A Meta-notation for Protocol Analysis*

I. Cervesato N.A. Durgin P.D. Lincoln J.C. Mitchell A. Scedr

Computer Science Lab Computer Science Dept. Mathematipt De
SRI International Stanford University University of Peghania
Menlo Park, CA Stanford, CA 94305-9045 Philadelphia, PA

lincoln@csl.sri.com {iliano, nad, jcnm} @cs.stanford.edu andre@cis.upenn.edu

Abstract Alice chooses a random numbeirnd sends its encryption
to Bob. There is no specific indication of how Bob deter-
Most formal approaches to security protocol analysis are mines what to send in response, but we can see that Bob
based on a set of assumptions commonly referred to as theeturns a message that contains the encryptiof(of. By
“Dolev-Yao model” In this paper, we use a multiset rewrit- analogy with familiar protocols, we might assume that he
ing formalism, based on linear logic, to state the basic as- decrypts the message he receives to determijrteen ap-
sumptions of this model. A characteristic of our formalism plies f to n and returns the result to Alice (encrypted with
is the way that existential quantification provides a suctin the same key).
way of choosing new values, such as new keys or nonces.
We define a class of theories in this formalism that cor-
respond to finite-length protocols, with a bounded initial-
ization phase but allowing unboundedly many instances of
each protocol role (e.g., client, server, initiator, or paEm-
der). Undecidability is proved for a restricted class ofsbe
protocols, andPspPACEcompleteness is claimed for a class
further restricted to have no new data (honces). Since it is
a fragment of linear logic, we can use our notation directly
as input to linear logic tools, allowing us to do proof search
for attacks with relatively little programming effort, ara
formally verify protocol transformations and optimizaii

As written, the protocol description only gives an in-
tended trace or family of traces involving the honest prin-
cipals. There is no standard way of determining the ini-
tial conditions or assumptions about shared information, n
can we see how the principals will respond to messages that
differ from those explicitly written. For example, in thesea

at hand, we must explain in English thidtis assumed to be

a shared key and thatis generated by Alice. Otherwise,

it is a perfectly reasonable interpretation of the two lines
above that Alice and Bob initially share a number In

this case, Alice might senfh} x to Bob, with Bob return-

ing {f(n)}x to Alice only if he receives preciselyn} k.
While the two readings of the protocol give the same se-
guence of messages when no one interferes with network
transmission, the effects are different if an intruder rinte
cepts the message from Alice to Bob and replaces it with
another message. For this reason, the notation commonly

In the literature on security protocol design and analysis, foynd in the literature does not provide a precise basis for
protocols are commonly described using an informal nota- security protocol analysis.

tion that leaves many properties of a protocol unspecified.

For example, a short challenge-response section of a proto- Most formal approaches to protocol analysis are based
col might be written like this: on a relatively abstract set of modeling assumptions, com-

monly referred to as the “Dolev-Yao model,” which appear
A—B: {n}k to have developed from positions taken by Needham and
B—A: {fn)}x Schroeder [26] and a model presented by Dolev and Yao
In this notation, a message of the fofm}, consists ofa [11]. In this approach, messages are composed of indivisi-
plaintextz encrypted with key. In this example protocol, ble abstract values, not sequences of bits, and encrygtion i
~Partially supported by DoD MURI “Semantic Consistency ifo modeled in an idealized way. Although the same basic mod-

mation Exchange” as ONR Grant NO0014-97-1-0505, and by N@is €ling assumptions are used in theorem proving [27], model-
CCR-9509931, CCR-9629754, and CCR-9800785 to variouseith checking methods [18, 20, 25, 28, 29] and symbolic search

1 Introduction

tools [17], there does not appear to be any standard presen2 Multiset rewriting with existential quantifi-
tation of the Dolev-Yao model as it is currently used in a cation

variety of projects. One goal of this paper is to identify the

modeling assumptions using the simplest formalism possi- .

ble, so that the strengths and weaknesses of the DoIev-Yao2 1 Protocol Notation

model can be analyzed, apart from properties of logics or

automated tools in which the model is commonly used. The notation we use involvdactsandtransitions Our
facts are first-order atomic formulas, and transitions are

given by rewrite rules containing a precondition and post-
condition. One important property of this formalism is that
in applying a rule to a collection of facts, each fact that oc-
curs in the precondition of the rule is removed. This gives
us a direct way of representing state transitions, and pro-

o vides the basis for the connection with linear logic. Anothe
transitions, we also needed a way to choose new values

such as nonces or keys. While this seems difficult to achieveke.y property is that th? _postco.ndmons ofa r_ule may con-
directly in standard rewriting formalisms, the proof rules tain existentially quantified variables. Following thersta
associated with existential quantification appears to be ju dgrd proof rules qssomated with existential quant|f|Frat|o
what is required. Therefore, we have adopted a notation (in natural deduction or sequent-style systems), this pro-
first presented in.[24] that mé be regarded as either an ex‘_vides a mechanism for choosing new values that are distinct
P . i Y 9 . . from any other in the system.
tension of multiset rewriting (see, e.g., [3, 4]), with dgis- More f I tax involves t fact q
tial quantification, or a Horn fragment of linear logic [14]. | orelf orma ylt ?ur syntax ;nvo ve;s er'mst,h' ac St Ef:.n
A similar fragment of linear logic is used in [16] to repre- ru ez. . V‘k/)e w;m 0 represenbal sys;rr; md IS notation,
sent real-time finite-state systems. Two other effortsgisin \t/ve ?rgr:n oy € ct)os:jngda vcz.ca ?ary, “or etr (sjlgr;a-b
linear logic to model the state-transition aspect of protec ure. This IS a standard notion from many-sorted algebra

(but not existential quantification for nonces) are [8, 9]. or first-order Ioglg (see, e.g., [13, section 4.3].) As us'ual
thetermsover a signature are the well-formed expressions

produced by applying functions to arguments of the correct
sort. Afactis a first-order atomic formula over the chosen
Using this formalism, it is relatively straightforward to signature. This means that a fact is the result of applying a
characterize the Dolev-Yao intruder and associated cfypto predicate symbol to terms of the correct sortsstateis a
graphic assumptions. The formalism also seems appropriateny|tiset of facts (all over the same signature).
for analyzing the complexity of protocol problems, andasa a state transition is aule written using two multisets of

potential intermediate language for systems or approachesracts, and existential quantification, in the following e
that might combine several different protocol analysid400 i form:

We develop a format for presenting finite-length protocols,

as the disjoint union of a set of initialization rules andsset F,...,Fy— 3z ... 32;.Gy,... Gy

of independent transition rules for each protocol paréinip T B

Using this form of protocol theory, we show that secrecy is The meaning of this rule is that if some stafecontains

an undecidable property even if data constructors, messageycis 7,), then one possible next state is the stéte
depth, message width, number of distinct roles, role length hat is similar taS, but with:

and depth of encryption are bounded by constants. If any of

these restrictions are lifted, prior results, folkloreaamall e factsFi,...F, removed,

amount of thought can be used to show undecidability, but

we show even for the very small fragment with only nonces o G,,...G,, added, wherer; ...z; are replaced by
secrecy is undecidable. Finally, we have used a linear logic new symbols.

tool, LLF [5] in two ways. The first is to search executions

of a protocol and intruder for protocol flaws. While sym- While existential quantification does not semantically lynp
bolic search by a logic programming tool is not as efficient there exist “new” values with certain properties, standard
as optimized search by tools such as Mi0], this method proof rules for manipulating existential quantifiers requi
does have the advantage that the input is substantially easintroduction of fresh symbols (sometimes called Skolem
ier to prepare. The second use of LLF is to formally ver- constants), as described below.

