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Abstract— Network traffic prediction is a fundamental pre-
requisite for dynamic resource provisioning in wireline and
wireless networks, but is known to be challenging due to non-
stationarity and due to its burstiness and self-similar nature.
The prediction of network traffic at the user level is particularly
challenging, because the traffic characteristics emerge from
a complex interaction of user level and application protocol
behavior. In this work we address the problem of predicting the
network traffic at the user level over a short horizon, motivated
by its applications in cellular scheduling. Motivated by recent
works on robust adversarial learning, we treat the prediction
problem for non-stationary traffic in an adversarial context,
and propose a meta-learning scheme that consists of a set of
predictors, each optimized to predict a particular kind of traffic,
and of a master policy that is trained for choosing the best fit
predictor dynamically based on recent prediction performance,
using deep reinforcement learning. We evaluate the proposed
meta-learning scheme on a variety of traffic traces consisting of
video and non-video traffic. Our results show that it consistently
outperforms state-of-the-art predictors, and can adapt to before
unseen traffic without the need for retraining the individual
predictors.

Index Terms— Meta learning, deep reinforcement learning,
network traffic prediction, wireless networks.

I. INTRODUCTION

ACCURATE network traffic prediction is becoming

increasingly important for dynamic resource manage-

ment in wireline and wireless networks. In wireline networks,

for example, network traffic prediction can be used for reduc-

ing the power consumption in routers, for improving statistical

multiplexing gains for quality of service provisioning, and

for dynamic traffic routing in data centers [1]. In wireless

networks, traffic prediction can be efficient in minimizing the

power consumption of user equipment and of base stations

through sleep scheduling, and through reduced complexity in

traffic scheduling [2]–[5].

Depending on the application domain, the granularity of net-

work traffic prediction can range from predicting the aggregate
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traffic intensity on a backbone link, i.e., the ratio of the time

during which the link is occupied, often called the offered load,

through predicting aggregates on local area networks, to pre-

dicting user level traffic characteristics. Similarly, the time

scales for prediction can vary from day ahead prediction down

to the millisecond level, depending on the intended use.

The main factors that affect traffic characteristics depend

heavily on the level of aggregation and on the time scale.

At the level of network aggregates self-similarity has long

been observed, and sudden changes are rare due to statistical

multiplexing across the traffic generated by many users and

applications [5], [6]. Recent works have shown that feed-

forward and recurrent neural networks can achieve fairly good

prediction accuracy for such aggregate traffic [4], [5].

Prediction at the level of the traffic of individual users

over short periods of time remains, however, extremely chal-

lenging due to sudden changes in traffic intensity inherent

to various application protocols and due to the high impact

of user behavior. For example, the most widely used proto-

col for video streaming, Dynamic Adaptive Streaming over

HTTP (DASH) generates traffic with significant bursts, and

its application behavior also depends on the user’s media

consumption behavior. At the same time, DASH streaming and

live video are the largest contributors of network traffic [7].

Accurate prediction of such data traffic is thus of primary

importance for increasing the efficiency of downlink schedul-

ing in cellular networks and for sleep scheduling in user

equipment.

In this work we address the problem of short term prediction

of user traffic intensity, as a potential enabler of improved

cellular scheduling. We first analyze state-of-the-art algorithms

for time series prediction on a variety of data sets collected in

a controlled environment, and show that they fail to provide

accurate predictions across data sets. We then propose a

meta-learning scheme that consists of a master policy and a

number of sub-policies, predictors trained for particular types

of traffic, motivated by recent works in robust adversarial

machine learning [8], [9]. We evaluate the proposed meta-

learning scheme on a variety of data sets containing a mix

of video and non-video traffic, and our results show that it

consistently outperforms all baseline schedulers.

The rest of the paper is organized as follows. In Section III

we define the prediction problem. In Section IV we investigate

traffic data and evaluate two commonly used predictors on

homogeneous data sets. Based on the results we propose a

meta-learning scheme and design the master and sub-policies

in Section V. In Section VI we present extensive experimental
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results for the proposed scheme. Finally, we summarize the

findings and discuss the next steps in Section VII.

II. RELATED WORK

Network traffic prediction has received significant interest

in the past three decades, both for traditional wired broadband

networks and also for cellular radio access networks. In

general, methods from time series analysis have been used

to model and predict network traffic. Generally, techniques

for network traffic prediction can be organized in four broad

categories, namely, linear time series model, nonlinear time

series model, hybrid model, and decomposition-based model.

The most commonly used linear models are the autore-

gressive moving average (ARMA) model and the autoregres-

sive integrated moving average (ARIMA) model [10], [11].

The ARMA model is a statistical model that can be used

for predicting stationary time series data. In [12] and [13],

ARMA has been employed to predict large file transfers

and traffic patterns of the BitTorrent application, respec-

tively. The ARIMA model applies ARMA to the time series

after differencing, and can cope with trend-stationary time

series [14]. The model order for ARIMA is usually obtained

using the Box-Jenkins method [15]. Nonlinear time series

are generated by non-linear dynamic equations. Nonlinear

models such as the generalized auto regressive conditional

heteroskedasticity (GARCH) model [16] and neural network

techniques have become popular in recent years [17]. Notable

amongst the non-linear models are approaches based on deep

neural networks (DNN), which have been extensively used

for short-term traffic prediction [5]. Compared to the linear

models, DNNs provide significant improvements in prediction

accuracy, as they contain numerous levels of non-linearities

depending on the number of hidden layers, which allow

them to efficiently represent highly nonlinear patterns and

quickly-varying functional abstractions [18]. The experiments

in [19] show superior performance of the prediction tool

based on long short-term memory (LSTM) neural networks

over the ARIMA models in cellular traffic classification and

prediction. The combination of linear and nonlinear models is

referred to as a hybrid model, which was found to give good

results in the prediction and analysis of network traffic [20].

