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ABSTRACT

This paper proposes a novel bio-inspired termite queen algorithm (TQA) to solve optimization
problems by simulating the division of labor in termite populations under a queen’s rule. TQA is
benchmarked on a set of 23 functions to test its performance at solving global optimization problems,
and applied to six real-world engineering design problems to verify its reliability and effectiveness.
Comparative simulation studies with other algorithms are conducted, fromwhose results it is observed
that TQA satisfactorily solves global optimization problems and engineering design problems.

1. Introduction
Optimization is common in practical problems such as

scheduling (Cai et al., 2020), feature selection (Hancer,
2020), engineering design (Zhang et al., 2019), image seg-
mentation (Elaziz et al., 2021), and DNA sequence de-
sign (Cao et al., 2020; Wu et al., 2021; Yin et al., 2021),
whose traditional solutions often incur a considerable com-
putational cost. Therefore, the metaheuristic algorithm with
lower computational cost has become a hot research topic.
These explore feasible domains by random search in early
iterations and develop feasible solutions using local search in
later iterations. The optimal solution is iteratively updated by
evaluating the adaptation values of individual populations.
However, according to the theorem of no free lunches (NFL),
no algorithm can well solve every optimization problem
(Wolpert and Macready, 1997). Therefore, it is still of great
practical significance to study metaheuristic algorithms for
specific problems.

Metaheuristic algorithms can be classified as either
evolution-, swarm-, physics-, or human-behavior-based. Evo-
lution-based algorithms draw on genetic knowledge that
offspring inherit certain traits from their parents. Elements
in two solutions are typically exchanged to produce new
solutions. Representative algorithms include differential
evolution (DE) (Storn and Price, 1997), evolutionary pro-
gramming (EP) (Yao et al., 1999), evolutionary strategies
(ESs) (Amoretti, 2014), genetic algorithms (GAs) (Holland,
1992), and genetic programming (GP) (Koza, 1990).

Swarm-based algorithms are generally inspired by an-
imal behavior, with the most representative being particle
swarm optimization (PSO) (Eberhart and Kennedy, 1995),
as developed by Eberhart and Kennedy, inspired by the
foraging behavior of birds and fish. New solutions are often
produced through the guidance of the current optimal solu-
tion. As the largest branch of metaheuristic algorithms, these
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include the artificial bee colony (ABC) (Karaboga and Bas-
turk, 2007), ant colony optimization (ACO) (Colorni et al.,
1991), barnacle mating optimizer (BMO) (Sulaiman et al.,
2020), black widow optimization (BWO) (Hayyolalam and
Kazem, 2020), dragonfly algorithm (DA) (Mirjalili, 2016a),
grasshopper optimization algorithm (GOA) (Saremi et al.,
2017), Harris hawk optimization (HHO) (Heidari et al.,
2019), marine predator algorithm (MPA) (Faramarzi et al.,
2020b), manta ray foraging optimization (MRFO) (Zhao
et al., 2020), satin bowerbird optimizer (SBO) (Moosavi and
Bardsiri, 2017), and sailfish optimizer (SFO) (Shadravan
et al., 2019).

Physics-based algorithms mimic physical rules or math-
ematical formulas, inspired by physical phenomena or math-
ematical models. For example, the gravitational search al-
gorithm (GSA) (Rashedi et al., 2009) mimics Newton’s law
of gravity; the lightning search algorithm (LSA) (Shareef
et al., 2015) was inspired by the natural phenomenon of
lightning and the mechanism of stepped leader propagation;
multiverse optimization (MVO) (Mirjalili et al., 2016) draws
on the concept of white holes, black holes, and wormholes in
cosmology; and Yin-Yang-pair optimization (YYPO) (Pun-
nathanam and Kotecha, 2016) embodies the traditional Chi-
nese dichotomous philosophy called Yin and Yang.

Human-behavior-based algorithms imitate human learn-
ing and social and competitive behavior and often reflect
the psychological and physiological activities of humans in
specific contexts. For example, the Fibonacci indicator al-
gorithm (FIA) (Etminaniesfahani et al., 2018) is inspired by
the Fibonacci index in the stock market, the harmony search
algorithm (HSA) (Lee and Geem, 2005) imitates the process
of jazz musicians’ impromptu creation of beautiful music,
the political optimizer (PO) (Askari et al., 2020) imitates
the election campaigns of politicians, student psychology-
based optimization (SPBO) (Das et al., 2020) is inspired by
students’ psychological activities in pursuit of high scores,
learning-based optimization (TLBO) (Rao et al., 2011) imi-
tates the behavior of classroom teaching, and the volleyball
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premier league algorithm (VPA) (Moghdani and Salimi-
fard, 2018) imitates the competition of teams in volleyball
matches.

In addition to the original algorithms mentioned above,
there is a large body of literature in which excellent re-
search work has been done on algorithm improvement and
application. For example, Leboucher integrated the ideas of
game theory into the particle swarm algorithm, which has
greatly improved population diversity and the exploration
ability of the algorithm (Leboucher et al., 2018). Ghoumari
proposed a maximum a posteriori principle to decide the
best update strategy within a certain stage, and integrated
it into evolutionary algorithm to enable learning (Ghoumari
et al., 2018). Bojan Dragos utilized the GWO to adjust the
parameters and rules of type-1 and type-2 fuzzy controllers
to improve the performance of the control system (Bojan-
Dragos et al., 2021). Precup successfully applied SMA to
the optimization and tuning of interval type-2 fuzzy con-
trollers, where the objective function is the sum of time
multiplied by the square of the control error (Precup et al.,
2021). Zamfirache presented an optimal control scheme for
reference trace control using GSA combined with popular
deep Q-learning of DRL variants (Zamfirache et al., 2022).
However, no matter what kind of meta-heuristic algorithm
is used to solve what kind of optimization problem, the
biggest difficulty is to balance the exploration behavior and
exploitation behavior of the algorithm in the process of solv-
ing the problem. Most explore first and exploit later, seeking
the optimal solution neighborhood in early iterations, and
exploiting it in later iterations to find the optimum. In reality,
this often leads to partial optimization. The proposed TQA
divides search agents into different identities to explore and
exploit concurrently throughout iterations. Most optimiza-
tion algorithms mimic a single behavior. An example is
foraging, in which case food location indicates the optimal
solution. TQAmodels the behavior of entire populations and
presents the current most powerful individual location as
the optimal solution. The validity of TQA is verified and
evaluated through 23 mathematical test functions and six
real-world engineering design problems, and experimental
results show that it performs more satisfactorily than the
most advanced algorithms in solving global optimization
problems and engineering design problems.