ify proofs of protocol optimizations. This provides a basis If there are free variables in the rulg,... | F, —

for simplifying search-based analysis and theorem-p@vin 3z, ...3z;.G.1,... ,G,, these are treated as universally
analysis of protocols. quantified throughout the rule. In an application of a rule,

While we began with the idea of creating a new formal-
ism for this purpose, we naturally gravitated toward some
form of rewriting, so that protocol execution could be car-
ried out symbolically. In addition to rewriting to effecesée

these variables may be replaced by any terms. To give afollowing intuitive meaning:

quick example, consider the following stafg,and rule,R:
A;(...) Aliceinlocal state], with the indicated data

S {P(f(a)),P(b)} B;(...) Bobinlocal state, with indicated data
R = (P(z) — 32.Q(f(x),2)) N;(...) Network has messagewith indicated data

One possible next state is obtained by instantiating thee rul The data associated with the state of some principal, or
Rto P(f(a)) — 32.Q(f(f(a)),z). Applying this rule, a network message, will depend on the particular state or
we choose a new value, for z and replaceP(f(a)) by message. Each principal begins in local statevith no

Q(f(f(a)),c). This gives us the state data. Therefore, predicately and By are predicates with
no arguments. When Alice chooses a nonce, she moves into
S'={Q(f(f(a)),c), P(b)} local statel. Therefore, predicatd; is a predicate of one

argument, intended to be the nonce chosen by Alice. Sim-
The importance of existential quantification, for security jjarly, predicateB; has two arguments, the data received
protocols, is that it provides a direct mechanism for choos- from Alice in message one of the protocol and the nonce
ing a new value that is different from other values used in chosen by Bob for his response.
the execution of a system. Since many protocols involve Using these predicates, we can state the protocol using
choosing fresh nonces, fresh encryption keys, and so on¢qr transition rules:
existential quantification seems like a useful primitive fo

describing security protocols. Ao() — 3Fz.Ai(z),Ni(x)
The way that existential quantification is used in our for- Bo(), Ni(z) — 3Jy.Bi(z,y), Na(z,y)

malism is based on the existential elimination rule from nat Ai(z), Na(z,y) — Aa(z,y), N3(y)

ural deduction. This proof rule is commonly written as fol- Bi(z,y), N3(y) — Ba(z,y)

lows.

Each rule corresponds to an action by a principal. In the
ly/z]op first rule, Alice chooses a nonce, sends it on the network,

: and remembers the nonce by moving into a local state that
retains the nonce value. In the second step, Bob receives a
message on the network, chooses his own nonce, transmits
it and saves it in his local state. In the third step, Alice
receives Bob's message and replies, while in the fourth step
Bob receives Alice’s final message and changes state.

In Table 1 is a sample trace generated from these rules,
beginning from stated, By. Spacing is used to separate
the facts that participate in each step from those that do not

. dx.¢ Y y not free in any

(3 elim) P other hypothesis

If we have an existentially quantified axiofh;.¢, then this
rule says that if we wish to prove some formylawe can
choose a new symbglfor the “z that is presumed to exist”
and proceed to derivg from [y /z]¢. The side conditiong
not free in any other hypothesis in the prooff means

that the only hypothesis in the proof ¢fthat can containy o]
is the hypothesigy /z]¢. 2.3 Formalizing the intruder

2.2 Simplified Needham-Schroeder There are two main parts of the Dolev-Yao model as
commonly used in protocol analysis. The first is the set
of possible intruder actions, applied nondeterminisiycal
throughout execution of the protocol. The second is a
“black-box” model of encryption and decryption. We ex-
plain the intruder actions here, with the encryption model
presented in Section 2.4.

The protocol adversary or “intruder” may nondetermin-

As a means of explaining the Dolev-Yao intruder and
encryption models using our notation, we begin with an
overly simplified form of the Needham-Schroeder public-
key protocol [26]. Without encryption, the core part of the
Needham-Schroeder protocol proceeds as follows:

A — B : N, istically choose among the following actions at each step:
B — A : Ng,N ¢ Read any message and block further transmission,
A — B : N e Decompose a message into parts and remember them,

e Generate fresh data as needed,
whereN, andN, are fresh nonces, chosen by Alicé)@nd e Compose a new message from known data and send.
Bob (B), respectively. By combining a read with resend, we can easily obtain the
We can describe this simplified protocol in our notation effect of passively reading a message without preventing an
using the predicated;, B;, N; for 0 < i < 3, with the other party from also receiving it.

By() Ao() = Ai(nA), Ni(nA), By()
Aq(nA) By(),Ni1(nA) — B;(nA,nB), N3(nA,nB), A;(nA)
B;(nA,nB), A;(nA),N2(nA;nB) — A,(nA,nB), N3(nB), B;(nA,nB)
As(nA,nB), Bji(nA,;nB),N3(nB) — By(nA,nB), As(nA, nB)

Table 1. Sample trace of simplified Needham-Schroeder

In general, the intruder processes data in three phasesules to eliminate thé andC predicates as follows:
The first is to read and decompose data into parts. The

second is to remember parts of messages, and the third is Ny () — M(x)

to compose a message from parts it remembers. We illus- M (x) — Ni(z), M(x)

trate the basic form of the intruder actions using one unary Ny (z,y) — M(x), M(y)

network-message predicafé, and one binary network- M(z), M(y) — Na(z,y),M(x), M(y)

message predicat¥,. Using predicate® for decompos- N3(x) — M(x)

able messages ard for the intruder “memory”, the basic M (x) — Nz(z), M(x)

rules for intercepting, decomposing and remembering mes-

sages are This reduces the number of steps in the trace, shown in Ta-

ble 2, which has actions of the honest participants in tte lef

Ny (z) — D(z) column and actions of the intruder indented. For simplicity
No(z,y) — D(z,y) duplicate copies of\/() facts are not shown, since these
D(z,y) — D(x),D(y) have no effect on the execution of the protocol or intruder.
D(z) — M(2) In this attack, the intruder intercepts messages between

A and B, replacing data so that the two principals have a
While the predicateD may appear to be an unnecessary different view of the messages that have been exchanged.
intermediary here, a protocol with more complicated mes- Specifically, the intruder replaces Alice’s nonc& by a
sages will lead to more interesting ways of destructuring valuen chosen by the intruder. When Bob responds to the
messages. As noted in [7], it is important in proof search altered message, the intruder intercepts the result and re-
to separate the decomposition phase from the compositiorplacesn by nA so that Alice receives the message she ex-
phase, which is accomplished here using sepdvaaadC pects.
predicates. The rules for composing messages from parts
are written using th€’, for “composable”, predicate asfol- 2.4 Modeling Perfect Encryption
lows:

M(z) s C(x), M(z) The corr.\mon.ly used “black-box" 'model' of encryption
C(x) — Ni(z) may be written in our multiset notation using the follow-
C(x),Cy) — C(z,y) ing vocabulary. For concreteness, we discuss public-key
C(z,y) s No(z,y) encryption. Symmetric or private-key encryption can be

characterized similarly. We assume that plaintexts haste so

The rule for generating new data is plain and ciphertexts have sasipher.

L o.M () e Additional sorts:e_key, d_key

N] ¢ PredicateKey_pair(e_key, d_key)

The reason we need the last transition rule (which can be
applied any time without any hypothesis) is that the intrude 4 Function:enc : e_key x plain — cipher
may need to choose new data in order to trick an honest
participant in a protocol. This is illustrated in the follg We could also include a decryption functidec : d_key x
attack on the simplified (and obviously insecure) form of cipher — plain. However, it seems simpler to write pro-
the Needham-Schroeder protocol. tocols using pattern-matching (encryption on the leftehan

For the simplified example at hand, we can compose side of a rule) to express decryption.