Decomposition based models decompose the time series into a

trend component, a period component, a mutation component,

and a random component, resulting in a decomposed model

for predicting long term network traffic [21]. Originated in

econometric analysis, this technique is not very efficient for

short term prediction. An extensive review of previous work

on network traffic prediction is given in [19], and shows that

despite a variety of techniques, the rapidly changing nature

of data traffic and its non-stationarity make it difficult and

computationally expensive to train a one-size-fit-all predictor.

Our approach differs from existing techniques in that we

do not aim at training a single predictor, but combine multiple

predictors. In this respect our approach is close to recent works

on ensemble learning, e.g., for road traffic prediction [22].

In particular, it is closest to the bucket of models ensemble

technique with gating, but in our scheme the master policy

Fig. 1. Flow chart of traffic prediction: packet sequence is converted into a
feature vector, which is fed into the predictor.

chooses among the predictors in an online fashion. Going

beyond existing techniques for ensemble learning, we adopt

the meta-learning hierarchy (MLH) scheme [23], which has

shown good promise in mitigating periods of adversarial

attacks against reinforcement learning algorithms [8], [9].

In our proposed scheme a master policy chooses among a

set of trained predictors depending on the characteristics of

the traffic, and can learn in real-time based on the accuracy

of the predictions.

III. SHORT TERM TRAFFIC PREDICTION PROBLEM

We consider the problem of predicting the amount of IP

traffic destined to a particular user in the network over the

short term, with the objective of predicting the downlink traffic

destined to a user equipment (UE) in a 4G cellular network,

where there is a single data radio bearer (DRB) that carries

all IP packets to a particular UE. Motivated by the periodicity

of downlink scheduling, we consider that predictions are to

be made periodically with a periodicity of τ ; and are made

for time periods that are integer multiples of τ ; τ is typically

10 ms, 50 ms, or 100 ms. We refer to τ as the prediction

interval.

The arriving traffic consists of a sequence of packets i ≥ 0.

We denote by ti the arrival instant of packet i, and by bi

the size of packet i. Furthermore, we refer to (ti, bi)i≥0 as the

sequence of packet arrivals. Let us denote by a(n) the number

of bytes that arrive in the time interval (nτ, (n + 1)τ ], i.e.,

a(n) =
∑

i:nτ<ti≤(n+1)τ

bi,

and we define a(n, n′) =
∑n′

i=n a(n), i.e., the

number of bytes that arrive in the time interval

(nτ, (n′ + 1)τ ]. Furthermore, we define the time series

vector Am(n) = (a(n − m), . . . , a(n − 2), a(n − 1)),
which contains the number of bytes arrived in the time

interval ((n − m)τ, nτ ], for some m ≤ n. Clearly, vector A

corresponds to the ground truth to be predicted.

To define the prediction problem, let us denote by Πm

the set of prediction models of order m. A prediction model

πm ∈ Πm is a real valued function that takes as input an

m dimensional feature vector, i.e., πm : R
m → R. The m

dimensional feature vector itself is the output of a mapping

Hm(t) ∈ Hm, which at time t maps the sequence (ti, bi)ti≤t

to an m dimensional vector. Figure 1 shows the flow chart of

prediction at time t.

To quantify the prediction error we use the mean square

error (MSE), which for a predictor model πm ∈ Πm, mapping

Hm ∈ Hm and a time period (nτ, n′τ ] can be expressed as

eπm,Hm
(nτ, n′τ) =

∑n′

ν=n [a(ν) − πm(Hm(ντ))]2

n′ − n + 1
. (1)
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Note that in the above expression we make it explicit that the

choice of the predictor πm depends on feature engineering

through Hm. Our objective is then to find a prediction model

of at most order M that minimizes the expected MSE. Without

loss of generality we can consider that the prediction problem

starts at time 0, and thus we are looking for a solution to the

problem

min
{πm∈Πm,Hm∈Hm,0<m≤M}

lim
n→∞

eπm,Hm
(0, nτ). (2a)

In the above formulation we explicitly distinguish between

the feature engineering problem (i.e., finding Hm) and the

problem of finding a good prediction model for a given set of

features.

A common approach for solving the above problem is to

consider that the mapping Hm(nτ) = Am(n), i.e., the feature

vector, is an m dimensional vector containing the number

bytes that have arrived in the preceding m prediction intervals.

In this case the above prediction problem becomes a standard

time series forecasting problem, for which there are well

established prediction models, e.g., Autoregressive Integrated

Moving Average (ARIMA) and more recently, Long Short-

term Memory (LSTM) neural networks. Existing models for

time series forecasting either assume that the time series is

stationary, or that it can be transformed into a stationary

time series after compensating for seasonality and trend. These

assumptions may be reasonable in economics, but network

traffic is known to exhibit long range dependence and is

non-stationary both when looking at a very large number

of users, e.g., it shows the well known diurnal pattern [24],

and when looking at individual users. It is thus important to

develop computationally efficient prediction adaptive models

that can cope with non-stationarity and with changes in traffic

characteristics, which is the focus of our work.