The rest of this paper is organized as follows: Section
2 discusses the inspiration and model of TQA. Tests on
benchmark functions and engineering design problems are
described in sections 3 and 4, respectively. Section 5 relates
our conclusions.

2. Termite queen algorithm
2.1. Inspiration

The termite is a widely distributed completely social
insect, distributed across two-thirds of the earth’s land area,
concentrated in tropical and subtropical regions. Termites
have a division of labor including a queen, workers, and
soldiers. The queen lays eggs in the nest all her life; workers
find food, serve the queen, and repair the nest; and soldiers

with huge jaws keep the group safe. Termites with different
identities are shown in Figure 1.

Figure 1: Termite family

For the continuation of the group, termite populations
exhibit the behavior of marriage flight. From April through
June each year, a large number of termites grow their wings
under the chemical instructions of the queen, flying out
of their nest in search of a new one. This behavior ex-
pands termite territory and avoids inbreeding, which can
produce weak individuals. Inspired by the division of labor
and marriage flight of termites, we have developed a new
metaheuristic algorithm.

2.2. Local mapping principle and local mapping
initialization

We propose a local mapping principle to transform a
point to an area in multidimensional space. The idea is to
determine which part of the divided area the point belongs
to by its relative position in each dimension, as follows.

Step 1: Calculate the midpoint of each dimension, the
formula can be found in (1):

Centerj =
ubj + lbj

2
(1)

where ubj and lbj represent the upper and lower bounds,
respectively, of the j-th dimension; and Centerj represents
its midpoint.

Step 2: Calculate the local index for each dimension, the
formula can be found in (2):

localj =
{

1, Centerj ≤ xj ≤ ubj
−1 lbj ≤ xj ≤ Centerj

(2)

where xj and Localj are the x-coordinate and local index,
respectively of the j-th dimension.

The upper and lower bounds of local mapping initializa-
tion are calculated based on the corresponding local index.
For Localj =1, the upper bound of the coordinates of the
j-th dimension is the upper bound of the whole space, and
the lower bound is themidpoint. The localmapping principle
and local mapping initialization are shown in Figure 2.
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Figure 2: Local mapping, (a) and (b): local mapping principle; (c)
and (d): local mapping initialization

2.3. TQA
2.3.1. Initialization

In TQA, each candidate solution is assumed to be a
termite, whose population can be expressed as (3):

X =
⎡

⎢

⎢

⎣

X1,1 … X1,dim
⋮ ⋱ ⋮

XN,1 … XN,dim

⎤

⎥

⎥

⎦N×dim

(3)

whereN is the number of termites and dim is the number of
dimensions in the search space. The upper and lower bound
vectors of the search space are (4):
{

⃖⃖⃖⃗ub = [ub1, ..., ubdim]
⃖⃖⃗lb = [lb1, ..., lbdim]

(4)

where ⃖⃖⃖⃗ub and ⃖⃖⃗lb respectively represent the upper and lower
bounds of the search space. After initialization, X is evalu-
ated, and the termite with the optimal fitness value is used
as the current optimal solution.

2.3.2. Division
TQA is inspired by the division of labor in termite

populations, which differentiates individuals by identity and
updates their locations in different ways. TQA has five iden-
tities: queen, flying worker, foraging worker, serving worker,
and soldier. The best solution represents the queen, and other
candidate solutions are differentiated by the remaining four
identities in each iteration. The division meets the following
rules:

(1) To ensure a food source, N
2 foraging workers are

maintained in each iteration;
(2) The remaining termites are divided into serving

workers and soldiers in a 4:1 ratio;
(3) If marriage flight occurs, all individuals other than

foraging workers become flying workers.

2.3.2.1. Foraging workers
If F itnessi of the i-th termite is less than the median

fitness, F itnesst, the termite is differentiated as a foraging

worker. Foraging behavior is a back-and-forth movement,
either away from or near the queen. The location of foraging
workers is updated as (5):

⃖⃖⃖⃗Xi = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗T arget × r1 + ⃖⃖⃖⃗Xi × (1 − r1) (5)

where ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗T arget indicating the destination of the current move-
ment, and it is chosen with equal probability between ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX
(the queen position) and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗UBestX (the opposite position of
the queen position). The formula for calculating ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗UBestX
can be found in (6):

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗UBestX = ⃖⃖⃖⃗ub + ⃖⃖⃗lb − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX (6)

and r1 is a random number in [0,1], which is used to control
the search step of foraging workers. When r1 is greater than
0.5, the updated point is closer to ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗T arget. When r1 is less
than 0.5, the updated point is closer to ⃖⃖⃖⃗Xi.

2.3.2.2. Soldiers
A termite with fitness greater than F itnesst is differen-

tiated as a soldier or serving worker with respective prob-
abilities of 20 percent and 80 percent. A soldier exhibits
a surrounding behavior centered on the queen, with its
position updated as (7):

⃖⃖⃖⃗Xi = (2 ⃖⃖⃗xt − ⃖⃖⃖⃗Xi) × r2 + ⃖⃖⃖⃗Xi × (1 − r2)

⃖⃖⃗xt = rand × (⃖⃖⃖⃗ub − ⃖⃖⃗lb) + ⃖⃖⃗lb (7)

where rand and r2 are random numbers in [0,1]. ⃖⃖⃗xt is a
point on the axis of symmetry of the search space. In the
search behavior, we first find the symmetry point of ⃖⃖⃖⃗Xi with
respect to ⃖⃖⃗xt , and then make a search behavior between
the symmetry point and ⃖⃖⃖⃗Xi , in which the search step is
controlled by r2. When r2 is greater than 0.5, the updated
point is closer to the symmetry point When r2 is less than
0.5, the updated point is closer to ⃖⃖⃖⃗Xi.