Initial configuration

— A1 (nA), N1(nA), Bo() Alice chooses nonce and sends

— A1 (nA), Bo(), M(nA) Intruder intercepts messaga

— A;(nA), Bo(), M(nA), M(n) Intruder generates fresh value

— A;(nA), N1(n), Bo(), M(nA), M (n) Intruder sends. to Bob

— Bi(n,nB), Ny(n,nB), Ay (nA), M (nA), M (n) Bob receives, generates nonce, replies
— A;(nA), By (n,nB), M (nA), M (n), M(nB) Intruder intercepts message with

— A1 (nA), Na(n A nB), By(n,nB), M (nA), M(n), M(nB) Intruder sends message witA

— Ay(nA;nB), q(nB) By (n,nB), M(nA), M(n), M(nB) Alice receives and responds

Bob changes to final state, indicating
successful completion of protocol

— Bs(n,nB), Ao (nA,nB), M (nA), M (n), M (nB)

Table 2. Sample attack on simplified Needham-Schroeder

Example The core Needham-Schroeder protocol with en- decryption key is known.
cryption begins with each principal generating and publish
ing a key pair. Therefore the “local state 0" predicate for
each principal will contain a key pair. For example, Bob’s
initial actions can be stated as the following rules:

D(encf,z)), Key_pair(k, k"), M (k')

)
— D(z), Key_pair(k, k"), M (k")

The composition rule allows the intruder to encrypt a mes-
sage with any encryption key known to the intruder.

M(k)

— Jk:e_key. k' : d_key. By (k),
Key_pair(k, k')
Bo(k) — Announce(k), By(k) M(k), C(z) — C(enc,x)),
The first rule (without hypotheses) lets Bob generate a key
pair, while the second announces the public key so that othe|3 Bounded protocols
principals can choose to communicate with Bob. Alice sim-
ilarly chooses and publishes her public key. After doing so, It is relatively straightforward to use the multiset rewrit

she chooses a principal to communicate with from the seting framework summarized in the preceding section to de-

of announced public keys and transmits a message.

Aog(k),Announce(k’) — Fx. A (k, k', 2),
Ni(enc(k', {(z, k))),

Announce(k")

The following transition rule then allows Bob to decrypt the
message from Alice.

Bqg(k), N1(enc(k,{x,k"))) — Fy. Bi(k, k', x,y),

Ny (enc(k', {z,y)))

A complete presentation with slightly more general initial
ization steps is given in Appendix A, for the interested
reader.

Intruder To model the encryption capabilities of the in-

scribe finite-state and infinite-state systems. Using func-
tion symbols, it is possible to describe computation over
unbounded data types. In particular, it is easy to encode
counter machines or Turing machines, implying that impli-
cation is undecidable. However, the principal authenticat
and secrecy protocols of interest are all of bounded length
(see [6] for a relevant survey).

In order to study finite-length protocols more carefully,
we identify the syntactic form of a class of well-founded
protocol theories, called simplyell-founded theoriesn
this paper.

3.1 Creation, consumption, persistence

Some preliminary definitions involve the ways that a
fact may be created, preserved, or consumed by a rule.

truder, we add a decomposition and a composition rule toWhile multiple copies of some facts may be needed in some
the intruder model. The decomposition rule allows the in- derivations, we are able to eliminate the need for multiple
truder to decrypt a message (or part of a message) when theopies of certain facts.

Definition 1. Arulel — r in a theoryJ createsP facts if
someP () occurs more times inthan ini. Arulel — rin
a theoryT preservesP facts if everyP(f) occurs the same
number of times in- andl. Arule! — r in a theoryT
consumes” facts if some fact’(#) occurs more times ih
than inr. A predicateP in a theoryT is persistentf every
rule in T which containsP either creates or preservés
facts.

To give an example, a rule of form
P(Z) — P(¥)

does not preserv® facts, since it can be used to create a
fact P(t) and consume a fadt(s).

shared information. We incorporate this into our formal
definitions by letting a protocol theory consist of an iritia
ization theory, together with the disjoint union of bounded
subtheories that characterize the behavior of each prbtoco
agent (role). In order to bound the entire protocol, we must
assume that the initialization theory is bounded, and that
initialization can be completed prior to the execution @& th
protocol steps proper.

Definition 4. Arule R = | — r enablesa rulel’ — 1’ if
there existo, o' such that some fadP(#) € or is also in
a'l'. AtheoryT precedes theoryR if no rule inR enables
aruleinT.

In particular, if a theoryT” precedes a theord, then no

Since a persistent fact is never consumed by any rule,predicates that appear in the left hand side of ruleE éme
there is no need to generate more than one copy of a parereated by rules that are fa

ticular fact — as long as that fact is never needed twice by a

single rule. By simple transformation, it is possible toreli

inate the need for more than one copy of any persistent fact.

For example, a rule of form:

P(#),P(y),... = Q(Z,9), P(¥), P(%), ...

(with P a persistent predicate) can be replaced by rules of

form:
P() — P(f), P(7)
P() — Py(i), P(7)
P (), P2 (¥),- .. — Q& 9), (%), P(Y), ...

whereP; and P, are persistent predicates.

Definition2. A rule I — r in a theoryT is a single-
persistent ruldf all predicates that are persistent in theory
T appear at most once in A theory 7T is auniform theory

if all rules in T are single-persistent rules.

Since any theory can be rewritten as a uniform theory,

Definition 5. AtheoryA is awell-founded principal theory
if it has an ordered set of predicates, calledghiacipal role
statesand numberedlg, A1, ... , Ay for somek, such that
each ruld — r contains exactly one state predicaltge |
and one state predicatg € r, withi < j. We call the first
role state Ay, aninitial role state

By defining a principal theory in this way, we ensure that
each application of a rule iA advances the state forward.
Each instance of a principal role can only result in a finite
number of steps in the derivation.

Definition 6. A theoryS C T is abounded sub-theotfall
rulesR in § that create a fact fall into one of the following
categories:

1. The facts created hig contain existentials.
2. The facts created hi are initial role states df.

3. The facts created bl are persistent iff.

we will assume that all theories discussed from this point Definition 7. A theory? is awell-founded protocol theory

are uniform theories.

if P=JwAYBuWC... wherel is a bounded sub-theory
(called theinitialization theory andA, B, C ... are a finite

Definition 3. Let P be a set of predicates, each persistent nymper of well-founded principal theories, witpreceding

in a uniform theoryJ. Two statesS andS’ areP-similar
(denotedS ~p S’) if, after removing all duplicate persistent
P facts from each state, they are equal multisets.

Lemma 1. Given a uniform theoryl, P the set of predi-
cates persistent ifi, o a substitution, and? a rule that cre-

ates only persistent facts, $f L Tis a derivation which
invokess R more than once, then there exists a derivation

S =L 7" that invokesr R only once, withil' ~p T".
3.2 Protocol theories

In many protocols, there is an implicit or explicit ini-
tialization phase that distributes keys or establishegroth

A,B,C....

The structure of protocol theories allows derivations to
be broken down into two stages — the initialization stage,
and the non-initialization (protocol run) stage. Any dariv
tion in the theory can be reordered to contain all initializa
tion steps before any non-initialization steps.

Lemma 2. Given a well-founded protocol theofy = J &
A, whereJ is the initialization theory, and\ is the disjoint
union of one or more principal theories, § s Tisa
derivation over?, then there is a derivatio§ —— S’ and

s & T, where all rules fronf are applied before any
rules fromA.