IV. PREDICTING A SINGLE TRAFFIC TYPE

Before we present the proposed meta-learning scheme for

network traffic prediction, in this section we show results for

two widely used classes of predictors, ARIMA and LSTM.

We will use the results in later sections for developing the

proposed predictor based on a meta-learning scheme.

A. Data Sets

In order to obtain ground truth information, we captured

network traffic using Wireshark on a desktop computer. We

choose different kinds of network traffic based on the Internet

traffic analysis reported in [7], and we captured four data sets

of approximately 60 minutes each. The Long DASH data set

was recorded while streaming a sequence of long video clips

from YouTube using DASH. The Short DASH data set was

recorded while streaming a sequence of short video clips from

YouTube using DASH. The Live video data set was recorded

while making a video call using Skype, and the Non-video

data set was recorded while browsing news pages and other

non-video content on the web using the browsers Chrome and

Firefox. The data sets contain packet arrival time stamps and

packet sizes, i.e., the sequence (ti, bi)i≥0.

TABLE I

RMSE RESULTS FOR 100 ms PREDICTION INTERVAL, AND AVERAGE

NUMBER OF BYTES PER PREDICTION INTERVAL

Considering the use case of cellular downlink scheduling,

we set the prediction interval τ = 100 ms, and we com-

puted the number of arrived bytes per prediction interval,

i.e., Hm(nτ) = Am(n), where m is the order of the predictor.

In the Appendix, we show the time series, the autocorre-

lation function (ACF), and the partial autocorrelation func-

tion (PACF) for the data sets, in Figures 12, 13, 14, and 15.

We used the ACF and the PACF for analyzing the correlation

structure of the time series [10].

B. Autoregressive Integrated Moving Average (ARIMA)

We start the evaluation with ARIMA models, which are

widely used for time series analysis, including forecasting in

econometrics and in engineering [10]. The formulation of the

ARIMA(p,d,q) model is

∆dP (t) = δ + φ1∆
dP (t − 1) + φ2∆

dP (t − 2) + · · ·

+ φp∆
dP (t − p) + At − θ1At−1 − θ2At−2 − · · ·

− θqAt−q, (3)

where ∆dP (t) is the dth differenced time series, φp and θq

are coefficients of P (t−p) and At−q , respectively. In addition,

At is a (weak) white noise process, and

δ =

(

1 −

p
∑

i=1

φi

)

µ, (4)

with µ denoting the process mean. If At follows the standard-

ized student’s t distribution, then

At = Tµ

√

µ − 2

µ
, (5)

where Tµ is a Student’s t distribution with µ > 2 degrees of

freedom.

Following common practice, we used the ACF and the

PACF of the data sets to analyze the correlation structure

of the time series and used the Box Jenkins method for

identifying the best model order for each data set. We then

used maximum likelihood estimation for finding the optimal

model parameters, and we tested each of the four fitted models

on all four data sets. Table I shows the 16 root mean square

error (RMSE) values obtained using the ARIMA models. The

first four rows of the table correspond to the fitted model for

the Long DASH, Short DASH, Live video and Non-video data

sets, respectively. The last row shows the average number of

bytes that arrived per prediction interval, i.e., 1
N

∑N
n=1 a(n),

and each column corresponds to a data set.

The results show that the best fit ARIMA model orders

are different for the different data sets. Consistent with our
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expectation, we also observe that the lowest RMSE values are

located on the main diagonal (not considering the last row),

i.e., for each data set it is the model fitted to that data set that

performs best. At the same time, a model fitted to a data set

may result in a huge RMSE when used on a different data

set. As an extreme, the model fitted to the Live video data

set results in an RMSE for Non-video data set two orders

of magnitude higher than the average number of bytes per

prediction interval.

Overall we observe that the lowest RMSE values are higher

or approximately equal to the average number of bytes per

prediction interval, which means that the prediction error is

rather high. This is due to two main factors. On the one hand,

three of the four time series exhibit large bursts of traffic

that ARIMA cannot predict, as shown in Figures 12-15 in

the appendix. On the other hand, the time series are highly

nonlinear. In addition, the Dickey-Fuller test, the KPSS test,

the Phillips-Perron test and the variance ratio test all rejected

the null hypothesis that any of the time series is a unit root

process or that it is trend stationary.

C. Long Short-Term Memory (LSTM) Neural Network

As an alternative to ARIMA, we considered LSTM neural

networks, which have recently proven to achieve good perfor-

mance in a variety of prediction tasks. An LSTM is a recurrent

neural network that is able to learn long-term dependencies in

time series data [25]. A common LSTM unit is composed of

a cell, an input gate, an output gate and a forget gate. The cell

remembers values over arbitrary time intervals and the three

gates regulate the flow of information into and out of the cell.

