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ABSTRACT
Small molecules are extensively metabolized and cleared by the kidney. Changes in serum metabolite
concentrations may result from impaired kidney function and can be used to estimate filtration (e.g., the
established marker creatinine) or may precede and potentially contribute to CKD development. Here, we
applied a nontargeted metabolomics approach using gas and liquid chromatography coupled to mass
spectrometry to quantify 493 small molecules in human serum. The associations of these molecules with
GFR estimated on the basis of creatinine (eGFRcr) and cystatin C levels were assessed in #1735 partic-
ipants in the KORA F4 study, followed by replication in 1164 individuals in the TwinsUK registry. After
correction formultiple testing, 54 replicatedmetabolites significantly associatedwitheGFRcr, and sixof these
showedpairwise correlation (r$0.50)withestablishedkidney functionmeasures:C-mannosyltryptophan,pseu-
douridine, N-acetylalanine, erythronate, myo-inositol, andN-acetylcarnosine. Higher C-mannosyltryptophan,
pseudouridine, and O-sulfo-L-tyrosine concentrations associated with incident CKD (eGFRcr ,60 ml/min
per 1.73 m2) in the KORA F4 study. In contrast with serum creatinine, C-mannosyltryptophan and pseudour-
idine concentrations showed little dependence on sex. Furthermore, correlation withmeasuredGFR in 200
participants in the AASK study was 0.78 for both C-mannosyltryptophan and pseudouridine concentration,
and highly significant associations of both metabolites with incident ESRD disappeared upon adjust-
ment for measured GFR. Thus, these molecules may be alternative or complementary markers of
kidney function. In conclusion, our study provides a comprehensive list of kidney function–associated
metabolites and highlights potential novel filtration markers that may help to improve the estimation
of GFR.
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Metabolites are small organic molecules involved
in both systemic and organ-specific metabolic
processes. The kidney receives about 20% of the
cardiac output and is one of the most important
excretory organs for a wide variety of metabolites,
many of which are freely filtered as solutes of small
molecular size. In addition, many metabolites are
actively secreted into or reabsorbed from the
tubular lumen. The kidney also has a role in the
generation and metabolism of some metabolites
such as amino acids. Changes in blood metabolite
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concentrations may therefore result from impaired kidney
function via altered generation, filtration, secretion, reabsorp-
tion, or metabolism.

CKD is a major public health concern affecting approxi-
mately 10% of the population in Western countries1 and sub-
stantially increases the risk for cardiovascular morbidity and
mortality.2 Despite the high prevalence and increasing incidence
ofCKD, theunderlying pathophysiologicmechanisms arenot fully
understood.

Because blood metabolite concentrations are influenced by
kidney function, some metabolites are currently used for its
estimation—most importantly, serum creatinine is used to esti-
mate the GFR. However, creatinine has important limitations,
including a rise only after 50% of kidney function has been lost
and a dependence on age, sex, and race, reflecting underlying
differences in muscle mass.3 Estimates from creatinine-based
equations can be inaccurate (especially in early stages of CKD)
in elderly individuals and in those with extreme body mass
index values. The identification of additional markers of kidney
function is therefore clinically useful, as evidenced by the recent
addition of a second marker to estimate GFR, cystatin C, which
improves the ability to accurately estimate GFR4 and predict
future risk of ESRD and death.5

Previous studies in the general population using targeted
metabolomics approaches have found associations between
lower eGFR and acylcarnitines.6 General population-based
studies of eGFR decline and/or incident CKD have reported
associationswith spermidine and the kynurenine-to-tryptophan
ratio7 as well as with kynurenic acid, choline, and citrulline,
among others.8 Nontargeted metabolomics creates further op-
portunities for the discovery of CKD-associated metabolites
because of its abilities to detect a wide spectrum of metabolites
from different metabolic pathways, including metabolites of yet
unknown identity. Earlier nontargeted metabolomics studies
have either been conducted in small numbers of individuals
with preexisting kidney disease9 or in a population-based study
of African Americans without external replication.10

The goal of our study was to extend current knowledge by
identifying and replicating novel and known metabolites
that reproducibly associate with eGFR and incident CKD in
European participants in large population-based studies. We
used a nontargeted metabolomics approach to identify novel
markers that are potentially useful to estimate kidney function
and to gain additional insights into the pathophysiology of
CKD and renal metabolite handling at a stage where pre-
ventive actions to slow kidney function decline may still be
implemented.