3.3 Intruder theory Definition 9. A theory T is atwo-phaseheory if its rules
can be divided into three disjoint theori@s= Jw C ¥ D,
One motivation for using multiset rewriting for proto- whereJ is a bounded sub-theory precedigndD, € con-
col analysis is that this framework allows us to use essen-tains only composition rules) contains only decomposi-
tially the same theory for all adversaries for all protocols tion rules, and no rules il precede any rules if.

In'this subsection, we specify the properties of.intruder th Definition 10. A normalized derivationis a derivation
ories that are needed to bound the number of intruder step here all rules from the decomposition theory are applied

needed to produce a given message. As explainedin [7], the;Defore any rules from the composition theory.
actions of the standard intruder can be separated into two

phases, one in which messages are decomposed into smaller As also shown in [7] in a slightly different context, all
parts, and one in which these parts are (re)assembled into gerl_vatlons Ina two-phase theory can be expressed as nor-
message that will be sent to some protocol agent. An addi-malized derivations.

tional detail is that we sometimes need to postpone decom{ emma 3. If a theory is two-phase, and we limit the size
position of a specific fact until a later time, such as until a of terms, and we limit the number of times each existential

decryption key becomes available. is instantiated, then there are a finite number of normalized
In determining thesizeof a fact, we count the predicate derivations in the theory.

name, each function name, and each variable or constant
symbol. For example, facP(A, B) has size 3, and fact 3.4 Protocol and intruder
P(f(A, B),C) has size 5.

Definition 8. A rule R = | — r is acomposition rulaf
the non-persistent facts inhave larger size than the facts
inl. Arule R = | — r is adecomposition ruléf the non-
persistent facts in have smaller size than the factdin

Definition 11. Given a well-founded protocol theofly =

Jy A and a two-phase intruder thed¥y, astandard tracés
a derivation which has all steps from the initializationdhe
J first, then interleaves steps from the principal theoAes

with normalized derivations from the intruder thedvi;

For example, Theorem 1. Let? be any well-founded protocol theory and
C(A),C(B) - C({(A, B)) M be any two-phase intruder theory. If we bound the num-

. . ber of uses of each existential, and we bound the size of each
is a composition rule, and term, then the set of standard tracesfof) M is finite.

D((A,B)) — D(A), D(B)

: . 4 Intractability
is a decomposition rule.

For the intruder theories we will consider, we allow per-
sistent facts to appear in both the left and right hand sides
So, in general a decomposition rule is of form:

There are many undecidable properties of arbitrary pro-
tocols. If we consider all possible systems that are defin-
able using Horn logic as protocols, then undecidability fol
D((A,B)), P(...) = D(A),D(B),P'(...) lows easily from the undecidability of Horn-clause logic.

In particular, it is possible to give finite descriptions of
infinite-state systems using function symbols. For exam-
ple, if we have) : nat andsuc : nat — nat, then we can
write expressions for arbitrarily many natural numbers. It
is straightforward to go from there to various undecidabil-
ity results based on counter machines. However, this kind

whereP and P’ are sets of persistent predicates, WithC
P (and similarly for composition rules).

We also need to introduce more complicated decompo-
sition rules, which we call “Decomposition rules with Aux-
iliary facts”. These are pairs of rules of form:

D(t),P(...) = P'(...), A(t) of intractability result ignores the fact that most protisco
used in practice have a fixed number of steps and commu-
and nicate data of bounded complexity. If we restrict our at-
A(b), Q(.)= @('), D(t") tention tp finite-lgngth proFocoIs, of the form idgntified in'
the previous section, then it does not seem possible to write
whereP C P', §J C (', andsize(t') < size(t). Here,A protocols whose behavior is as complicated as arbitrary Tur

represents an Auxiliary fact (which can appear only in a pair ing machines. However, as shown in this section, there are
of rules of this form) which is used to amortize the decom- nontrivial lower bounds if we combine protocols with an
position of D(¢) into D(t') across the two rules. Appendix intruder. Throughout this section, we will restrict our at-
A.3 shows an example of when this type of decomposition tention to runs in which all terms have fewer than some
rule is needed, in order to allow for decrypting an old fact fixed number of symbols and the protocol principals have
with a newly learned encryption key. bounded activity.

4.1 Protocols without nonces Ni,...,Np,,withi < k <aandj < ¢ < nineach rule of
the form above.

Even without generating new data, determining a secu-
rity property may require exponentially-many runs of a pro-
tocol and the decision problem issPACEComplete. The
first result, that there are protocols without nonces where
the shortest insecure run is exponential, is illustratethby
following family of protocols, one for each integkr The
protocol for integek assumes that a private symmetrickey The proof involves representing existential Horn theo-
K is shared between principal§ By, ..., By andC. (The ries as protocols, as described below. While space limita-

same effect can occur achieved in a public key protocol, tions prevent us from presenting the proof in detail, we will
by first running secure key exchange steps.) In Table 3 wesketch the main ideas.

show the protocol fok = 4.
In this artificial protocol, A sendsC' a message contain-
ing (0,0,0,0) but C will only respond to a message with

Theorem 2. Secrecy is undecidable for finite-length proto-
cols of restricted form. More specifically, there is no algo-
rithm for deciding whether a given protocol, run in com-
bination with the standard intruder, allows the intruder to
gain access to a given initial secret.

4.2.2 Representation of existential Horn theories

(1,1,1,1). However, principals3,,... , By implementa Given a set of existential Horn formulas, of the form de-
k-bit increment on encrypted tuples. Therefore, if an in- scribed in Appendix B and repeated below, we can con-
truder routes the initial message fradnthrough2® — 1 B struct a protocol so that, when combined with the standard

principals in repeated runs of the protoc6l,will expose intruder theory, the intruder memory may contain formulas
the secret key. It is easy to see that unless an exponentialepresenting all consequences of the theory.
number of messages are sent, the keyemains secret. In order to do this, we must use the intruder in an essen-
If we formulate security as a decision problem without tial way. Specifically, each agent can only execute a finite
requiring the faulty trace as output, it is easy to show that sequence of steps. Therefore, we use a separate agent for
the problem ispsPAcEhard by straightforward reduction each Horn clause. The role of the intruder is to convert the
from linear-bounded Turing machines. An interesting as- final message sent by one agent to an initial message re-
pect of the protocol above is that it shows that a protocol ceived by another agent. As a result of intruder actions, a
can be secure against polynomial-time attack, but consid-datum may pass through an unbounded number of protocol

ered insecure under Dolev-Yao assumptions. steps.
At the same time, in order to represent the Horn theory
4.2 Undecidability faithfully, we cannot give the intruder complete access to
all to atomic formulas used in a Horn clause. In particu-
4.2.1 Restricted protocol form lar, we cannot let the intruder combine data from different

messages. For example, if one agent sends a message rep-
In general, it is convenient to write the steps of a protocol resentingP(a, b), we cannot allow the intruder to intercept
agentA in the form this message and replace it wift{b, a). However, it is easy
A)N PG QG), to plrever'1tththis I‘orm(;)f ir]te;felr(ence if we encrypt atomicfor
ST AL NG) P, Q3 muas with a shared private xey. .
Putting these two ideas together, we represent an exis-
whereP(...),Q(...),... are persistent facts appearing on tential Horn clause theory by a protocol with one agent per
the left and right of the rule. However, for the purpose of clause. The agent for a clause
proving a stronger negative result, we restrict our attenti
to a simpler form of protocol step in this section. Specifi-
cally, we say a protocol theory is iestricted formif the
constituent principal theories consist only of rules of the jg
form

