described in the language definition;

—creation of new editors or dialogues.

As a result, the specification writer can fully control when the button maybe

activated, fiow it collects input parameters for calling some function defined

in the specification, and how and where it leaves the result of this function.

This scheme allows the description of buttons like a “type check button” that

presents a list of error messages in a new window, or a “transformation

button” that performs a local transformation on the expression currently in

focus.

In the next section, we give some typical examples how SEAL can be used to

customize generated environments.

5.4 Using GSE as a Building Block

Typical examples of the use of GSE and SEAL are shown in Figures 11 and 12.

In Figure 11, the language definition consists of a single module M, and we

construct an environment for editing and evaluating terms in M. The “exter-

nal tool” connected to GSE rewrites the current tree using the equations from

module M. This connection is established by the following SEAL description:

button reduce

{
root := M : root

}

First of all, a button labeled reduce is added to GSE’S user interface. When

pressing this button the following happens:

—Using the select function of the Module Manager, module M is selected as

current module (this is described by “M :“).

—Using the rewrke function of the Module Manager, the whole tree in the

current editor is reduced using the equations in module M (“M : root”).

The whole tree in the current editor is replaced by the result of this

reduction (“root : = M : root”).

In Figure 12, the language definition consists of three modules: L-SYN

(defining the syntax of language L), L-TC (defining the type checking

of L-programs; L-TC imports L-SYN), and L-EV (defining the evalua-

tion of L-programs; it also imports L-SYN). In this case, we construct an

environment for editing, type checking, and evaluating L-programs. The

buttons check and execute are implemented using the functions tc and eval

defined in, respectively, L-TC and L-EV. When pressing, for instance, the

check button, the following happens:

—In the context of module L-TC, the function tc is applied to the whole

program in the current editor. The result (an expression of sort ERRORS) is

assigned to the variable Errors.

ACM Transactions on Software Engmeer,ng and Methodology, Vol 2, NO 2, Apr]l 1993

A Meta-Environment for Generating Programming Environments . 193

Environment Generator

Language Defirutlon

t

!
1
I
1

Lfeta-environment

1!.! I Generated Environment

+ +
T Mod] Grams I MM~ Syntax-changed

Program e

(text)- x
Generic Syntax-chrected Editor

t External Tools Changes

t

Ibutton reduce I

‘{
root := M : root 1

:}

Fig. 11. Generated environment for evaluating terms.

A new GSE instance is created with the title Type Checking Errors and as

contents the value of the variable Errors.

The overall effect is thus that on pressing the check button, a new window

pops up containing error messages. This example illustrates the point that

the output of each tool is considered to be an expression in some “language,”

in this case the language described by the sort ERRORS.

5.5 Propagating Changes

GSE is parametrized with a function Changes that communicates changes to

the attached tools. In principle, there are two possibilities for choosing the

granularity of this communication:

—Call Changes after each modification to the program.

—Call Changes only after modifications that exceed certain “grain sizes” that

are given as a parameter of the editor.

In the first case, Changes has to infer whether additional actions are needed,

whereas in the second case this can be done by the editor in a more generic

way.
In general, there will be a mismatch between the size of a change made

during editing and the size of the changes the external tool can cope with. For

instance, if the external tool can handle changes of the size of statements

(in the context of editing some programming language) how do we process

ACM TransactIons on Software Engineering and Methodology, Vol 2, No. 2, Aprd 1993

194 Paul Klint

Language Definition Envmonment GeneratoI

L-SYN 7

L-TC . n

1
L-EV 4 1

i
1

1

I Met a- envmonment

Generated Environment
L-SYN :

t i
T Mod]Grams\ MM Syntax-changed

Program e

(text }1 x
Generic Syntax-dmected Echtor

,/
t External Tools Changes

button check button execute

{ {

Errors := L-TC : tc(root); Results := L-EV : eval(root);

create(’’Typechecklng Errors”, create(’’Results Execution”,

Errors) Results)

1} 1}

Fig. 12. Generated environment fortype-checking/evaluatlngL-pro~ams

changes to parts ofa statement such as the conditioning an instatement? The

approach we have chosen is to determine the smallest grain enclosing a

modification automatically and call the external tool for it. Modifications to

program fragments that are larger than the grains provided by the external

tool are processed by calculating the difference between the old and the new

fragment and calling the external tool for a minimal number of grains that

cover the difference. See [18, chapter 7] for a complete description of the

algorithm performing these grain calculations.