The equations describing the operation of an LSTM are

it = σg

(

Wixt + Uiht−1 + bi

)

(6a)

ft = σg

(

Wfxt + Ufht−1 + bf

)

(6b)

ot = σg

(

Woxt + Uoht−1 + bo

)

(6c)

ct = ft ∗ ct−1 + it ∗ σc

(

Wcxt + Ucht−1 + bc

)

(6d)

ht = ot ∗ σh(ct) (6e)

Here i, f , and o are the input, forget and output gates,

respectively. Their outputs are described by similar equations

with different parameter matrices W ∈ R
h×d and U ∈ R

h×h,

and bias vector parameters b ∈ R
h, where the superscripts d

and h refer to the number of input features and the number

of hidden units, respectively. Vector xt ∈ R
d is the input of

the LSTM unit at current time t, and ct ∈ R
h is the cell

state vector. Vector ht ∈ R
h is the output of the LSTM unit,

computed by multiplying the memory with the output gate.

We used an LSTM network with an input layer, a hidden

layer with one neuron, and an output layer that makes a single

value prediction. We trained the LSTM for 1500 epochs (i.e.,

we trained it 1500 times on the data set) with a batch size

of 1 (i.e., performed stochastic subgradient descent after every

prediction step). We trained one LSTM model for each data

set, based on the first 80% of the data, and we tested each of

the four LSTM models on the remaining 20% of all four data

sets that were not used for training. As the output given by a

recurrent neural network may vary with different initial condi-

tions, we repeated the experiments for each data set 10 times.

TABLE II

LSTM RESULTS FOR 100 ms PREDICTION INTERVAL

Fig. 2. Normalized RMSE for the ARIMA and the LSTM models with a
prediction interval of 100 ms.

We show the average RMSE (excluding the extreme values)

in Table II. The rows in the table correspond to the training

data set, and hence the trained LSTM model, and each column

corresponds to a test data set. The last row of the table shows

the average number of arrived bytes per prediction interval,

i.e., 1
N

∑N
n=1 a(n) (c.f. the last row of Table I). The results

show that the LSTM model performs best for the data set that

it was trained for, but the prediction error can be very high if

an LSTM model is used on a data set with different type of

traffic than what it was trained for.

In order to compare the prediction error of the ARIMA

models and the LSTM models, in Figure 2 we show the

RMSE normalized by the average number of bytes arrived

per prediction interval for the two predictors. For each of the

four data sets, when comparing the LSTM and the ARIMA

model trained on this data set, we can observe that LSTM

achieves a significantly lower prediction error than the cor-

responding ARIMA model. The improvement in prediction

accuracy comes, however, at the cost of significant training

time and increased prediction complexity.

Even more importantly, looking at the results for ARIMA

(Table I) and for LSTM (Table II) we can also observe that

only in very few cases a model trained on one data set

performs well on other data sets; in general there is no one-

size-fit-all predictor for data sets dominated by different types

of traffic.

V. META-LEARNING FOR TRAFFIC PREDICTION

Motivated by the results presented in Section IV, we are

interested in developing a predictor that can dynamically adapt

to highly varying and fast changing data traffic.

A. Feedback-Based Predictor Architecture and

Meta-Learning

Based on the results presented in the previous section a

possible solution would be a feed-forward predictor, which
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Fig. 3. Feed-forward and feedback-based architectures for traffic predic-
tion. The feedback-based architecture does not need require a pre-trained
classifier.

consists of a traffic classifier trained to recognize particular

kinds of traffic, e.g., live video, web traffic, file download,

and a predictor that takes as input the historical data traffic

and the result of the classification. This architecture, as illus-

trated in Figure 3a, is unfortunately rather impractical. First,

it depends on the ability of training a traffic classifier, which

requires ground truth about traffic classes (i.e., labelled data).

Obtaining such ground truth is particularly difficult to an

increasing share of encrypted traffic. Moreover, we argue that

traffic classification for the purpose of short term traffic pre-

diction may be not effective and actually counter-productive,

because the traffic mix and the behavior of the different

applications are continuously evolving, and thus one would

require classifiers to be retrained periodically.

We thus propose an alternative, feedback-based architecture,

where the predictor to be used is chosen based on observed

prediction accuracy, not based on the notion of traffic classes.

Figure 3b illustrates the architecture. The proposed architec-

ture opens up for the possibility of dynamically managing a set

of predictors, and could potentially be used for online traffic

profiling as well. It allows to choose the best predictor for

data traffic at any point in time, e.g., after a few initial pre-

diction intervals), and allows for retraining the predictor(s) if

the traffic characteristics change significantly without manual

intervention. Moreover, it does not rely on a classifier trained

for classifying different flows.

We propose to implement the feedback architecture based on

a meta-learning scheme. Meta-learning schemes were recently

proposed for making reinforcement learning robust to adver-

sarial examples and have been considered for solving unknown

tasks drawn from a known distribution in the machine learning

literature [8], [9], [23]. The rationale for using a meta-learning

scheme for the prediction of non-stationary traffic is based on

its recent use in robust adversarial learning. There, a master

policy chooses among a set of reinforcement learning agents;

the individual agents are each trained for solving a particular

kind of Markov decision process (MDP), some of which may

be perturbed by an adversary. We can intuitively interpret non-

stationary traffic as an adversary against individual predictors

trained for predicting traffic with certain characteristics: the

adversary presents traffic of different characteristics to the

predictor, so as to increase the prediction error. The role

of the master policy is then to choose a good predictor in

response to such “adversarial” behavior.

Fig. 4. The meta-learning scheme consists of a master policy and K sub-
policies. The master policy chooses sub-policy based on past traffic and
prediction performance, the sub-policies perform prediction.