Yoy ... Va;[(an Ao A ay)
- 31/131/](51/\/\@)]

] Ag, Noy(Jar A ... A ay])
A) N () = 3 ARG, N) = 3yr ... Ty A, Nay ([B A A BeD)

with one principal role state and one network message onwhere the encodinga; A ... A ay] of a conjunction of

the left and one principal role state and one network mes-atomic formulas as a single atomic formula is described be-
sage on the right. As with all finite-length protocols, we low.

assume the states of agefitare given by a finite list of There are several ways to represent a conjunction of
predicatesd,, ... , A,. We also assume that set of possi- atomic formulas as a single network message, containing
ble network messages are given by a finite list of predicatesonly one predicate symbol, hidden from the adversary. One

A—C: (0,0,0,0)x

C — A: ifsent(1,1,1,1)xthen respond<

B, — A ifsent(z,za,23,0)kthen respondz,, zo, 3, 1) K
By — A ifsent(zy,z2,0,1)kthen respondz;, z2,1,0)x
B; — A ifsent(z,0,1,1)xthen respondz;,1,0,0)x

By — A ifsent(0,1,1,1)kthenrespondl,0,0,0)x

Table 3. Rules for exponential protocol, k=14

way, intended to keep syntactic complication to a mini- P(z) A Q(y, z), we includedecomposition agentsf the
mum, is to assume that for eathwe have &-ary encryp- form
tion functionEncrypt,. For notational simplicity, we will
suppress in the description below. We also assume that

for each sequence of predicates . .. , P, that occurs to- and
getherin the left or right hand side of is a given Horn clause,

we have a constant symb&}.P,.P,. (Although we Bo, No([P(2) A Q(y, 2)]) = B, Ni([Q(y, 2)])

have used a sequence of letters, numbers and subscripts i@y predicatest,, A;, By, B; not used for other agents. We

write out our name for this constant symbol, we assume it 3|50 need @omposition agerfor the left-hand-side of each
is an atomic constant symbol of the language.) Given thesegriginal Horn clause. For the clause above, the agent will

Ao, No([P(2) AQ(y, 2)]) = A1, Mi([P(2)])

assumptions, we let have statesl, A1, A> andA;. Ateach step, the agentreads
one of the atomic formulas in its target conjunction, segdin
[Prltia, .t A AP (s)] out either a dummy message or, at the last step, a message

= Encrypt(Pr.Po. oo Brotrins ot b)) containing the conjunction of atomic formulas needed. In

o . order to assemblg P(z) A ,y) N R(y)], we can use an
We assume that all encryption is done using the same keyagentA with the f§||0\(lii?’19 gt(e%sy') W1, w .

the key is shared among honest participants, but not re-

vealed to the intruder. (It suffices to have one principat exe

cuting several roles, using a private key.) Ag, No([P(z)]) = A ([P()]), N1 ()
The final main idea in the representation of Horn theo- A1 ([P(2)]), N2([Q(z,9) 1) =

ries is the way that a set of conjunctions may be combined A ([P(z) A Q(z,y)1), N3()

to produce the conjunction of atomic formulas needed to As([P(2) A Q(z,y)1), Na([R(y)]) =

apply another Horn clause. This is perhaps best illustrated As(), Ns([P(x) A Q(z,y) A R(y)])

by example. After this agent sends messalje, the intruder can read the
Suppose that the existential Horn clause data[P(z) AQ(z,y) AR(y)] contained in this message and
forward it to the agent representing the Horn clause with
VaVy[(P(z) A Q(z,y) A R(y)) = Fz2(P(2) A Q(y, 2)] hypothesisP(z) A Q(z,y) A R(y).
In each of our examples, we have numbered the network
is part of the Horn theory we wish to represent by a protocol. messaged\o, N1, ..., but it is possible to renumber them

In order to use this implication, the protocol must produce a s that each message number has a fixed format.
message containindP(a)AQ(a, b)AR(b)] for somea and

b. However, the protocol agents that represent Horn clausess Multiset rewriting and LLF

produce encodings of conjunctions of atomic formulas, and

the atomic formulas here may come from different rules. . .

Therefore, we need additiona)lll protocol agents that select5'1 Linear logic and LLF

atomic formulas out of conjunctions and combine them.
The process is very similar to the encoding of the in-

truder, except that protocol agents can manipulate ereadypt

values. For each conjunction form (including variables} th

appears on the right-hand side of a Horn clause, such as Ay,... A, — 3F.By,..., B,

The multiset-rewriting notation used in this paper is the
first-order Horn fragment of linear logic [14], with existen
tial quantification. Specifically, each transition rule

can be written as a linear logic formula

we use typeéey for both public keys and principal names,
which we identify. Nonces have ty@gm , for atomic mes-

sage, while other messages have typgy. The function

Under this correspondence, every derivation using multise symbols@andk2m are used as type conversion functions

rewriting corresponds to a linear logic derivation, and-con
versely. This allows us to use linear logic tools for proto-

from nonces and keys to messages, respectively. Compos-
ite messages are obtained from their parts using theinfix

col analysis. In particular, we have used the linear logical operator, and a message encrypted with keyx is written

frameworkLLF [5] to simulate the execution of protocols,

crypt M K. Akey K is made public by a fact of the

detect attacks, and construct formal proofs about protocolform annKey K. The inverse of a key is specified as
transformations. Similar results could be obtained usinginv K.

other linear logic systems suchsrum[23] or Lygon[15],

Messages sent by a principal have the faaNet P

except that our proofs about protocol transformations rely N M, whereP identifies the protocol)N is the message

on the proof-term representationldfF, discussed below.

number within that protocol, andl/ is the message itself.

Since we will describe some aspects of the protocol Principals receive messages in packets of the fioom-

proofs carried out using LLF, we give a brief overview of
LLF. Although operators and3 are not provided directly
in LLF, it is possible to write rules as logically equivalent
formulas using other linear logic connectives. Although
the exact syntax is not overly important, we give an il-
lustration since it provides an opportunity to illustrate a
operational reading of linear logic formulas. As in other
forms of logic, conjunction in hypothesed, ® B — C,

is equivalent to nested implicatiosd -« B — C. There

is also a double-negation property of linear logic, with
(A —o false) —o false equivalent to4, that allows us to write
existential quantification using negated universal ggianti
cation. In place offalse, we use a propositional vari-
able, which is implicitly universally quantified. This lead
to a form of “continuation-passing” logic program, of the
sort usually associated with double-negation in constreict
logic. Usingloopas our propositional variable, the formula
Al®...0 A, o3F.B; ®...% B, can be written as the
clause

Al —o ... oA,
—o V#.(B; —o ... — By —oloop)
—o loop

Following conventional logic-programming notation, we
often write this clause with the outer implications revekrse

loop o A4
o— A,
o— V% (By — ... — B,, —loop)
This formula may be read operationally as follows: “in or-
der to make an iteration, consumf, ... , A,, generate
new constantg and substitute them for the variabl&s
then assert the fact8y,... , B,,, and finally try another

rule (clause)”.

5.2 Protocol Formulation in LLF

Net P N M. As we will see, both the network and the
intruder can convetbNet assertions toromNet asser-
tions.

In actual LLF syntax, Alice’s first step in the Needham-
Schroeder protocol is written as follows:

nsAl: loop
o- annKey B
o- a0 A
o- ({Na:atm}
al A B (@ Na)
-0 toNet ns 1
(crypt (@ Na) * (@ (k2m A))) B)
-0 loop).