2.3.2.3. Serving workers
The queen moves her huge body with difficulty, and

serving workers are responsible for helping her eat and clean
her body. The process can be seen as serving workers ap-
proaching the queen from different directions, with positions
updated as (8):

Xi,j =
{

BestXj + c1(bestxj − BestXj)c2, r3 > 0.5
BestXj − c1(bestxj − BestXj)c2, r3 ≤ 0.5

(8)

where ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx is a random point in region s1, which is a
region calculated based on the local mapping principle in
Section2.2 and ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗bestxj is the jth dimension of ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx,
and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestXj is the jth dimension of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX. c1 and c2 control
the exploitation intensity. The sigmoid function, c1, and c2
are calculated as (9)-(11):

Sigmoid(x) = 1
1 + e−x

(9)
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c1 =(1 − (Sigmoid(tan(−
�
2
+ �( t

T
)7)))

1
1000 × (cos(�t

T
) + 1)
(10)

c2 = rand2−c1 (11)

where rand is a random number in [0,1], t and T are
respectively the current and maximum number of iterations.
The conventional decline factor is strictly decreasing, but
in this paper, the product of c1 and c2 is used as a random
decline factor, in which c1 provides decline and c2 provides
randomness. The search behavior is developed with ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX
as the starting point and ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX as the step. When
the product of c1 and c2 is less than 1, the updated point
falls between ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX. When the product of c1 and
c2 is greater than 1, the updated point falls between ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗ubestx
and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX. Where ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗ubestx is the symmetry point of ⃖⃖⃖⃖⃖⃖⃖⃖⃗bestx
with respect to ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗BestX. r3 is a random number in [0,1], which
controls the direction of the search behavior.

2.3.2.4. Flying workers
To fall into local optima is similar in some ways to in-

breeding in termite populations. Termites avoid this through
marriage flight, and TQA incorporates this practice. In mar-
riage flight, a large number of termite flying-workers fly to
a new nest, with their positions updated as (12):

Xi,j =
{

LevyXj + c1(levyxj − LevyXj)c2, r4 > 0.5
LevyXj − c1(levyxj − LevyXj)c2, r4 ≤ 0.5

(12)

where r4 is a random number in [0,1], and c1 and c2 are
determined by (10) and (11), respectively. The update mech-
anisms for (12) and (8) are essentially the same, except
that levyxj , and BestXj in (8) are replaced by levyxj , and
LevyXj , respectively, in (12). Where ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗levyx is a random
point in region s2, which is a region calculated based on the
local mapping principle in Section2.2 and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗levyx. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗levyxj is
the jth dimension of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗levyx, and ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗LevyXj is the jth dimension
of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗LevyX.

Lévy flight is a special random movement (Magdziarz
and Szczotka, 2016) whose steps can be generated by (13):

L(�) =
��Γ(�)sin(��2 )

�s1+�
(s→ ∞), s = U

|V |

1
�

(13)

where V ∼ N(0, 1), U ∼ N(0, �2), and �2 is calculated by
(14):

�2 =
Γ(1 + �)
�Γ( 1+�2 )

×
sin(��2 )

2
�−1
2

(14)

where Γ is the gamma function and � is 1.5. Lévy flight is
updated as (15):

LevyXj = BestXj + sj (15)

Lévy flight random motion is essentially a large-scale
jitter strategy, which helps to increase the exploration ability
of the algorithm and avoid falling into local optima. It is
worth noting that marriage flight rarely occurs, we control
whether a marriage flight occurs by the value of count.
When the ratio ofBestF itnesst toBestF itnesst−1 is greater
than 0.999, where BestF itnesst and BestF itnesst−1 are the
optimal values for iterations t and t-1, respectively, count is
incremented by 1.When count accumulates to 20, amarriage
flight occurs and count is cleared to 0.

Figure 3 shows the pseudocode of TQA. The optimiza-
tion process begins with the creation of a set of random can-
didate solutions. Termites are differentiated through fitness
thresholds and randomness, and their locations are updated
by formulas (5), (7), (8), and (12). In each iteration, the
fitness values of all termites are evaluated, and the individual
with the optimal fitness is the queen. When the optimal
fitness value does not change significantly for a long time,
half the termites will carry out a marriage flight to break
through local optimality. There are six parameters in this
algorithm, which are c1, c2, r1, r2, r3 and r4. Among them,
c1 and c2 are linear decreasing factors, while r1, r2, r3 and
r4 are random numbers in [0,1]. To reduce the complexity,
there is no user parameters in the algorithm.

The Termite Queen Algorithm

Initialization {initialize the termite population 𝑋 ሶ𝑖 (i=1, 2, ..., N) considering 𝑢𝑏 and 𝑙𝑏
define c1 and count

calculate the fitness of each termite

find 𝐵𝑒𝑠𝑡𝑋 and BestFitness}

Main loop while (t < T)

for each termite

divided into four kinds of identity

update all positions according to (5), (7), (8) and (12)

amend the termite based on the 𝑢𝑏 and 𝑙𝑏
end for

update c1 and count
calculate the fitness of each termite

update 𝐵𝑒𝑠𝑡𝑋 and BestFitness
t = t + 1

end while

Figure 3: Pseudocode of TQA

3. Results and discussion
Several sets of tests were conducted to determine the

effectiveness of TQA. First, the performance of TQA was
evaluated using 23 benchmark functions (Mirjalili et al.,
2014), which can be categorized as single-peak (F1–F7),
multi-peak (F8–F13), and composite (F14–F23). A single-
peak function has only one global optimal value, which is
used to evaluate the local exploitation ability of the algo-
rithm, and multi-peak and composite functions with two or
more optimal values are used to evaluate global exploration
ability.

In addition, a large number of excellent meta-heuristic
algorithms are used as comparison algorithms in the tests.
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Tomake a fair comparison, the parameters of all comparison
algorithms are set to the values suggested in the literature.
See Table.1 for specific parameters.

Table 1
Controlling parameters values of the tested algorithms

Algorithms Parameters Values

GWO a ∈ [0, 2]

MFO a ∈ [0, 2]

MVO WEPmax 1
WEPmin 0.2

SCA A 2
r1 ∈ [0, 2]

SSA c1 ∈ (0, 2]

WOA a ∈ [0, 2]
a2 ∈ [ − 1, 2]

EO
a1 2
a2 1
GP 0.5

STOA Cf 2
SA ∈ [0, 2]

TSA Pmax 4
Pmin 1

TQA c1 ∈ [0, 2]

3.1. Qualitative results and discussion
The first set of tests was performed on the 2D of the first

two variables for the benchmark functions to observe the be-
havior of TQA. Figure 4 describes the test functions selected
from three categories, which qualitatively demonstrate the
performance of TQA.

The experiments were conducted withN = 10 termites,
and the maximum number of iterations T = 200. Qualitative
results included the search history, average fitness curve,
and convergence curve. From the search history in Figure
4, it can be seen that the search agents of TQA are well
distributed in the search space, which indicates that TQA
has a satisfactory exploration ability. It is worth noting that
from the search history of F8, TQA has been exploited for a
long time in the lower-left area, but the obtained best value is
in the upper-right corner; this means that TQA successfully
jumped out of the local optimal solution. The ability to
jump out of the local optimum is mainly aided by Levy
flight and restart idea. Some search agents would happen
Levy flights when the best fitness obtained so far has not
changed greatly for a long time, which helps the algorithm
jump out of the local optimal solution to some extent. From
the mean fitness curves in Figure 4, it can be seen that
TQA maintained good population diversity throughout the
iteration. This population diversity results primarily from
division mechanisms and also helps the algorithm jump
out of local optima to some extent. From the convergence
curves in Figure 4, it can be seen that TQA has a fast
convergence speed on all six functions, which indicates that

TQA has a good convergence. The convergence is mainly
supported by the exploitation ability resulting from the local
mapping principle. Hence TQA balances exploitation and
exploration, and solves the problem of partial optimization
to a certain extent.