In the current version of GSE, definitions of grain sizes are used internally

in the implementation to optimize the incremental behavior of the compo-

nents of the meta-environment itself. They are, however, not yet available to

the language designer. As a result, the standard way of propagating changes

is to call the external tool after each modification of the program.

6. EDITING IN THE META-ENVIRONMENT

How can we use generated editing environments to edit ASF + SDF specifi-

cations? To answer this question we have to define the complete syntax of

ASF + SDF specifications. This can be done in the following way:

To each specification we add, implicitly, a fixed module called SDF, which

defines the syntax of the SDF part of each module,

ACM TransactIons on Software Engmeermg and Methodology, Vol 2, No 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 195

—To each specification we add the module Equations defining the syntax of

equations as described in Section 4.

—To each module M, we add a module EQ-M,, defining the contributions of

module M, to the syntax of equations.

Editing a module M, in the specification now amounts to creating two editors:

one for the SDF part of the module (GSE ~, which uses the fixed module SDF as

grammar definition) and one for the equations part (GSE ~, which uses the

generated module EQ-M, as grammar definition). This is shown in Figure 13.

Some comments on this figure are appropriate:

—The grain size for the processing of changes to the SDF part is determined

by a list of sorts given to GSE ~. This list contains a sort name for each

entity for which the Syntax Manager provides add/delete operations.

—The Changes function associated with GSE~ will use the Syntax Manager

for actually performing the changes to the SDF part of a module. It will also

call Syntax changed of GSE ~ after each modification to the SDF part of the

module.

—The grain size for GSE~ is determined by a list only containing the sort EQ,

i.e., only changes at the level of complete equations are considered as

changes. This corresponds precisely to the add/delete operations provided

by the Equation Manager.

—The Changes function associated with GSE~ will use the Equation Manager

for actually performing the changes to the equations apart of the module.

—We have left unspecified which operations are performed on, respectively,

the SDF part and the equations part of the module. Typical examples are

type checking and compiling.

7. IMPLEMENTATION TECHNIQUES

In Section 3.1 we have presented an implementation model for modular

specifications in which all “rules” appearing in modules are collected in one

global set together with a mechanism to select individual rules from this set.

Finding an efficient implementation method for this model is, of course,

essential. Although a general framework for describing such a method is

still lacking, two experiments have been performed and documented that

demonstrate the feasibility of the approach.

One experiment [22] concerns the case that the rules in each module

are regular expressions to be compiled into a deterministic finite automaton.

The key idea is to construct a single automaton for all regular expressions

in all modules. The selection operation that enables or disables certain

regular expressions is implemented by enabling or disabling the correspond-

ing transitions in the automaton. The resulting Modular Scanner Generator

uses techniques for lazy and incremental program generation [15, 16]: parts

of the finite automaton are only constructed when they are needed, and most

parts not affected by the addition or deletion of a regular expression will be

reused. In the same spirit, the enabling or disabling of transitions is only

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No. 2, April 1993.

196 . Paul Klint

Fixed hfodules

M

SDF

Equations

In I/-’ I 7
Il”ntt’
Iul II ‘--l
I J I 1

Generated hfodules

G

EQ-M,

EQ-Mn

!

1 Mets-environment

<.. Generated En\lronment
---- .— __ -

‘. ---- ---- _
SDF ‘.