RESULTS

Table 1 shows the characteristics of the population samples
studied. The distribution of most characteristics was similar
in the two study samples used for discovery of metabolite
associations. Participants in the replication study, the TwinsUK

cohort, were on average younger and healthier than the Coop-
erative Health Research in the Region of Augsburg (KORA)
participants, and the sample consisted only of women. Mean
estimated creatinine-based GFR (eGFRcr) was higher and
CKD prevalence was lower, with 3.1% in the TwinsUK cohort
compared with 5%–7% in the KORA studies.

Detailed information about the 493 metabolites examined
in this study is given in Supplemental Table 1, including bio-
chemical names, metabolic pathways, and quality control sta-
tistics. Of 321 identified metabolites with known chemical
structure, there were 81 amino acids and related compounds,
14 carbohydrates, 15 cofactors and vitamins, 6 metabolites
related to energy metabolism, 130 lipid metabolism deriva-
tives, 14 purine and pyrimidine bases and related compounds,
27 peptides, and 34 xenobiotics.

Markers Cross-Sectionally Associated with eGFRcr
The analyticalworkflowof the cross-sectional association study
between serummetabolites and eGFR in the KORA F4 study is
shown in Supplemental Figure 1. The KORA F4 study was used
to evaluate these associations because of the availability of a
second, independent noncreatinine filtration marker for vali-
dation, serum cystatinC.Of 488metabolites available in KORA
F4 (see the ConciseMethods), 112 were significantly associated
with GFRcr and also with GFR estimated from cystatin C
(eGFRcys) after correction for multiple testing (Bonferroni
correction, P,1.031024). Of these, 103 metabolites could
be assessed in the smaller TwinsUK cohort. All but one showed
effects in the same direction, and 54 of them were significantly
associated (P,4.931024, one-sided P value corrected formul-
tiple testing) and thus considered replicated. This likely
represents a conservative estimate, given the moderate size of
the replication sample.

Table 2 highlights sixof the replicatedmetabolites,whichhad a
pairwise Pearson correlation coefficient of $0.50 with one or
more of four established kidney function markers (eGFRcr,
eGFRcys, creatinine measured by a standard test, and cystatin
C): pseudouridine, C-mannosyltryptophan, N-acetylalanine,
erythronate, myo-inositol, and N-acetylcarnosine. Associations
with mass spectrometry (MS)–quantified creatinine are shown
for comparison. C-mannosyltryptophan showed the highest
pairwise correlations of 20.61 with eGFRcr and 20.71 with
eGFRcys. The association of these six metabolites with CKD, as
assessed by their association P values, was comparable in magni-
tude to that for MS-quantified serum creatinine (Table 2). In all
instances, higher concentrations of the metabolites were associ-
ated with lower eGFRcr and higher CKDprevalence. Supplemen-
tal Table 2 provides complete association results, including both
P values and false discovery rate Q values for all 488 metabolites
with eGFRcr, eGFRcys, and CKD, as well as their pairwise corre-
lations with established kidney function markers. Among
them were previously reported metabolites such as kynurenine,
erythritol,10 and glutaroylcarnitine,6 as well as several unidenti-
fiedmetabolites and novelmetabolites (e.g.,O-sulfo-L-tyrosine)
that showed highly significant associations with kidney
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function but pairwise correlations with established kidney
function markers of ,0.5.

Next, we assessed the cross-sectional association between
pairwise metabolite ratios and eGFRcr and eGFRcys in the
KORA F4 study. We previously showed that metabolite ratios
can provide information above and beyond their individual
components, as quantified by the P gain measure (the factor
by which the P value decreases by taking the ratios compared
with the respective single metabolites; see the Concise
Methods).11,12 For example, these ratios can serve as a proxy
for the activity of a metabolite conversion enzyme or a me-
tabolite cotransporter or countertransporter. Of 115,476
pairwise metabolite ratios assessed, 60 showed significant
associations after correction for multiple testing (P,4.331027

or 0.05/115,476) with both eGFRcr and eGFRcys in the
KORA F4 study, had a significant P gain (.103115,476),
were replicated in the TwinsUK study, and did not contain
MS-quantified creatinine (Supplemental Table 3). Of these
60 ratios, 42 contained the creatinine precursor creatine, and
many of the others were ratios of amino acids. The largest
P gain was observed for the X-12094/creatine ratio
(P gain=631024), and the largest P gain for a ratio that did not
contain creatine was observed for 3-(4-hydroxyphenyl)lactate/
tyrosine (P gain=231017). After the completion of our study,
X-12094 was identified asN1-methyl-2-pyridone-5-carboxamide,
which has been proposed as a uremic toxin.13 An example that
illustrates the value of using ratios in this setting is the glycine/
serine ratio (P gain =1.631016), whichmight reflect the activity of
the enzyme serine hydroxymethyltransferase in the kidney, which
converts glycine to serine. Several of the ratios with the largest
P gains contained classic uremic solutes in addition to creatine,
such as 3-indoxylsulfate and urea.