To further illustrate the convergence of TQA, TQA
was performed on test functions F1–F23 and compared to
nine classic and advanced algorithms: grey wolf optimizer
(GWO) (Mirjalili et al., 2014), moth flame optimization
(MFO) (Mirjalili, 2015), multiverse optimizer (MVO) (Mir-
jalili et al., 2016), sine cosine algorithm (SCA) (Mirjalili,
2016b), salp swarm algorithm (SSA) (Mirjalili et al., 2017),
whale optimization algorithm (WOA) (Mirjalili and Lewis,
2016), equilibrium optimizer (EO) (Faramarzi et al., 2020a),
sooty tern optimization algorithm (STOA) (Dhiman and
Kaur, 2019), and tunicate swarm algorithm (TSA) (Kaur
et al., 2020). For a fair comparison, all algorithms used
the same experimental conditions: population size N=10;
the maximum number of iterations T=100; the number of
dimensions dim=30; and an Intel Core i5-10500with a 3.10-
GHz CPU and 16 GB RAM, programmed using MATLAB
R2020b. The experimental results can be found in Figure 5.
As can be seen from Figure 5, TQA has the best conver-
gence effect and fastest convergence speed on F1- F7 and
F9-13. This shows that TQA has satisfactory convergence
performance on unimodal and multimodal functions. TQA
has a slightly slower convergence speed on F8 and F14-
23. According to the analysis, this may result from the fact
that the search space of the composite function is more
complicated than other functions. It is worth noting that
the slower convergence speed in the composite function can
avoid the algorithm from getting trapped in a local optimum
to some extent.

3.2. Quantitative results and discussion
In the second set of tests, TQA was performed on test

functions F1–F23 and compared to nine classic and ad-
vanced algorithms: grey wolf optimizer (GWO) (Mirjalili
et al., 2014), moth flame optimization (MFO) (Mirjalili,
2015), multiverse optimizer (MVO) (Mirjalili et al., 2016),
sine cosine algorithm (SCA) (Mirjalili, 2016b), salp swarm
algorithm (SSA) (Mirjalili et al., 2017), whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016), equilibrium
optimizer (EO) (Faramarzi et al., 2020a), sooty tern opti-
mization algorithm (STOA) (Dhiman and Kaur, 2019), and
tunicate swarm algorithm (TSA) (Kaur et al., 2020). For a
fair comparison, all algorithms used the same experimental
conditions: population size N=30; the maximum number
of iterations T= 500; the number of dimensions dim=30;
and an Intel Core i5-10500 with a 3.10-GHz CPU and
16 GB RAM, programmed using MATLAB R2020b. Each
algorithm ran 30 times independently, and the mean (Mean)
and standard deviation (Std) were recorded as a basis to
evaluate its performance and robustness.

The experimental results can be found in Table.2-4,
where the best results for each function are bolded. Ac-
cording to Table.2: On one hand, TQA produced the best
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Figure 4: Performance of TQA on unimodal, multimodal, and composite test functions

results on six single-peak functions, and was only slightly
worse than SSA on F6. This indicates that TQA have a
satisfactory exploitation ability. On the other hand, TQAper-
formed well on all unimodal functions, suggesting that the
optimization of single extreme values can be better solved by
TQA. According to Table.3, TQA found the global optimal
value on F8–F11 and obtained the best results on F12 and
F13. This indicates that TQA has satisfactory exploration
ability to better solve optimization problems with multiple
extreme values. According to Table.4, TQA produced the

best results of the comparison algorithms on both F14-23,
TQA achieved optimum values on the multimodal functions
except F15 and F20. To sum up, the good performance and
robustness of TQA in solving all three types of optimization
problems suggest that TQA has generality in solving opti-
mization problems.

Although the superiority of TQA has been demonstrated
by the comparison of averages, a significance test is required
to verify the significant difference between TQA and its
competitors. There are both parametric and nonparametric
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Figure 5: Comparative analysis of convergence

significance tests, but a parametric test must meet the con-
ditions of normality and independence. Therefore, nonpara-
metric tests are generally used to assess the differences be-
tween metaheuristic optimization algorithms(Derrac et al.,
2011).

We used the Wilcoxon test method (Derrac et al., 2011),
whose results can be found in Table.5, to statistically analyze
the comparative results, whereR=,R+, andR− respectively
indicate the number of functions for which TQA is similar to,
worse than, and superior to other algorithms. The Wilcoxon

test uses TQA as a control algorithm. The significance level
of statistical detection was set to 0.05. So, a p-value less
than 0.05, which is bolded, indicates a significant difference
between algorithms. According to the results in Table.5, the
p-values in nine pair of comparisons were all less than 0.05,
indicating that there were obvious differences between TQA
and other nine comparison algorithms. And the number of
the functions in which TQA occupied the dominant position
was more than 78% (18 / 23) in nine pairs of comparisons.
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Table 2
Results and comparison of algorithms on F1–F7 benchmark functions with Dim = 30

Function GWO MFO MVO SCA SSA WOA EO STOA TSA TQA

F1 Mean 1.9562E-27 1.3448E+03 1.1434E+00 9.7521E+00 2.0984E-07 3.2105E-72 1.5728E-40 4.3988E-07 1.0605E-21 0.0000E+00
Std 2.7956E-27 3.4537E+03 3.0478E-01 1.3965E+01 3.8216E-07 1.2602E-71 6.2401E-40 1.2357E-06 1.5708E-21 0.0000E+00

F2 Mean 9.0627E-17 3.3416E+01 9.3185E-01 2.4431E-02 2.5680E+00 3.6782E-51 6.1210E-24 1.1618E-05 1.1899E-13 3.9762E-176
Std 4.5868E-17 1.6635E+01 6.2934E-01 4.1505E-02 1.8681E+00 1.0665E-50 5.5702E-24 8.5255E-06 1.2515E-13 0.0000E+00