The meta-learning scheme we propose consists of a master

policy µ ∈ M and a set K, K = |K| of sub-policies. Each

sub-policy k ∈ K is implemented by a predictor πk trained

using a certain kind of traffic. The master policy is responsible

for deciding which sub-policy should be used for prediction

during the next prediction interval. We show the proposed

scheme in Figure 4. In what follows we discuss the proposed

implementation of the master policy and of the sub-policies.

B. Master Policy

As discussed above, at any point in time the master policy

aims at choosing the best sub-policy for the next prediction

interval. Considering that predictors such as LSTM have

memory, the current choice of the sub-policy may affect the

future accuracy of the sub-policies. Thus the objective of the

master policy is to find a policy µ∗
m′ ∈ M that minimizes

the expected average MSE, i.e.,

min
µ

m′∈M
lim

n→∞

∑n
ν=0 [a(ν) − µm′(H ′

m′(ντ)){Hm(ντ)}]2

n + 1
, (7)

where without loss of generality we denote the decision time

instant by 0. Note that µm′ : R
m′

→ K, i.e., the master policy

is based on features H ′
m′(ντ) of the past arriving traffic for

some m′ ≥ 0 and chooses a sub-policy πk
m, which itself

performs prediction, based on the feature mapping Hm(ντ).
In general, m′ used by the master policy need not be the

same as the predictor order m used for the sub-policies.

Observe that the problem of the master policy can be

formulated as an MDP (S, K, Pk(s, s′), Rk(s, s′)). For a

given m′ the state space of the MDP is S = Z
m′

≥0, the action

set is K, and the immediate reward when choosing action k

(i.e., sub-policy πk
m) and transitioning from state Am′(n) to

Am′(n + 1) is

Rk(Am′(n), Am′ (n + 1)) =
[

a(n) − πk
m(H ′

m′(nτ))
]2

,

i.e., the squared prediction error. In what follows, we refer

to the value of m′ as the dimension of the state space of

the master policy. Importantly, the state transition probabilities

Pk(s, s′) are not known, as they depend on the type of traffic.
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Training the Master Policy: In the case of short-term traffic

prediction, the state transition probabilities are unknown. We,

therefore, propose to use (deep) reinforcement learning for

learning the master policy. The master policy chooses a pre-

dictor and evaluates the resulting reward for every prediction

interval. Observe that since prediction is done in real time upon

every prediction interval, and the reward (squared prediction

error) is directly observable, learning can be performed in real-

time. This allows one to train the master policy on actual

network traffic, and to retrain the master policy on-demand.

C. Sub-Policies

In the meta-learning scheme we propose that each sub-

policy k ∈ K is a predictor πk trained for a particular kind

of traffic or traffic mix. The sub-policies may be pre-trained,

as in the performance evaluation presented in the following

section. Nonetheless, the proposed scheme also allows for a

predictor to be trained in real-time - together with the master

policy - based on the actual traffic and the prediction results

it provides. We leave this interesting direction to be subject of

future work, and rely on pre-trained predictors as sub-policies

in the following evaluation.

VI. PERFORMANCE EVALUATION

In what follows we evaluate the proposed meta-learning

scheme based on a variety of traffic traces. We first describe

the sub-policies used, then the evaluation methodology, and

finally we provide numerical results.

A. Sub-Policies

We used seven predictors as sub-policies for the evaluation

of the proposed meta-learning scheme. The first four predictors

are the LSTM predictor trained for the data sets with a single

type of traffic, namely, the long DASH predictor, the short

DASH predictor, the live video predictor, and the non-video

predictor. Considering that these predictors may not perform

well for a variety of traffic, we introduced three additional

predictors.

Persistence Model Forecast (PMF): PMF assumes the time

series is persistent, and hence it uses the last observed value

as the prediction. That is, the predictor is given by

πPMF (n + 1) = a(n). (8)

The PMF predictor is expected to be used when the number

of arriving bytes is approximately constant.

Zero Predictor (ZP): ZP outputs a constant value of zero,

and is expected to be used during idle periods.

Average Value Predictor (AVP): AVP outputs the average

number of bytes that arrived during the last m prediction

periods. Using a recursive formulation it is given by

πAV P
m (n + 1) = πAV P

m (n) +
a(n) − a(n − m − 1)

m
. (9)

The above three predictors are all computationally inexpen-

sive. Figure 5 shows the complete learning scheme.

Fig. 5. The proposed meta-learning scheme including the 7 sub-policies
considered in the evaluation.

B. Evaluation Methodology

Data Sets: We used in total 12 data sets containing incoming

traffic on a desktop computer captured using Wireshark. The

first four data sets are the ones used in Section IV, and are

dominated by a single type of traffic, namely long DASH,

short DASH, live video, and non-video data (Data sets 1-4).

We refer to these four data sets as single-type data sets.

Another four traces contain traffic traces collected during

daily work and during leisure time, and hence contain a mix

of various kinds of traffic. We refer to these four as mixed data

sets (Data sets 5-8). In general, each data set spans over tens

of thousands of prediction intervals. In addition we evaluated

the predictors on four publicly available data sets reported

in [19]. In the appendix, Table IV provides a summary of the

data sets.

Master Policy: We trained a Deep Q-network (DQN) agent

for the master policy using stochastic gradient descent. A DQN

consists of an input layer, an output layer, and multiple hidden

layers. Each layer has a number of neurons. The number

of hidden layers, number of neurons per layer, as well as

parameters such as learning rate and the number of learning

steps affect the trained model and the prediction performance.