Module K
-1-.

w I

T hfod I Grams] Mhl S}ntax-changed ;
,

SDF part —
e

Gener]c Syntax- d]rected Editor GSEl ;
x I
t External Tools Changes :

~._- 1-------1 ---- ‘J

I L

EQ-M, I ~[EQ] :
Syntak ,Manager

1
T Mod I Gra]nsl MM Syntax-changed

Equations — e Generic Syntax-chrected Editor GSE2
x

t External Tools Changes

Equat]on Llanager

Fig 13 Editing language definition module M,

done when needed. In [33], an experiment is described that uses finite

automata for the matching of left-hand sides of rules and applies selection

techniques similar to the ones described here.

The other experiment [26] concerns modular context-free grammars, and

the “rules” to be considered are syntax rules. Key idea is, again, to construct

a single parse table for all syntax rules in all modules and to implement

the enabling or disabling of a syntax rule by enabling or disabling the

corresponding transitions in the parse table. The resulting Modular Parser

ACM Transactions on Software Engmeerlng and Methodology, Vol. 2, No. 2, Aprd 1993

A Meta-Environment for Generating Programming Environments . 197

Generator also uses lazy and incremental techniques and extends the notion

of incremental parser generation described in [17].

Measurements show that in the above cases the selection operation is very

fast and that the overall performance of the generated programs is hardly

influenced by the introduction of a selection mechanism for individual rules.

We have therefore concluded that an efficient implementation along the

lines of our model exists, and we have based the implementation of our

whole system on it. Experience with the system confirms the above initial

observations.

8. CONCLUDING REMARKS

8.1 Current State of the Implementation

The meta-environment for generating programming environments as pre-

sented in this paper has been completely implemented. It supports the

interactive development of As~ + SDF specifications by providing syntax-

directed editing of specifications and immediate translation of modifications

made to the AsF + SDF specification to modifications in the programming

environment generated for it. The generated environment is immedi-

ately available and can be used for experimentation. The current meta-

environment consists of the following parts:

—A Module Manager consisting of a nucleus providing the operations as

described in this paper, except that the current implementation does not

yet support renaming and parameterization of modules. On top of this

nucleus, a simple user interface has been built yielding an interactive

development environment for language definitions written in ASF + SDF.

—A Syntax Manager based on the Modular Scanner Generator and Modular

Parser Generator discussed in the previous section.

—An Equation Manager that does a certain amount of preprocessing on

the equations but is essentially an interpreter of conditional rewrite

rules. Its speed is in the order of 1,000 rewriting steps per second on a

SparcStation 2.

—The Generic Syntax-directed Editor: It supports integrated text-oriented

and structure-oriented editing, but does not yet provide the complete

functionality as described in Section 5. In particular, the determination of

the grain size is currently implemented as part of the Module Manager and

is only available for built-in components of the meta-environment.

—A first implementation of SEAL has been completed. It supports user-defined

enabling\ disabling conditions for buttons and menu entries, navigation

commands, and primitives for creating interactive dialogues.

8.2 Work in Progress

In GSE we have tried to integrate text-oriented and structure-oriented editing

as much as possible. However, we have not invested in the implementation of

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No 2, Aprd 1993

198 . Paul Klint

yet another text editor. Our experience now shows that the limited amount

of text-editing primitives we provide makes GSE a less-than-convenient edi-

tor. This leads us to the conclusion that structure-oriented editing should be

seen as a complement rather than as a replacement of a good text editor. To

validate this observation, we are now removing all text-editing primitives

from GSE and will start using Emacs as a “text-editing server” instead.

Although GSE is not based on pretty printing, we still need it for the

on-demand reformatting of programs and for printing new values resulting

from evaluation. In the current system, a fixed pretty printer is derived

automatically from the grammar rules in the specification. This “built-in”

solution is not always appropriate and will have to be extended to satisfy all

formatting needs.

Using techniques described in [28], we are now able to derive incremental

implementations from ASF + SDF specifications. The implementation of incre-

mental functions is currently being optimized and will soon be integrated in

the meta-environment.