F3 Mean 4.2951E-05 2.5267E+04 2.1394E+02 8.5688E+03 1.5343E+03 4.1707E+04 6.4027E-08 1.1994E-01 3.5614E-04 0.0000E+00
Std 1.3474E-04 1.3103E+04 9.4735E+01 5.3325E+03 9.3251E+02 1.6373E+04 2.8118E-07 3.3477E-01 8.5557E-04 0.0000E+00

F4 Mean 7.5946E-07 7.1353E+01 2.0398E+00 3.9145E+01 1.1102E+01 4.6662E+01 3.0488E-10 5.4052E-02 3.3920E-01 1.3088E-173
Std 7.3955E-07 7.1185E+00 6.1462E-01 1.0200E+01 3.6860E+00 2.6534E+01 3.7387E-10 8.0566E-02 7.4562E-01 0.0000E+00

F5 Mean 2.6887E+01 5.3512E+06 6.0042E+02 5.2985E+04 2.1702E+02 2.7977E+01 2.5322E+01 2.8405E+01 2.8736E+01 8.8965E-01
Std 8.3203E-01 2.0289E+07 8.3737E+02 9.6851E+04 3.3875E+02 4.3860E-01 1.6719E-01 4.6580E-01 3.8427E-01 3.1368E+00

F6 Mean 7.9532E-01 1.6608E+03 1.3068E+00 1.9740E+01 1.3179E-07 3.6813E-01 1.0012E-05 2.5604E+00 3.7259E+00 5.2682E-06
Std 4.0530E-01 3.7671E+03 3.5908E-01 3.0238E+01 1.1347E-07 1.7132E-01 8.0897E-06 4.5907E-01 6.1839E-01 4.0589E-06

F7 Mean 2.0165E-03 2.7666E+00 3.4178E-02 1.6134E-01 1.8610E-01 3.3415E-03 1.2837E-03 6.6170E-03 9.4419E-03 1.1069E-04
Std 1.1451E-03 5.4732E+00 1.7503E-02 3.3388E-01 7.7992E-02 4.2141E-03 7.1285E-04 4.4729E-03 3.6333E-03 1.4585E-04

Table 3
Results and comparison of algorithms on F8–13 benchmark functions with Dim = 30

Function GWO MFO MVO SCA SSA WOA EO STOA TSA TQA

F8 Mean -5.8148E+03 -8.2322E+03 -7.8483E+03 -3.7265E+03 -7.6365E+03 -1.1128E+04 -8.9168E+03 -5.0798E+03 -5.9514E+03 -1.2569E+04
Std 8.3653E+02 9.7825E+02 6.4318E+02 3.1245E+02 9.1923E+02 1.5937E+03 6.8890E+02 5.0103E+02 5.3532E+02 6.3522E-06

F9 Mean 2.7226E+00 1.6961E+02 1.3117E+02 4.1630E+01 4.8521E+01 0.0000E+00 3.3166E-02 6.0971E+00 1.8778E+02 0.0000E+00
Std 3.6098E+00 2.6407E+01 2.7533E+01 3.9655E+01 1.4198E+01 0.0000E+00 1.8166E-01 5.0903E+00 4.6939E+01 0.0000E+00

F10 Mean 9.6930E-14 1.3734E+01 1.8635E+00 1.1933E+01 2.5855E+00 4.5593E-15 8.2305E-15 1.9960E+01 1.4727E+00 8.8818E-16
Std 1.9447E-14 7.7487E+00 7.5545E-01 9.2950E+00 8.7928E-01 2.7174E-15 1.5979E-15 1.4713E-03 1.6082E+00 0.0000E+00

F11 Mean 3.1903E-03 2.5021E+01 8.4409E-01 9.8394E-01 1.9761E-02 0.0000E+00 0.0000E+00 4.0537E-02 7.9026E-03 0.0000E+00
Std 8.8711E-03 4.6953E+01 1.0224E-01 3.2306E-01 1.5999E-02 0.0000E+00 0.0000E+00 5.7336E-02 7.9461E-03 0.0000E+00

F12 Mean 4.0046E-02 1.7067E+07 2.4153E+00 5.0273E+04 6.3453E+00 2.4478E-02 6.0473E-07 2.8967E-01 7.1167E+00 8.9470E-08
Std 1.5629E-02 6.4949E+07 1.3898E+00 1.9127E+05 3.0695E+00 2.0836E-02 3.9036E-07 1.6360E-01 4.5914E+00 7.2218E-08

F13 Mean 6.7088E-01 2.7520E+02 1.7198E-01 5.9457E+04 1.5944E+01 4.7197E-01 1.8155E-02 1.9155E+00 3.0472E+00 2.5336E-03
Std 2.1229E-01 1.3504E+03 7.6771E-02 1.3375E+05 1.2467E+01 2.6565E-01 3.5221E-02 1.9481E-01 6.8099E-01 5.4255E-03

Therefore, TQA is significantly better than the other algo-
rithms at solving F1–F23. To sum up, we infer that TQA is a
satisfactory optimization algorithm, with good performance
and robustness at solving global optimization problems.

4. Termite queen algorithm for engineering
problems
TQA was tested on six widely used engineering prob-

lems to verify its ability to solve real-world problems, and
the results were compared with those of algorithms such
as GWO, MVO, SCA, SSA, WOA, STOA, and TSA. For
each problem, the population size was set to N = 50, and
the maximum number of iterations was T = 1000. For the
convenience of calculation, the dimensions solved in the
metaheuristic algorithm corresponded to the variables in
the problem. Constraints were imposed through a penalty
function (Yang, 2010). All experiments were performed on
an Intel Core i5-10500 CPU at 3.10 GHz with 16 GB RAM,
and programmed using MATLAB R2020b. Each algorithm
ran independently 30 times. The optimal and average fit-
ness value, standard deviation, and optimal solution were
recorded, and performance was measured by the optimal and
average fitness values.

4.1. Three-bar truss design problem
The three-bar truss design problem is a classic mini-

mization problem in engineering (Pelusi et al., 2020), whose

structure can be found in Figure 6, and whose model can
be found in (16)-(18). It has buckling, deflection, and stress
constraints. The goal is to reduce or minimize the weight of
the three trusses.