In the following we refer to the number of hidden layers

and the number of neurons per layer as the neural network

structure. The learning rate influences the convergence of

learning through controlling the weight of the update after

each batch in stochastic gradient descent. Finally, the number

of steps is the number of samples used for training and is

typically in the order of millions, achieved through training

on a particular data set over multiple epochs. We provide the

network structure, learning rate and the number of steps in

the tables provided in the appendix. As input features for the

DQN we used the number of bytes that arrived in the past m′

prediction intervals, i.e., H ′
m′(nτ) = Am′(n).

Implementation: We implemented the proposed meta-

learning scheme in Python. We developed LSTM networks

using the Keras deep learning library to be employed as sub-

policies. For the master policy we used Keras deep reinforce-

ment learning libraries to create a DQN agent that interacts

with the environment, which is implemented as a custom

scenario in OpenAI Gym.
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TABLE III

PREDICTION RESULTS FOR DATA SET 3

Performance Metric: We use the RMSE as the performance

metric to evaluate the predictors.

Oracle Policy: As a baseline, for each data set and the set of

predictors we calculate a lower bound, which we obtain using

a hypothetical oracle policy that in every prediction interval

takes the best action, i.e., selects the predictor that provides

the most accurate prediction of the arrived bytes. The meta-

learning scheme with the same set of predictors can clearly

not perform better than this oracle, hence it gives the lower

bound of the achievable RMSE.

EXP3.S: As an additional basis for comparison we used

EXP3.S, which is an online algorithm for the multi-armed

bandit problem that at every prediction interval aims at finding

the best expert based on past performance of the experts [26].

For EXP3.S we tune the parameter settings according to

Corollary 8.2 in [26] for the forgetting factor α and the

exploration factor γ, and we set T to be equal the length of

the data set.

Hardware Platform: We performed all evaluations on an

NVIDIA Quadro M2000 GPU with 768 cores and 4GB of

memory, in a HP Proliant ML110 Gen9 server with Intel Xeon

E5-2620 CPU and 32 GB RAM.

C. Numerical Results

Single Type Data Set: We start the evaluation using the

meta-learning scheme with four sub-policies, namely the Long

DASH, the short DASH, the live video, and the non-video

predictors, thus |K| = 4. We first performed a test on a subset

of Data set 3 containing 5000 samples collected during a video

call, thus live video data dominates the data set. For the master

policy we trained a DQN that has three densely connected

hidden layers, each with 16 neurons. The input layer of the

DQN has m′ = 2 two neurons, i.e., the input to the DQN

is A2(n). Table III shows the RMSE values obtained when

using one of the four predictors only, as well as using the

meta-learning scheme. The results show that the proposed

meta-learning scheme works very well, as it significantly

outperforms any single predictor. This observation implies that

for some time intervals, the predictor trained on this data set

may perform worse than other predictors. The reason for this

phenomenon is that even the data sets dominated by a single

type of traffic contain a certain amount of other types of

traffic. For example, watching short Youtube videos inherently

involves downloading the webpage through which the videos

are available. The predictor trained for short video traffic

performs well overall for the data set of short videos, but the

meta-learning scheme can recognize the periods when traffic

is actually not generated by watching video traffic.

Mixed Data Set: Next, we evaluated the predictors on

mixed data sets, starting with Data set 5. Table V in the

Fig. 6. Prediction results for Data set 5: 50000 samples, mixed traffic,
prediction interval τ = 100ms.

Appendix shows information about the data set and the RMSE

results when using the four predictors trained for a single type

of traffic, together with the oracle policy. Besides the four pre-

dictors trained for a single type of traffic and the oracle policy,

the table also shows the prediction error for an LSTM predictor

trained for this mixed data set. Figure 6 shows the normalized

RMSE for the five simple predictors and the meta-learning

scheme with K = 4 sub-policies, i.e., the predictors trained

for a single type of traffic. The figure shows that the meta-

learning scheme achieves significantly lower RMSE than any

of the individual predictors, including the LSTM. Furthermore,

it is worth noting that the gap between the best result and the

oracle policy is less than 5%. Table VI in the Appendix shows

all results obtained using various DQNs as the master policy

in the proposed meta-learning scheme, and shows that the

proposed meta-learning outperformed the individual predictors

using almost all considered DQNs (except one).

Next we evaluated all seven predictors on a large mixed data

set with 135000 samples, referred to as Data set 6. The RMSE

results of the individual predictors are shown in Table VII

in the Appendix. Figure 7 shows the RMSE results of the

7 individual predictors described in Section VI-A, an LSTM

predictor trained on Data set 8, the RMSE obtained by the

meta-learning scheme with the 4 single type predictors as sub-

policies (MLS-4), by the meta-learning scheme with all 7 sub-

policies (MLS-7), and by EXP3.S. All the RMSE values are

normalized by the RMSE of the oracle policy using the 7 sub-

policies. The figure shows that even when using 4 sub-policies,

the proposed meta-learning scheme achieves lower RMSE,

and the performance of the meta-learning scheme is further

improved by considering 7 sub-policies (Tables VIII and IX

in the Appendix show the DQN parameters and numerical

results). Comparing the results with 4 and 7 sub-policies we

can conclude that adding more predictors as sub-policies can

significantly improve the performance of the meta-learning

scheme. In particular, the RMSE of the best result with 7
predictors is 48% lower compared to that with 4 predictors.