An Equation Compiler is near completion that compiles conditional

equations to C programs. Initial measurements indicate a speedup factor of

50– 150 over the current, already quite fast, Equation Manager. This opens

the perspective that compiled ASF + SDF specifications run at a speed

comparable to that of C programs.

A notion of “origins” has been defined [30] that establishes a relation

between terms as they appear during rewriting and the initial term. A first

implementation of origins exists, which will be integrated into the system in

order to provide a uniform mechanism for relating error messages to source

code, for debugging, and for animation of execution.

We plan to describe and generate all user interface components of the

meta-environment by means of SEAL scripts.

8.3 Discussion

A full evaluation of the ASF + SDF meta-environment has to wait until

further extensions and optimizations of its implementation have been com-

pleted and until more extensive experience with its use has been gathered.

Nevertheless, some remarks on the design are in order.

8,3.1 Problems and Open Questions

—Modular decomposition of language definitions could, in principle, lead to

libraries of reusable language definition modules. Unfortunately, our expe-

rience so far indicates that we need very expressive operations for module

composition to reflect the trivial and detailed differences in syntax and

semantics of “similar” notions in different languages. This is clearly an

area for further research.

—The system proposed here will be faced with a serious version management

problem: after changing a language definition there may still be programs

around that conform to the old definition.

—It is not yet clear whether the proposed implementation model based on

selection will scale up to industrial-size applications.

ACM TransactIons on Software Engmeermg and Methodology, Vol 2, No 2, April 1993

A Mets-Environmentfor Generating Programming Environments . 199

—Not much experience exists with the use of specification formalisms

with user-definable syntax. In principle, freedom of notation seems to be a

desirable property, but it may very well turn out that this freedom has to

be controlled in some way for the sake of readability and reusability of

specifications.

—Experience with a specialized equation grammar as discussed in Section

4.1 reveals that this method works satisfactorily, but that it introduces

additional requirements for the error-reporting capabilities of the parser

since type errors in equations will be reported as syntax errors.

8.3.2 Merits of the As~ + SD~ Mets-environrnent. The system is so inter-

active and responsive that users are completely unaware of the fact that each

modification they make to their language definition has major impacts on the

generated implementation. For instance, the presence of a parser generator is

completely invisible to the user. As a result, the system is also accessible to

“naive” users who have no previous experience with the use of tools like

scanner and parser generators. Important factors are: (1) the abstract syntax

and the pretty printer for the language are derived automatically from the

language definition; (2) after parsing, abstract syntax trees are built auto-

matically; (3) the generated scanner, parser, tree constructor, and rewrite

system are interfaced automatically. To summarize, several parts of the

generated implementation are derived from the language definition, and

the system takes care of the interfacing of all the components of the

generated environment.

The generality of the syntax definition mechanism provided by the formal-

ism ASF + SDF together with the new, but well-understood, techniques used

for their implementation form an improvement over the syntax definition

facilities in comparable systems [9, 32].

The use of two coupled instances of GSE for editing languages definitions

in the meta-environment is an interesting case of reusing existing compon-

ents. As a result, both the meta-environment and generated environments

will benefit from future improvements in GSE.

The similarity between the meta-environment and generated environ-

ments leads to a situation where features considered desirable in the meta-

environment may have unexpected applications in generated environments

(and vice versa). This may lead to interesting generalizations.

ACKNOWLEDGMENTS

Constructing a programming environment based on language definitions is a

common, long-term, goal shared with Jan Heering. We have had numerous

discussions about the desirability, implications, and possible realization

of such a system. The specific design and implementation of the meta-

environment presented here has emerged from numerous discussions with

Huub Bakker (user interfaces, GSE-Emacs coupling), Jan Bergstra (AsF), Arie

van Deursen (origins, Module Manager, error reporting), Nick van Diepen,

Casper Dik (Equation Manager), Hans van Dijk (Generic Syntax-directed

ACM Transactions on Software Engmeermg and Methodology, Vol. 2, No. 2, Aprd 1993.