Figure 6: Three-bar truss design problem

Fuction:

minf (x) = (2
√

2x1 + x2) × l (16)
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Table 4
Results and comparison of algorithms on F14–F23 benchmark functions with fixed Dim

Function GWO MFO MVO SCA SSA WOA EO STOA TSA TQA

F14 Mean 4.4644E+00 1.8877E+00 9.9800E-01 1.5961E+00 1.0974E+00 2.6071E+00 9.9800E-01 1.7918E+00 7.4077E+00 9.9800E-01
Std 3.7820E+00 1.6196E+00 3.5200E-11 9.2294E-01 3.0331E-01 2.5095E+00 1.7973E-16 9.5371E-01 4.8491E+00 1.3191E-10

F15 Mean 6.3691E-03 2.2314E-03 4.7620E-03 1.0634E-03 2.8436E-03 7.0010E-04 2.3210E-03 2.3652E-03 8.8125E-03 5.2927E-04
Std 9.3181E-03 4.9372E-03 7.9392E-03 3.7743E-04 5.9459E-03 4.0346E-04 6.1169E-03 4.9015E-03 1.7503E-02 3.0942E-04

F16 Mean -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0264E+00 -1.0316E+00
Std 2.1577E-08 6.7752E-16 3.9331E-07 6.4874E-05 2.9876E-14 5.7301E-10 6.4539E-16 1.3271E-06 1.1989E-02 4.3831E-16

F17 Mean 3.9789E-01 3.9789E-01 3.9789E-01 3.9996E-01 3.9789E-01 3.9789E-01 3.9789E-01 3.9816E-01 3.9792E-01 3.9789E-01
Std 2.0213E-06 0.0000E+00 6.6213E-07 2.4910E-03 2.9859E-14 8.4274E-06 0.0000E+00 3.7851E-04 3.5979E-05 0.0000E+00

F18 Mean 3.0000E+00 3.0000E+00 3.0000E+00 3.0001E+00 3.0000E+00 3.0001E+00 3.0000E+00 3.0000E+00 1.4700E+01 3.0000E+00
Std 3.2849E-05 2.5737E-15 3.3021E-06 1.2389E-04 3.3181E-13 9.9315E-05 6.4407E-16 1.0585E-04 2.5252E+01 5.6763E-15

F19 Mean -3.8621E+00 -3.8628E+00 -3.8628E+00 -3.8544E+00 -3.8628E+00 -3.8545E+00 -3.8628E+00 -3.8556E+00 -3.8624E+00 -3.8628E+00
Std 1.5177E-03 2.7101E-15 6.1616E-06 2.4602E-03 2.8516E-10 1.4880E-02 2.5094E-15 2.2802E-03 1.4168E-03 2.1362E-15

F20 Mean -3.2777E+00 -3.2318E+00 -3.2493E+00 -2.9108E+00 -3.2271E+00 -3.1977E+00 -3.2741E+00 -2.9946E+00 -3.2519E+00 -3.2822E+00
Std 7.8609E-02 6.3071E-02 6.0379E-02 3.3906E-01 5.8674E-02 1.5290E-01 5.9732E-02 3.5689E-01 8.5457E-02 5.7247E-02

F21 Mean -9.2289E+00 -6.9757E+00 -6.4534E+00 -2.2254E+00 -7.9018E+00 -8.1977E+00 -8.4639E+00 -2.3496E+00 -5.4045E+00 -1.0153E+01
Std 2.1362E+00 3.3463E+00 3.0056E+00 1.7588E+00 3.3015E+00 2.8599E+00 2.6827E+00 3.3925E+00 3.3977E+00 4.4050E-14

F22 Mean -1.0401E+01 -8.8396E+00 -7.2070E+00 -3.5079E+00 -8.7598E+00 -7.7343E+00 -9.8260E+00 -4.5271E+00 -6.8235E+00 -1.0403E+01
Std 1.3867E-03 2.9218E+00 3.3569E+00 2.5284E+00 2.8361E+00 3.1723E+00 1.7726E+00 4.1217E+00 3.6301E+00 3.8599E-14

F23 Mean -1.0535E+01 -8.3292E+00 -8.5099E+00 -4.1933E+00 -8.1966E+00 -7.0573E+00 -1.0266E+01 -5.2456E+00 -6.6979E+00 -1.0536E+01
Std 1.1256E-03 3.4561E+00 3.2245E+00 1.8242E+00 3.2062E+00 3.1828E+00 1.4815E+00 4.2821E+00 3.7094E+00 3.8417E-14

Table 5
Wilcoxon statistical test results (control algorithm: TQA)

Comparison R+ R− R= p-value

GWO vs TQA 0 20 3 8.9000E-05
MFO vs TQA 0 19 4 1.3183E-04
MVO vs TQA 0 18 5 1.9644E-04
SCA vs TQA 0 22 1 4.0100E-05
SSA vs TQA 1 18 4 1.8218E-04
WOA vs TQA 0 19 4 1.3183E-04
EO vs TQA 0 18 5 1.9644E-04

STOA vs TQA 0 21 2 5.9570E-05
TSA vs TQA 0 23 0 2.7016E-05

Subject to:

g1(x) =

√

2x1 + x2
(
√

2x21 + 2x1x2)
P − � ≤ 0

g2(x) =
x2

√

2x21 + 2x1x2
P − � ≤ 0

g3(x) =
1

√

2x2 + x1
P − � ≤ 0

0 ≤ xi ≤ 1 , i = 1, 2 (17)

Parameter:

l = 100cm; P = 2kN∕(cm2); � = 2kN∕(cm2) (18)

Table.6 shows the statistical results of each algorithm
for solving this problem, where the best results are shown
in boldface. According to the results, TQA obtained the best
optimal value, and its average value was second only to SSA.

4.2. Gear train design problem
The goal of the gear train design problem (Zhong et al.,

2021) is to reduce or minimize the transmission-specific cost

of the gear train shown in Figure 7. The design variables
are the numbers of gears Na, Nb, Nd , and Nf , expressed
respectively as x1, x2, x3, and x4. The mathematical model
of the problem can be found in (19) and (20).

Figure 7: Gear train design problem

Fuction:

minf (x) = ( 1
6.931

−
x2x3
x1x4

)2 (19)

Subject to:

12 ≤ xi ≤ 60, i = 1, 2, 3, 4 (20)

Table.7 shows the statistical results of each algorithm
at solving the problem, where the best results are bolded,
according to which TQA obtained the best optimal values
and averages.