The meta-learning scheme also outperforms EXP3.S. This is

reasonable considering that it takes a significant amount of

time for EXP3.S to adapt its choice as the traffic changes,

even with the considered parameters, which were chosen to

match the traces.

Finally, we further evaluate the meta-learning scheme with

seven predictors by testing it on two data sets consisting
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Fig. 7. Prediction results for Data set 6: 135000 samples, mixed traffic,
prediction interval τ = 100ms.

Fig. 8. Prediction results for Data set 7: 85000 samples, mixed traffic, and
for Data set 8: 80000 samples, mixed traffic. Both with prediction interval
τ = 100ms.

of mixed traffic. Figure 8 shows the normalized RMSE for

all predictors, the meta-learning scheme (Tables X - XIII in

the Appendix contain the numerical values), and the EXP3.S

algorithm. The results show that the meta-learning scheme

provides a very accurate prediction for both data sets, only

17% and 9% above the error of the respective oracle policy,

and it consistently outperforms EXP3.S as well.

Publicly Available Data Set: We also evaluate the meta-

learning scheme on four data sets created from the Wireshark

traces collected and analyzed in [19], available on GitHub. The

data set contains cellular uplink and downlink traffic, of which

we only considered the downlink traffic. We extracted 4 data

sets of 1 hour duration each, which we refer to as Data sets 9 to

12. Data sets 9 and 10 correspond to traffic during working

hours on a weekday, while the other two data sets consist of

off-peak traffic collected in the early morning of a weekend

day. It is important to note that we are not aware of the

traffic types present in the traces, we only extracted the packet

arrival times and packet sizes. We then used our 7 predictors

as sub-policies, of which four were trained on the data sets

we collected, and trained the master policy on Data set 9.

Figure 9 shows the normalized RMSE of the 7 predictors

used as sub-policies, of an LSTM predictor trained on the

mixed data set, of the meta-learning scheme with 7 sub-

policies for the four data sets, and of the EXP3.S algorithm.

The results show that the meta-learning scheme performs best

among all predictors for Data sets 9 and 10, i.e., for the

data sets with significant traffic. For the two data sets with

little traffic the average value predictor performs best, which

Fig. 9. Prediction results for Data sets 9, 10, 11, and 12. All data sets
contain 30000 samples, mixed traffic, and have a prediction interval of τ =

100ms.

Fig. 10. Inference time of DQN(m, b, c) in MLS-4 and MLS-7, where m is
the dimension of state, b is the number of hidden layers, and c the number
of neurons in each layer.

Fig. 11. Block diagram of scheduling based on traffic prediction. Dashed
line indicates that the master policy could be trained based on the scheduling
performance as well.

TABLE IV

SUMMARY OF DATA SETS

indicates that the traffic is periodic and has low intensity

(consistent with the RMSE values in Tables XVII and XVIII

in the Appendix).

D. Computational Cost

Considering the intended real-time operation of the pro-

posed meta-learning scheme, we now assess the computational

cost of the predictor. The proposed meta-learning scheme
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Fig. 12. Time series, ACF and PACF of Long DASH data set with τ = 100ms.

Fig. 13. Time series, ACF and PACF of Short DASH data set with τ = 100ms.

Fig. 14. Time series, ACF and PACF of Video call data set with τ = 100ms.

Fig. 15. Time series, ACF and PACF of Non-video data set with τ = 100ms.

TABLE V

RMSE RESULTS FOR DATA SET 5 WITH THE FOUR PREDICTORS USED AS

SUB-POLICIES AND USING AN LSTM TRAINED ON THIS DATA SET

consists of a DQN for the master policy and a number

of LSTM networks as sub-polices. If the DQN and the

LSTMs can be executed in parallel then the inference time

is determined by the maximum of the inference times of the

DQN and the LSTMs. As we use relatively small LSTM

networks, it is likely that the inference time of the DQN is

dominant. The inference time of the DQN itself is determined

by the network structure; for a DQN with m layers, each

containing at most n neurons, the complexity is bounded

TABLE VI

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE

META-LEARNING SCHEME WITH FOUR SUB-POLICIES FOR DATA

SET 5

by O(nm). The DQNs used in our implementation contain

relatively few layers (as shown in the appendix), thus the

computational cost of inference is very low.

Figure 10 shows the minimum, average, and maximum

inference times of 9 implementations of MLS-4 and MLS-7.

The implementations differ in terms of the deep neural network
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TABLE VII

RMSE RESULTS FOR DATA SET 6 WITH THE SEVEN PREDICTORS USED AS SUB-POLICIES, AN LSTM TRAINED

ON MIXED DATA, AND EXP3.S

TABLE VIII

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE META-LEARNING SCHEME WITH FOUR

SUB-POLICIES FOR DATA SET 6

TABLE IX

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE META-LEARNING SCHEME

WITH SEVEN SUB-POLICIES FOR DATA SET 6

TABLE X

RMSE RESULTS FOR DATA SET 7 WITH THE SEVEN PREDICTORS USED AS SUB-POLICIES,
AN LSTM TRAINED ON MIXED DATA, AND EXP3.S

TABLE XI

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE META-LEARNING SCHEME

WITH SEVEN SUB-POLICIES FOR DATA SET 7

used as the master policy. The results show that with the

hardware platform described in Section VI-B the inference

takes on average 1 millisecond. The results indicate that the

number of neurons in the hidden layer has little impact on the

inference time (due to parallel processing) but the dimension

of the state and the number of layers do affect it. The former

we attribute to the need for copying more data from the GPU

memory to the cores, the latter is a natural consequence of the

sequential execution across layers.