HerensAl is a label, used to name this clause in traces,
and{Na:atm } indicates a quantified variabMa of type
atm.

5.3 Network and intruder

The network simply converts eveigNet assertion into
afromNet assertion, so that each message sent to the net-
work can be read as message from the network by other
principals. The intruder can intercept a message and de-
compose it into its atomic constituents (of the fo@wW
or k2m K). The intruder then builds up a message from
these fragments and possibly newly generated data. Finally
it sends it off in the form of fromNet message.

5.4 An equivalence proof

As an example equivalence proof, we describe an opti-
mization of our Needham-Schroeder model and prove the
equivalence between the “standard” model with network
and intruder and an optimized version in which the network
is eliminated. Since the intruder can simulate the network,
by decomposing and then recomposing each message, the
two models are equivalent, in the sense that for every trace

The signature used to describe protocols uses differentof the system with network and intruder, there is a corre-
types for messages, keys, nonces, and so on. For exampleponding trace of the system without the network in which

all honest parties see exactly the same sequences of megroceeds by induction on the structure of the derivation us-

sages, and conversely. ing the network, using a nested induction on the structure
We state the equivalence using standard logical notation.of the messages whenever we encounter a network trans-
Specifically, we writel' - A if there is a derivatiorD of mission.

this judgment of linear logic. LeVS, I, N, andInit be the

multisets of linear logic formulas representing the steps o | LF proof checking The LLF equivalence proof consists
the Needham-Schroeder protocol, the intruder, the network of clauses that formalize each inductive case of the proof.
and the initial facts, respectively. For any pair of priral®> \While LLF checks the type of each clause, type checking
A,B in Init, let¢ 4 p be the formula does not guarantee that the proof is correct since (a) the
LLF implementation does not guarantee that each case is
covered, and (b) it does not check whether uses of the induc-
tion hypothesis are well-founded. However, we can prove
an adequacy theorem which shows that any type-checked
proof of a certain form must be a correct proof.

In order to state this result, we write 1. M : A for
Theorem 3 (Equivalence).If there is a derivationD of the judgment that the LLF term has typeA with respect
(NS,I,N,Init) b ¢ag, then there is a derivatio®’ of to the (intuitionistic and linear) declarationsin Let A yg
(NS, I, Init) - ¢ap. Moreover, it is the case thd@ and be the complete set of declarations used in the equivalence
D' contain the same protocol steps in the same order. proof.

¢AB = El.?’?n,,.’I)b.Ag(A,B,.Tia,ﬂ?b) @ BQ(B7A7mH,7:Eb)

stating that the protocol betweehand B runs to comple-
tion. We use this formula as an example goal for proof
search; similar equivalences hold for other goals.

Theorem 4 (Adequacy of representation).Let A and B

5.5 Formal proofin LLF be principals inInit, and¢ 4 5 defined as above

While LLF is not a complete proof checker, there is a e There is a bijection between derivation® of
precise sense in which LLF can be used to develop machine- (NS,I,N,Init) - ¢ap and LLF termsM such
checkable proofs. In comparison with proof methods using Ans Frr M 1 oopl is derivable,
more standard logics, e.g. [27], LLF has some advantages
and disadvantages. One advantage is that the constructive
nature of proofs is immediately apparent: from an LLF
proof of the equivalence above, we obtain an algorithm that
transform a trace of one system into a trace of the other. o For every termi such thatAys Frpr M : | 0opl

e There is a bijection between derivatior®’ of
(NS, I,Init) - ¢ap and LLF termsM’ such that
Ans FriLr M1 OOpZ is derivable,

This is in part a result of the way we formalize the equiva- is derivable, there exist term&/’ and P such that
lence, and in part a consequence of the constructive nature Ao +,,» M’ : | oop2 and Ays Fpip P :
of our fragment of linear logic. A disadvantage of LLF is net 2i ntr M M’ are derivable.

that it supports only a restricted fragment of linear logic. , .
Moreover, we must write proofs in a certain style in order The terms\/ and M’ above contain the same sequences of

for LLF to be able to check their correctness. protocol steps, and the sarheNet andf r omNet tokens,
in the same order.

Overview of the proof We wish to prove that for every]

trace, possibly relying on the network to carry messages to6 Conclusion

principals, there exist an equivalent trace where the ntwo

is never used. We do this by formulating two versions of the ~ We believe that a logic-based formalism as described in
protocol. Traces of the system including a separate networkthis paper, with existential quantification for choosingvne
have typdoopl , while traces of the system without a net- values, provides a useful notation for examining the stan-
work have typdoop2 . Our definition ofequivalentraces dard Dolev-Yao protocol security assumptions. Using this
is that there is no noticeable difference from the point of formalism, we can describe all protocols we have encoun-
view of any honest participantin the protocol: they send and tered by formulating a rewrite rule (or several relatedsyle
receive the same messages and apply the same transitionfor each step of each principal. In addition, we have devel-
The LLF formalization of this proof involves definition of a oped standard theories (sets of rewrite rules) for inéali
binary predicat@et2intr which relates a derivation pos- tion steps such as generating and announcing public keys,
sibly involving the network (of typéoopl), and a deriva- and for the nondeterministic Dolev-Yao intruder. This give
tion that is network free (of typkop2). The arguments us a set of conventions for describing protocols and pravide
of this predicate are LLF terms corresponding to derivation the basis for developing general theorems and techniques
and therefore representing traces. The proof of equivalenc for protocol analysis.

There are several advantages and intentional disadvaning it possible to use our framework as an intermediate lan-
tages of the formalism used in this paper. The intent of guage in some kind of federated protocol analysis environ-
the design is that this formalism provides exactly the prim- ment.
itives needed to formalize protocols, no more. This makes
it possible to analyze protocols without having to confront Acknowledgments:Thanks to Grit Denker, Jon Millen,
complications that might be inherent in a formalism but not Mourad Debbabi, Mark Mitchell, Vitaly Shmatikov and Ul-
intrinsic to protocols themselves. In particular, we areab fich Stern for helpful discussions.
to prove lower bounds on protocol analysis that seem faith-
ful to the notion of finite-length protocol. Since the formal References
ism is based on linear logic, we have a direct method for

describing state changes. In contrast, axiomatizing pobto [1] M. Abadi and A. Gordon. A calculus for cryptographic

traces in higher-order logic requires rather complex condi protocols: the spi calculusinformation and Computatign
tions to guarantee that when a principal moves from one 148(1):1-70, 1999.

state to another, the previous state is no longer available f [2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
further use. In comparison with using CSP [18, 28, 29] or Databases Addison-Wesley, 1995.

Mury [25], our notation allows us to describe unbounded [3] J.-P. Banatre and D. L. Métayer. Computing by multiset

runs of the protocol simply, recovering bounded instances transformation. Communcations of the ACGM86:98-111,

of th protocol by restricting the uses of existential quinti 1993. _ _

cation. Perhaps the closest formalism is spi-calculus [1]. [4] G. Berry and G. Boudol. The ?hem'ca' abstract machine.

However, there are several characteristics of the underly- _ Theoretical Computer Science6:217-248, 1992.