4.3. I-beam structure design problem
The object of the I-beam structure design problem is to

minimize the vertical deviation of the chemical beam by
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Table 6
Statistical results of the three-bar truss design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 263.896109 263.895975 263.921243 263.895845 263.895908 263.897043 263.896667 263.895843
x1 0.789201 0.788415 0.786924 0.788633 0.788379 0.788115 0.788158 0.788688
x2 0.406765 0.408987 0.413456 0.408366 0.409088 0.409843 0.409718 0.408211

Mean 263.898476 263.897523 264.615867 263.896421 264.148125 267.707187 263.902906 263.897510
Std 2.2593E-03 1.9914E-03 3.4428E+00 1.0091E-03 3.4909E-01 7.6972E+00 5.4784E-03 2.6324E-03

Table 7
Statistical results of gear train design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 1.3466E-16 5.3766E-16 4.5239E-13 2.3485E-23 1.0969E-16 5.1194E-15 5.1194E-15 0.0000E+00
x1 32.840852 40.286228 55.358357 17.967248 60.000000 50.918059 50.918059 32.904544
x2 19.744619 12.126915 17.049617 12.553056 43.283794 13.139311 13.139311 12.044375
x3 13.457697 20.852128 17.213230 12.296074 12.000000 12.000000 12.000000 14.587879
x4 56.079087 43.505092 36.744106 59.542939 60.000000 21.462371 21.462371 37.009774

Mean 5.0122E-13 1.9388E-13 1.2133E-10 1.2999E-20 3.5383E-11 9.0118E-13 9.0118E-13 4.0228E-30
Std 1.9700E-12 2.4629E-13 1.6799E-10 2.7013E-20 6.5390E-11 1.4072E-12 1.4072E-12 1.7077E-29

adjusting parameters ℎ(x1), b(x2), tw(x3), and tf (x4) (Li
et al., 2020) , as shown in Figure 8. Themodel of the problem
can be found in (21) and (22).

Figure 8: I-beam structure design problem

Fuction:

minf (x) = 5000
x3(x1−2x4)

12 +
x2x34
6 + 2x2x4(

x1−x4
2 )2

(21)

Subject to:

g1(x) = 2x2x3 + x3(x1 − 2x4) ≤ 300

g2(x) =
(18x1 × 104)

x3(x1 − 2x4)3 + 2x2x3(4x24 + 3x1(x1 − 2x4))

+
(15x2 × 103)

(x1 − 2x4)x33 + 2x3x
3
2

− 56

10 ≤ x1 ≤ 80; 10 ≤ x2 ≤ 50; 0.9 ≤ x3, x4 ≤ 5 (22)

Table.8 shows the statistical results of each algorithm at
solving the problem, where the best results are bolded, and
which show that TQA obtained the best optimal values and
averages.

4.4. Welded beam design problem
The purpose of this problem is to constrain the deflection

of beam �, buckling load of bar Pc , bending stress �, and
shear stress � to minimize the cost of the welded beam
(Karami et al., 2021). The structure can be found in Figure
9. The variables are weld thickness ℎ (x1), length of bar l
(x2), height t (x3), and thickness of beam b (x4). The model
of the problem can be found in (23)–(25).

Figure 9: Welded beam design problem

Fuction:

minf (x) = 1.10471x21x2 + 0.04811x3x4(14 + x) (23)
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Table 8
Statistical results of the I-beam structure design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 0.013074 0.013074 0.013075 0.013074 0.013074 0.013074 0.013074 0.013074
x1 80.000000 80.000000 80.000000 80.000000 80.000000 80.000000 80.000000 80.000000
x2 50.000000 49.978108 50.000000 49.999996 50.000000 50.000000 50.000000 50.000000
x3 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000 0.900000
x4 2.321788 2.322826 2.321626 2.321792 2.321792 2.321746 2.321792 2.321792

Mean 0.013074 0.013075 0.013097 0.013076 0.013233 0.013076 0.013074 0.013074
Std 2.4346E-07 7.8044E-07 2.0601E-05 4.2743E-06 1.7577E-04 1.3405E-06 3.1784E-07 8.3035E-08

Subject to:

g1(x) = �(x) − �max ≤ 0
g2(x) = �(x) − �max ≤ 0
g3(x) = x1 − x4 ≤ 0
g4(x) = 0.10471x21 + 0.04811x3x4(14 + x) − 5 ≤ 0
g5(x) = 0.125 − x1 ≤ 0
g6(x) = �(x) − �max ≤ 0
g7(x) = P − Pc(x) ≤ 0
0.1 ≤ xi ≤ 2, i = 1, 4; 0.1 ≤ xi ≤ 10, i = 2, 3 (24)

Parameter:

P = 6000 lb; E = 30 × 106 psi; G = 12 × 106 psi;
L = 14 in; �max = 13600 psi; �max = 30000 psi;

�max = 0.25 in; M = P (L +
x2
2
); R =

√

x22
4
+ (

x1 + x3
2

)2;

J = 2(
√

2x1x2(
x22
12
+ (

x1 + x3
2

)2)); �1 =
P

√

2x1 + x2
;

�2 =
MR
J
; �(x) =

√

�21 + 2�1�2 +
x2
2R

�22 ; �(x) =
6PL
x4x23

;

�(x) = 4PL3

Ex33x4
; Pc(x) =

4.013E

√

x23x
6
4

36

L2
(1 −

x3
2L

√

E
4G
)

(25)

Table.9 shows the statistical results of each algorithm
at solving this problem, where the best results are shown
in bold. According to the results, TQA obtained the best
optimal value, and its average value was second only to
GWO.

4.5. Cantilever beam design problem
The structure of this civil engineering problem (Kamboj

et al., 2020), as shown in Figure 10, consists of five hollow
elements, each with a hollow section of equal thickness. The
goal is to reduce or minimize the weight of the cantilever
beam. The thickness of the beam is constant, and the design
variable is the cross-sectional width of the five elements. The
model of this problem can be found in (26) and (27).

Figure 10: Cantilever beam design problem

Fuction:

minf (x) = 0.0624(x1 + x2 + x3 + x4 + x5), xi > 0
(26)

Subject to:

g1(x) =
61
x31
+ 37
x32
+ 19
x33
+ 7
x34
+ 1
x35

≤ 1

0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5 (27)

Table.11 shows the statistical results of each algorithm
at solving the problem, where the best results are shown
in bold. According to the results, TQA obtained the best
optimal values, and its average value was second only to
SSA.