200 . Paul Klint

Editor), Jan Heering (general design, ASF, SDF), Paul Hendriks (AsF, SDF,

Module Manager), Jasper Kamper-man (Equation Compiler), Wilco Koorn

(Generic Syntax-directed Editor, SEAL), Monique Logger (Generic Syntax-

directed Editor), Emma van der Meulen (incremental evaluation), Jan Rekers

(SDF, Syntax Manager), Frank Tip (Equation Debugger, origins), Ard Verhoog,

and Pum Walters (Equation Manager, Equation Compiler’).

Last but not least, comments made by users of the ASF + SDF meta-

environment have led to several improvements in the system. Jan Heering,

Paul Hendriks, Wilco Koorn, and Emma van der Meulen commented on

drafts of this paper.

REFERENCES

1

2.

3.

4.

5

6.

7’.

8.

9.

10

11.

12.

13.

14

15.

16.

17.

18

B.AHI.KE, R , AND SNELTING, G, The PSG system. From formal language defimtlons to

interactive programming environments ACM Trans Program Lang. Syst. 8, 4 (1986),

547-576.

BAM.ANCE, R. A., GRAHAM, S, L,, AND VAN DE VANTER, M, L, The Pan language-based editing

system ACM Trans Softu, Eng Mefh 1, 1 (1992), 95–127,

BERC%TRA, J. A., HEERIN&, J,, AND KLINT, P., EDS, Algebralc Speclflcatmn ACM Press

Frontier Series, New York, 1989.

BoRRAs, P , CLfiMENT, D., DESPEYROUX, T , INrERPI, J , KAHN, G , LANG, B., .AND PASCUAL. V.

Centaur: The system, In the .3rd Annual Symposzum on Software Delebpment Enulronments

(SIGSOFT’88) (Boston, 1988). ACM, New York.

DESP~YROUX, T Executable specification of static semantics In Semanttcs of Data Types,

vol. 173. Lecture Notes in Computer Science Springer-Verlag, New York. 1984, 215–233

DONZE.AU-GOUGIL V,, HUET, G., KMN, G,, AND LANG, B. Programmmg environments based

on structured editors the Mentor experience In Interactzce Programming Enuzronments.

McGraw-Hall, New York, 1984, 128-140.

ENnR~s, R., AND SCHNEIDER, M. The GRASPIN software engineering environment, In

ESPRIT ’88 Puttzng the Technology to lTse. North-Holland, Amsterdam, 1988, 349-364,

ESPRIT (An overview of GenesIs. Project 1222 (GENESIS), 1987 Deliverable 12Y3

FtJTATSUGI, K , GOGUEN, J. A., JOUANNAUD, J.-P., AND MESEGUER, J, Principles of 0BJ2, In

Conference Record of the 12th Annual ACM Symposmm on PrmcLple~ of Programmmg

Languages. ACM, New York, 52-66.

HA~ERMANN, A. N., AND NOTKIN, D. GandalE Software development envn-onments. IEEE

Trans Softw Eng 12, 12 (1986), 1117-1127

HEERING, J. Een program meeromgevmg gebaseerd op taaldetlnities In Co[loqw urn Pro-

gram meeromgeuzngen, vol. 30. Mathematical Centre Syllabus, 1983, 69-81. In Dutch.

HEERTNG, J., AND KLINT, P. Towards monohngua] programming envmonments. ACM Trans.

Program. Lang Syst. 7, 2 (1985), 183-213.

HEERING, J,, HENDRIKS, P. R. H., KLINT, P., AND REKERS, J, The syntax definition formalism

SDF—reference manual. SIGPLAN Not. 24, 11(1989), 43-75.