. . . [5] I. Cervesato and F. Pfenning. A linear logical framewdrk

ing pi-calculus, such as creation of new channels, that are . .

absent from our system, making it simpler to prove meta- E. Clarke, ef'to.rp .rocgeo“”gs of Sth? E'eve“ttlég”;gl Sym-
i i ' posium on Logic in Computer Science — ‘péges

theoretic results. Finally, we should make clear that the fo 264-275, New Brunswick, NJ, July 1996. IEEE Computer

malism presented in this paper is not intended to be a logic Society Press.

for specifying and reasoning about protocols, only a nota- [6] J. Clark and J. Jacob. A survey of authentication pro-

tion for defining the behavior of a protocol in the face of tocol literature. Web Draft Version 1.0 available from
network intruder. www.cs.york.ac.uk/ jac/ ,1997.
We have found the linear-logic toaLF useful for rea- [7] E. Clarke, S. Jha, and W. Marrero. Using state space ex-

ploration and a natural deduction style message derivation
engine to verify security protocols. Rroc. IFIP Working
Conference on Programming Concepts and Methods (PRO-

soning about protocols. As a first step toward developing an
algorithmic meta-theory of protocols, we have proved cor-

rectness of a protocol/intruder optimization using thisl to COMET) 1998.

We expect to develop and verify additional optimizations [g] K. Compton and S. Dexter. Proving authentication protsc

and transformations. In addition to meta-resulisi- also in a fragment of linear logic. Manuscript, 1998.

seems useful for searching the possible runs of a protocol [9] G. Denker, J. Meseguer, and C. Talcott. Protocol spesific
and intruder. While we do not expect pureF to be more tion and analysis in Maude. Proc. of Workshop on Formal

efficient or more comprehensive than tools such as the NRL Methods and Security ProtocolE998.

analyzer [21] that have been refined over many years, therel10] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protdco

is some benefit in the simplicity of the tool. If we can im- verification as a hardware design aid.IEEE International
prove our search-strategy language to make it more effec- S%T:;igfe ;ne(;c;rgggéerlggglgn: VLS in Computers and
tive in common cases, then this may lead to better under- shag ! ' . .

di f I hni h Id be ad di [11] D. Dolev and A. Yao. On the security of public-key pro-
stap Ing o qenera techniques that cou e adopted In a tocols. IEEE Transactions on Information Theorg(29),
variety of settings.

1983.

Finally, although not discussed in this paper, we believe [12] N.Durgin and J. Mitchell. Analysis of security protdsoTo
that there may be some advantage in developing translations ~ appear in the Proceedings of the 1998 International Summer
between the notation used here and other standard proto- _ School of Marktoberdorf, 1999. . .
col formalisms. We believe the translation into Muis 13] H. Enderton. A Mathematical Introduction to LogicAca-

. ’ . . . demic Press, 1972.

;tralghtforward and easy to implement, as is a.transllatlon [14] J.-Y. Girard. Linear logic.Theoretical Computer Science
into process calculus with operator [12]. On this basis, 50:1-102. 1987

we believe there may be p'ractlcal translations into CSP, for [15] J. Harland, D. Pym, and M. Winikoff. Programming in Ly-
example, based on choosing bounds on the number of new gon: An overview. In M. Wirsing and M. Nivat, editorAl-
values that are to be generated In any run. It also seems gebraic Methodok)gy and Software Technol’mges 391—
feasible to translate protocol definition languages such as 405, Munich, Germany, July 1996. Springer-Verlag LNCS
CASPER [19] and CAPSL [22] into this formalism, mak- 1101.

[16] M. Kanovich, M. Okada, and A. Scedrov. Specify-
ing real-time finite-state systems in linear logic. In
COTIC '98: Second Workshop on Concurrent Constraint
Programming for Time-Critical Applications and Multi-
Agent SystemsNice, France, 1998. Electronic Notes
in Theoretical Computer Science, Volume 16, Issue 1.
http://www.elsevier.nl/locate/entcs.

(17]

for cryptographic protocol analysid. Cryptology 7(2):79—

130, 1994.

G. Lowe. Breaking and fixing the Needham-Schroeder

public-key protocol using CSP and FDR. 2md Interna-

tional Workshop on Tools and Algorithms for the Construc-

tion and Analysis of SystenfSpringer-Verlag, 1996.

G. Lowe. Casper: a compiler for the analysis of secypity

tocols. InProc. 10th IEEE Computer Security Foundations

Workshop pages 18-30, 1997.

C. Meadows. Analyzing the Needham-Schroeder public-

key protocol: a comparison of two approaches. Pioc.

(18]

(19]

(20]

R. Kemmerer, C. Meadows, and J. Millen. Three systems

Note that this is a simplified version of the protocol,
where the use of a trusted server to distribute the publis key
is omitted. This results in a particularly straightforwaeg-
resentation for the Initialization and Protocol Theories.
A.1 Initialization Theory

The Initialization Theory is shown in Table 4. Here, the
predicateGood Guy indicates an uncompromised principal,
parameterized by its encryption and decryption (public and
private) keys. For simplicity, we identify the principal thi
its public key (i.e. where “A’ appears in the protocol, we
use the public keyK,”). The GOODGUY rule allows for
the creation of an unlimited number of principals, each with
a unique key pair, denoted by the predicAte.

The BADKEY rule provides a mechanism for specify-
ing an unlimited number of compromised key pairs, which

European Symposium On Research In Computer Security gppear to belong to valid principals, but whose private keys

Springer Verlag, 1996.

C. Meadows. The NRL protocol analyzer: an overvigly.
Logic Programming26(2):113-131, 1996.

J. Millen. CAPSL: Common authentication protocol sfiec
cation language. Technical Report MP 97B48, The MITRE
Corporation, 1997.

D. Miller. A multiple-conclusion specification logicTheo-
retical Computer Sciencd 65(1):201-232, 1996.

(21]

(22]

(23]

[24] J. Mitchell. Analysis of security protocols.
Slides for invited talk at CAV '98, available at
http://www.stanford.edu/"jcm ,July 1998.

[25] J. Mitchell, M. Mitchell, and U. Stern. Automated analy

sis of cryptographic protocols using Mar In Proc. IEEE

Symp. Security and Privacgages 141-151, 1997.

[26] R. Needham and M. Schroeder. Using encryption for au-

thentication in large networks of computer€ommunica-

tions of the ACM21(12):993-999, 1978.

L. Paulson. Proving properties of security protocols b

induction. In10th IEEE Computer Security Foundations

Workshop pages 70-83, 1997.

A. W. Roscoe. Modelling and verifying key-exchange pro

tocols using CSP and FDR. 8th IEEE Computer Security

Foundations Workshqmpages 98-107. IEEE Computer Soc

Press, 1995.

[29] S. Schneider. Security properties and CSPIEBE Symp.
Security and Privacyl1996.

[30] M. Sipser.Introduction to the Theory of ComputatioRWS
Publishing, 1997.

(27]

(28]

A Example: Needham-Schroeder Public Key
Protocol

As an example, we give the full theory of the three-step
core of the Needham-Schroeder public-key protocol.

{A7Na}Kb
{N‘I’Nb}Kn‘

A — B
B — A
A — B {Nb}Kb

are known to the intruder. The predicdiadKey denotes
these compromised key pairs.

ROLA and ROLB allow an unlimited number of sessions
to be started for any principal to act in the role of either-“Al
ice” (the initiator) or “Bob” (the responder)A, and By
denote the initial role state for the A and B roles, respec-
tively, parameterized by the public key (principal) acting
that role.

Since we are omitting the trusted server from this exam-
ple, we accomplish key distribution by having the princgal
announce their keys. The ANNK rule accomplishes this for
the Good Guy participants, while the ANNKB rule does the
same for theBadKey pairs. Note that both rules generate
a predicatednnK indicating a public key that is available
for communication, so from this point the valid participant
can't distinguish the good guys from the bad guys.

Note that in this initialization theory, all predicates are
persistent except for initial role statdgs and By.