4.6. Speed reducer design problem
This problem is more complex (Sun and othersg, 2021),

involving seven design variables: the face width b(x1), mod-
ule of teeth m(x2), number of teeth in the pinion z(x3),
length of the first shaft between bearings l1(x4), length of
the second shaft between bearings l2(x5), diameter of first
shaft d1(x6), and diameter of second shaft d2(x7). The goal
is to minimize the total weight of the reducer. The structure
can be found in Figure 10, and the mathematical model of
the problem can be found in (28) and (29).
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Table 9
Statistical results of the welded beam design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 1.725534 1.727411 1.773580 1.728225 1.748147 1.727887 1.728294 1.724853
x1 0.205630 0.205555 0.192200 0.204541 0.195522 0.205048 0.204966 0.205729
x2 3.473854 3.466642 3.773926 3.488065 3.712906 3.478242 3.482987 3.470497
x3 9.037218 9.058817 9.190639 9.057766 9.016764 9.057847 9.047889 9.036624
x4 0.205766 0.205667 0.206080 0.205624 0.207104 0.205649 0.205861 0.205730

Mean 1.726783 1.739013 1.858889 1.825995 2.259938 1.737993 1.742316 1.735345
Std 9.6817E-04 1.1024E-02 3.6744E-02 9.7915E-02 6.3604E-01 8.2362E-03 4.9857E-03 2.3349E-02

Table 10
Statistical results of cantilever beam design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 1.339959 1.340007 1.353852 1.339957 1.343234 1.340096 1.340139 1.339957
x1 6.009299 6.034015 5.867151 6.012188 5.909282 6.012432 6.044932 6.013593
x2 5.310425 5.310577 5.162536 5.306727 5.321049 5.330040 5.305516 5.307230
x3 4.494518 4.503953 4.700564 4.496454 4.779510 4.458157 4.438456 4.498556
x4 3.505698 3.492451 3.532458 3.504754 3.487557 3.541110 3.524680 3.502111
x5 2.153756 2.133478 2.433641 2.153553 2.028782 2.134160 2.162995 2.152181

Mean 1.339998 1.340418 1.379948 1.339967 1.430665 1.340710 1.340901 1.339975
Std 2.6519E-05 3.0554E-04 1.6282E-02 7.6428E-06 7.4887E-02 7.5025E-04 4.3682E-04 1.6258E-05

Figure 11: Speed reducer design problem

Fuction:

minf (x) = 0.7854x1x22(3.3333x
2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x26 + x
2
7) + 7.4777(x

3
6 + x

3
7) (28)

Subject to:

g1(x) =
27

x1x22x3
− 1 ≤ 0

g2(x) =
397.5
x1x22x

2
3

− 1 ≤ 0

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0

g5(x) =
(( 754x4x2x3

)2 + 16.9 × 106)
1
2

110x36
− 1 ≤ 0

g6(x) =
(( 754x5x2x3

)2 + 157.5 × 106)
1
2

85x37
− 1 ≤ 0

g7(x) =
x2x3
40

− 1 ≤ 0

g8(x) =
5x2
x1

− 1 ≤ 0

g9(x) =
x1
12x2

− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6; 0.7 ≤ x2 ≤ 0.8; 17 ≤ x3 ≤ 28;
7.3 ≤ x4, x5 ≤ 8.3; 2.9 ≤ x6 ≤ 3.9; 5.0 ≤ x7 ≤ 5.5 (29)

Table.11 shows the statistical results of each algorithm
solving the speed reducer design problem. The best results
are shown in bold. According to the results, TQA obtained
the best optimal and average values. TQA found the best
optimal value in six real-world engineering design problems,
and a good average can also be achieved on all issues,
demonstrating its satisfactory performance and robustness.
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Table 11
Statistical results of speed reducer design problem

Function GWO MVO SCA SSA WOA STOA TSA TQA

Best 2997.725189 3007.555169 3050.017911 3002.667140 3007.949579 3011.906151 3017.913973 2994.591855
x1 3.500056 3.500745 3.600000 3.503237 3.501340 3.502932 3.520683 3.500000
x2 0.700000 0.700000 0.700000 0.700000 0.700026 0.700000 0.700000 0.700000
x3 17.000000 17.000000 17.000000 17.000000 17.000572 17.000000 17.000000 17.000000
x4 7.406517 7.772375 7.300000 7.796101 8.068027 7.515590 7.300000 7.311747
x5 7.782102 8.028754 8.300000 7.816460 7.815870 8.023801 7.750438 7.715845
x6 3.352452 3.355168 3.359315 3.351416 3.351722 3.373490 3.387144 3.350237
x7 5.287056 5.287392 5.288406 5.286689 5.291945 5.289183 5.294580 5.286655

Mean 3005.500021 3036.968535 3102.237267 3037.269055 3119.455059 3028.135763 3034.726976 3002.910419
Std 4.6459E+00 1.6633E+01 2.8026E+01 2.4756E+01 6.9944E+01 9.4705E+00 9.9150E+00 5.6091E+00

5. Conclusions and future work
The existing meta-heuristic algorithms are generally di-

vided into two types from the perspective of search mecha-
nism. The first category is exploration first and exploitation
later, that is, in the early stage of iteration, a relatively large
step length is used for rough exploration, and in the late stage
of iteration, a relatively small step length is used for accurate
exploitation, such as GWO. This class of algorithms, by de-
fault, can find nearby regions of the global optimal solution
in the upfront phase of the iteration and exploiting it later
in the iteration. However, late the algorithm does not have
the ability to jump out of that local optimal solution if it be-
comes enmeshed in the previous period. The other category
is simultaneous exploration and exploitation, where search
agents are divided into two parts, one part in a larger step
size for coarse exploration behavior, and the other part in a
smaller step length for precise exploitation behavior, such
as SSA. This class of algorithms, although improving the
precision of solution, may lead to a waste of computational
power because a subset of search agents is used for explo-
ration in the early iteration. We wish to put forward, from a
search mechanism perspective, an algorithm that integrates
the advantages of the two classes of algorithms mentioned
above.

The search mechanism of TQA combines the advantages
of the above two classes of algorithms. First, a local mapping
principle is proposed to divide the search space. Then, the
algorithm focus on the simultaneous exploration and ex-
ploitation on the region s1 where the current global optimal
solution is located. In addition, the algorithm uses the restart
idea to exploit the region s2 obtained by Levy flight. On
the one hand, simultaneous exploration and exploitation on
region s1 can help the algorithm jump out of the local
optimal solution on a certain Chengdu. On the other hand,
the search behavior on region s2 is both an exploration and
a exploitation, which can reduce the waste of computing
power to some extent.

We proposed TQA and evaluated its performance on 23
benchmark functions. The experimental results showed its
satisfactory exploration and exploitation ability compared
to many advanced algorithms. TQA was applied to several

engineering design problems, including true-bar truss, gear-
train, I-beam structure, weld beam, cantilever beam, and
speed reducer. The results were compared with many emerg-
ing algorithms, showing that TQA has satisfactory perfor-
mance in solving real-world engineering design problems.
We hope to develop the binary versions in the future to solve
TSP problems and DNA fragment assembly problems, and
develop the multi-objectives versions to solve DNA design
problems.
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