E. Discussion

Overall the proposed meta-learning scheme works very

well, e.g., for most data sets it performed very close to the

oracle policy. Overall, based on the results of our evaluation

we make the following observations.
• For a given DQN structure and training parameters,

increasing the dimension of the state can improve the

results, implying that the historical information could

help the learning model (c.f., Table IX).

• Comparing results for different data sets, the optimal

choice of DQN parameters is influenced by the data set

size. This can be attributed to the fact that a longer data

set would exhibit more diverse traffic patterns, and thus

a network with more hidden layers and neurons may be

needed. The diversity of traffic patterns needs thus to be

taken into account.
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TABLE XII

RMSE RESULTS FOR DATA SET 8 WITH THE SEVEN PREDICTORS USED AS SUB-POLICIES,
AN LSTM TRAINED ON MIXED DATA, AND EXP3.S

TABLE XIII

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE META-LEARNING SCHEME

WITH SEVEN SUB-POLICIES FOR DATA SET 8

TABLE XIV

RMSE RESULTS FOR DATA SET 9 WITH THE SEVEN PREDICTORS USED AS SUB-POLICIES,
AN LSTM TRAINED ON A MIXED DATA SET, AND EXP3.S

TABLE XV

DQN PARAMETERS AND THE RESULTING RMSE WHEN USING THE META-LEARNING SCHEME

WITH SEVEN SUB-POLICIES FOR DATA SET 9

TABLE XVI

RMSE FOR DATA SET 10 USING THE SEVEN PREDICTORS, AN LSTM, THE META-LEARNING

SCHEME WITH SEVEN SUB-POLICIES, AND EXP3.S

• Adding more predictors may have a high potential for

improving the prediction results (c.f. Figure 7). Moreover,

the computation cost at inference time would not grow

too much if the additional predictors are simple (e.g.,

a constant predictor). For the master policy, the training

cost increases slowly with the number of sub-policies.

• Based on the results obtained on the public data sets we

can conclude that the meta-learning scheme is able to

generalize rather well, as it achieved low prediction error

without retraining the predictors used as sub-policies.

More importantly, the performance of the meta-learning

scheme can be further improved by improving the pre-

diction performance of the sub-policies, and as such it

can provide a versatile framework for traffic prediction.

We envision a variety of application domains for short

term prediction based on the proposed meta-learning scheme.

First, short term traffic prediction could be used for semi-

persistent downlink scheduling, with the objective of reduc-

ing the scheduling complexity. In semi-persistent scheduling,

the mobile terminals to be scheduled can be chosen based

on the amount of traffic they are predicted to receive in the

subsequent scheduling intervals, and scheduling decisions can

be made for multiple subsequent scheduling intervals. It is so

far unclear whether such semi-persistent scheduling could be

achieved without significant impact on fairness and through-

put. Figure 11 shows the flow-chart of a potential architecture,

where the dashed line shows that in principle the master

policy could also be trained based on the resulting scheduling

performance. Second, short term downlink traffic prediction

could be used for base station sleep scheduling [27], with

the objective of reducing energy consumption. Using traffic

prediction could make it possible to optimize sleep scheduling
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TABLE XVII

RMSE FOR DATA SET 11 USING THE SEVEN PREDICTORS, AN LSTM, THE META-LEARNING

SCHEME WITH SEVEN SUB-POLICIES, AND EXP3.S

TABLE XVIII

RMSE FOR DATA SET 12 USING THE SEVEN PREDICTORS, AN LSTM, THE META-LEARNING

SCHEME WITH SEVEN SUB-POLICIES, AND EXP3.S

subject to constraint on the introduced latency, based on the

predicted traffic arrival. Exploring these applications of short

term traffic prediction is subject of our ongoing work.

VII. CONCLUSION AND OUTLOOK

We considered the problem of user level traffic prediction

over a short time horizon, motivated by its potential use in

cellular resource management. We proposed a meta-learning

scheme that dynamically selects a predictor from a set of

predictors, and thereby allows to adapt to changing traffic

characteristics. Our performance evaluation based on collected

and public traffic traces shows that the proposed meta-learning

scheme outperforms standalone predictors significantly, and

could be an efficient solution for the short term prediction of

network traffic despite changing traffic characteristics.

A very promising, but so far unexplored feature of the

considered meta-learning scheme is that it enables updating

the set of predictors in real-time, providing the ability to adapt

to changes in traffic patterns over long time scales. Adding a

new predictor involves retraining the master policy, and thus

exploring the technical feasibility of this approach, in terms of

computational cost and the level of adaptation it allows, could

be an interesting avenue of future research.

APPENDIX

In the appendix we provide supporting data for the results

presented in the paper. We first provide a summary of the

data sets in Table IV, then we show the time series, the ACF

and the PACF of the four single type data sets used in the

evaluation. After that we provide the RMSE values obtained by

the predictors and the meta-learning scheme for the different

data sets in tabular format.
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