A.2 Protocol Theory

The protocol theories, shown in Table 4, are derived
directly from the specification of the Needham-Schroeder
protocol. TheoryA corresponds to the role of “Alice”, and
theoryB corresponds to “Bob”.

In rule A1, which corresponds to the first line of the pro-
tocol, a principalk,, in its initial state A, decides to talk
to another principak., whose key has been announced. A
new noncer is generated, along with a network message
Ng; corresponding to the first message sent in the protocaol,
and the principal moves to the new state A1, remembering
the values of: andk!. Note that sincelnnK is persistent,
it must also appear on the right hand side of the rule.

In step B1, corresponding to the second step of the pro-
tocol, a principalk., in the initial stateB,, responds to a

Initialization Theory 7J:

GOODGUY: = Jke.kq.GoodGuy ke, kq), KP(ke,kq)
BADKEY: — TJke.ka.KP(ke,kq), BadKey(ke, kq)
ROLA: GoodGuy(ke, ka) — GoodGuy(ke, ka), Ao(ke)
ROLB: GoodGuy(ke, ka) — GoodGuy(ke, ka), Bo(ke)
ANNK: GoodGuy(ke,kq) — AnnK(ke), GoodGuy(ke, kq)
ANNKB: BadKey(ke,kq) — AnnK(k.), BadKey(ke,kq)
Protocol Theories A and B:
Al: AnnK(kl), Ag(ke) — dx.A, (k kl,x), Ngi(enc(kl, (x, k.))), AnnK (k.)
A2: Ai(ke, kL,), Npa(enc(ke, (z,y))) = As(ke, kL, x,y), Nss(enc(kl,y))
B1l: Bg(k.), Nm(Pm‘(Az, k’)), AnnK (kl) — Ey.Bl(k,g,kF y), Nga(enc(kl, (x,y))), AnnK (k!)
B2: Bi(ke, k., z,y), NBq(PTI(‘(. Y)) - B2(ke,k3,T,y)

Table 4. Needham Schroeder Theory

message on the network which is of the expected formatinto larger ones, while the DCMP rule allows for decompo-

(i.e. encrypted withk.’s public key, and with the identity sition of large terms into smaller ones..

of a participant whose key has been announced, embedded LRN converts a decomposable fact into intruder knowl-

inside).k. generates another nonce, and replies to the mes-edge, and USE converts intruder knowledge into a compos-

sage, moving to a new stafe¢, where all the information able fact.

(the two nonces and the two principals) is remembered. The ENC and DEC rules allow the intruder to decrypt
Similarly, A2 corresponds to the third line of the pro- a message if it knows the private key, and to generate en-

tocol, and B2 corresponds to the implicit step where the crypted message from known public keys.

responder actually receives the final message. Note that LRNA and DECA are decomposition rules
Note that sent messages are denotet¥pyand received with auxilliary facts that handle a special case for enagipt

messages are denoted by a corresponding predi¢ate messages. If the message can't be decrypted because the

The intruder theory, described in the next section, can bekey isn't currently known, LRNA remembers the decrypted

thought of as providing a network that, at a minimum, trans- message with the special “Auxilliary” predicatd, The

forms Ng;’s to Ng;'s, so the protocol can execute. DECA rule allows Auxilliary messages to be decrypted at a
later time, if the decryption key becomes known.
A.3 Intruder Theory Finally, GEN allows the intruder to generate new facts

(i.e. nonces) as needed.

This Intruder Theory can be divided into Composition
and Decomposition rules, as shown in Table 5. So, thisis a
"Two-Phase Intruder Theory, as described in Section 3.3.

The Intruder Theory is shown in Table 5. Here the
predicate denotes persistent facts known to the intruder
while D andC represent non-persistent facts which can be
decomposed and composed into other facts. i . . .

LRNKB is an initialization rule that allows the intruder B Hom Clauses with Existential Quantifica-
to learn any Bad Keys. SindeadKey predicates are gener- tion
ated only by the initialization theory, we know from Lemma
1 that this rule only needs to be applied once per derivation, An existential Horn clauses a closed first-order formula
per BadKey fact. of the form

The REC and SND rules are used to connect the intruder v Vail(an A ... A ag)
to the network being used by the participants. The REC ; E o 3'1 D

! : yi- 3y (B A A BY)]
rule intercepts a message from the network and saves it as
a decomposable fact. The SND rule sends composed factsvherea, ... ,ay, 31, .. , B¢ are first-order atomic formu-
onto the network. las. Without restriction on the form of the atomic formu-

The COMP rule allow the user to compose small terms las, undecidability of the implication problem for existen

Initialization Rules:

LRNKB: BadKey(ke,kq) — M(ke), M(kq), BadKey(ke, kq)
I/0 Rules:

REC: Ngi(z) — D(x)

SND: C(x) — Ngi(z)

Decomposition Rules:
DCMP: D({z,y))
LRN: D(z)
DEC: M (kq), KP(ke,kq), D(enc(ke,x))
LRNA: D(enc(ke,x))
DECA: M(ky), KP(ke, kq), A(enc(ke, x))

Composition Rules:

VAN
SEEES

(w))’ D(y)
(kd) KP(k.,kq), D(zx), M(enc(k.,x))
(enc(ke, x)), A(enc(ke,x))

(ka). KP(ke, ka), D(z)

COMP: C(z),C(y) - C((z,y))

USE: M (x) - C(x),M(x)

ENC: M(k.),C(x) — C(enc(ke,x)), M(ke)
GEN: — dz.M(z)

Table 5. Two-Phase Intruder Theory

tial Horn clauses follows immediately from the undecid-
ability of Horn clauses without existential quantifiers.eTh
problem of interest to us, however, is implication when the
atomic formulas contain no function symbols.

axioms of the form

v, y, z.[(Adj(z,y) A Adj(y, 2)A
Cont(z,0) A Cont(y, 1.¢;) A Cont(z,1))
= Jz',y', 2 ((Adj(2,y') A Adj(y', 2)A

The formulas we are interested in are a special case of Below(xz', z) A Below(y', y) A Below(z’, 2))A
database dependencies [2]. However, while database de- Cont(x',0.g;) A Cont(y',0) A Cont(z,1))

pendencies include existential quantification and do not in

volve function symbols, database dependencies also allowln this formula, the variables represent cells of the Turing
equality in the conclusions of Horn clauses. Since we do machine tableau (i.e., cells of the tape at some stage of the

not use equality in our protocols (except by pattern match-

ing in the hypotheses of rules), it is not immediately clear

computation); a nice picture of the tableau we use appears
in [30, page 255]. The constarfisand1 indicate symbols

to us whether the following theorem is a consequence ofin these cells, and constants of the fdim; or 1.¢; indicate

standard results in database dependency theory.

Theorem 5. The implication problem for existential Horn

clauses without function symbols is undecidable. In par-

ticular, there is no algorithm for deciding whether a set of
existential Horn clauses without function symbols impdies
single atomic formulai (b4, . .. , b) without function sym-
bols or variables.

This theorem has a straightforward direct proof based

on axiomatizing a Cook’s-theorem-style Turing machine
tableau. Specifically, given any Turing machine, we write

that the cell contains a symb6lor 1 and is the location

of the tape head, with machine in stateor ¢; (respec-
tively). A fact Adj(z,y) means that celt is adjacent tay,
Below(z', x) that cellz’ is below cellz, andCont(z, ¢) that

the cellz has contents described by constamossibly giv-

ing the machine state in addition to the symbol contained in
the cell. The atomic formula(b,,... ,br) mentioned in

the statement of the theorem can be an atomic formula that
is derivable by a rule that requires, in its hypothesis, that
Turing machine is in a halting state.