HEERING, J., KAHN, G., KMNT, P., AND LANG, B Generation of interactive programming

environments. In ESPRIT ’85: Status Report of Contznuzng Work North-Holland, Amster-

dam, 1986, 467-477.

HEERING, J., KLINT, P,, AND REKERS, J. Incremental generation of lexlcal scanners. ACM

Trans. Program. Lang. Syst. 14, 4 (Oct. 1992), 471-520

HEERING, J., KLINT, P., AND REKERS, J. Lazy and incremental program generation. ACM

Trans. Program. Lang. Sydt. To be published.

HKERING, J , KLINT, P., AND REKERS, J. Incremental generation of parsers. IEEE Trans.

Softw. Eng. 16, 2 (1990), 1344-1351.

HIZNDRIKS, P. R. H. Implementation of modular algebraic speclticatlons. Ph.D. thesis,

Umversity of Amsterdam, 1991.

ACM Transactmns on Software Engmeermg and Methodology, Vol 2, No 2. Aprd 1993

A Meta-Environment for Generahng Programming Environments . 201

19. HENI)RIKS, P, Ft. H. Lists and associative functions in algebraic specifications-semantics

and Implementation. Rep. CS-R8908, Centrum voor Wiskunde en Informatlca (CWI), Ams-

terdam, 1989

20. KAHN, G, Naiural semantics. In the .lth Annual Symposz urn on Theoretical Aspects of

Computer Sczence, vol. 247. Lecture Notes in Computer Science. Springer-VerIag, New York,

1987, 22-39.

21. KAHN, G., LANG, B., MELhSE, B,, AND MORCOS, E, Metal: A formalism to specify formalisms

Sc~. Comput. Program. 3, 2 (1983), 151-188.

22. KLINT, P, Lazy scanner generation for modular regular grammars. Tech. Rep. CS-R9158,

Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1991.

23 KOORN, J. W. C. Connecting semantic tools to a syntax-directed user-interface. Tech. Rep.,

Programmmg Research Group, University of Amsterdam, 1992.

24. KOORN, J. W. C. GSE: A generic text and structure editor. Rep. P9202, University of

Amsterdam, 1992.

25. LOGGER, M. H. An integrated text and syntax-directed editor Rep. CS-R8820, Centrum

voor Wlskunde en Informatica (CWI), Amsterdam, 1988.

26 REKERS, J Modular parser generation. Rep. CS-R8933, Centrum voor Wlskunde en Infor-

matica (CWI), Amsterdam, 1989,

27. RER,, T., AND T’AITELBNJM, T. The Synt?leszzer Generator. A System for C“onstrz~ctmg

Language-Based Edztors. Springer-Verlag, New York, 1989.

28. VAN DER MEULI+N, E. A. Deriving incremental implementations from algebraic specifica-

tions. Rep. CS-R9072, Centrum voor Wmkunde en Informatica (CWI), Amsterdam, 1990

29. V.&iv DkIR MEUL~N, E. A. Algebra]c specification of a compiler for a language with pointers.

Rep. CS-R8848, Centrum voor Wiskunde en Infomatica (CWI), Amsterdam, 1988.

30. VAN DWRSEN, A., KLINT, P,, mn TIP, !?, Orlgcn tracking. Rep. CS-R9230, Centrum voor

Wiskunde en Informatlca (CWI), Amsterdam, 1992.

31. VAN DIJK, M. H. H., .AND KOORN, J. W. C. GSE, a generic syntax-du-ected editor. Rep.

CS-R9045, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1990.

32 VOISIN, F. CIGALE: A tool for mteractlve grammar construction and expression parsing.

SCZ. Comput. Program. 7, 1 (1986), 61-86

33. WALTERS, H. I1 On equal terms, implementing algebraic specifications. Ph.D. thesis,

University of Amsterdam, 1991.

Received December 1991; revised July and November 1992; accepted November 1992

ACM TransactIons on Software Engmeermg and Methodology, Vol 2, No 2, April 1993.