Sensitivity analyses excluding individuals with prevalent
CKD at the KORA F4 visit did not change the number of
significantly associated and replicated metabolites or metab-

olite ratios, but themagnitude of associationwas attenuated by
approximately 25%.

Markers Associated with eGFRcr Decline over Time
To evaluate whether the eGFRcr-associated and/or additional
metabolites also correlated with eGFRcr decline over time,
we assessed their association with annual change in eGFRcr
between theKORAS4 (baseline) andKORAF4 (follow-up after
7.1 years on average) study visits in a subsample of 991
individuals that attended both visits and for which measure-
ments of 422metabolites at the KORA S4 baseline survey were
available. Three metabolites (C-mannosyltryptophan, pseu-
douridine, and O-sulfo-L-tyrosine) but no ratios were signif-
icantly associated with annual eGFRcr decline after adjusting
for known correlates of kidney disease and baseline eGFRcr
(Table 3). Higher serum concentrations of all three metabo-
lites were associated with larger eGFRcr decline and incident
CKD (P,0.05). Upon simultaneous inclusion followed by
backward elimination, only C-mannosyltryptophan remained
nominally associated with eGFRcr change (P=0.03). This was
not unexpected, given the moderate to high correlation of the
metabolites with each other (Table 3). Themetabolites did not
show significant interaction with baseline eGFRcr. The asso-
ciation between all tested metabolites and annual eGFRcr de-
cline, as well as incident CKD, is shown in Supplemental Table
4.

Highlighted Markers Are Less Age and Sex Dependent
than Serum Creatinine
Because the novel eGFRcr-associated metabolites in Tables 2
and 3 represent potentially promising new kidney function
markers, we evaluated their properties in more detail. Supple-
mental Table 5 contains detailed information on their distri-
bution across strata of CKD defined by serum creatinine
(quantified via standard assay) and by cystatin C, as well as

Table 1. Demographic characteristics of the study populations

Variable
KORA S4/F4 Sample

at S4 Visit
KORA
F4 Visit

TwinsUK Study

Sample size, n 991 1735 1164
Age, yr 63.3 (5.4) 60.8 (8.8) 50.1 (11.0)
Men, % 70.9 48.4 0.0
Body mass index, kg/m2 28.2 (4.0) 28.1 (4.8) 26.3 (4.9)
Current smoking, % 11.9 14.6 10
Diabetes prevalence, % 0.6 8.6 3.1
Lipid-lowering medication use, % 11.2 16.4 N/A
Antihypertensive medication use, % 32.3 37.1 3.8
Systolic BP, mmHg 134.3 (19.5) 124.6 (18.6) 126.8 (17.4)
eGFRcr, ml/min per 1.73 m2 81.0 (13.1) 87 (15.8) 93.8 (17.3)
eGFRcys, ml/min per 1.73 m2 N/A 101 (20.3) N/A
CKD prevalence, eGFRcr ,60 ml/min per 1.73 m2, % 6.6 5.2 3.1
eGFRcr change per year, ml/min per 1.73 m2 0.6 (1.6) N/A N/A

Continuous measures are summarized as mean (SD) and categorical variables are given as percentages. Mean change in eGFRcr is reported for the subset of
individuals with measures at both visits available; positive values correspond to a decrease in eGFRcr over time. The low prevalence of diabetes at the S4 visit
reflects the fact that only fasting samples were selected for metabolomics analysis in S4. Such samples were available from KORA S4 participants who had been
invited for an oral glucose tolerance test excluding participants with clinically diagnosed diabetes. N/A, not available.
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important clinical CKD risk factors including male sex, older
age, obesity, diabetes, hypertension, and smoking. CKD status
had by far the most influence on differences in median me-
tabolite concentrations. Figure 1 gives a graphical representa-
tion of the distribution of the metabolite concentration across
strata of CKD, as well as of age and sex as established major
determinants of serum creatinine concentrations. The differ-
ence in metabolite concentrations for individuals with and
without CKD was most pronounced for erythronate, pseu-
douridine, and C-mannosyltryptophan, suggesting that the
semiquantitative determination of metabolite abundance is
sufficient to identify kidney function–related markers. Clear
differences by sex were observed for concentrations of MS-
quantified creatinine and N-acetylcarnosine, consistent with
their high content in muscle tissue. C-mannosyltryptophan
and erythronate showed higher median concentrations in old
age compared with the other markers.

Because C-mannosyltryptophan and pseudouridine were
associated with both eGFRcr and annual eGFRcr decline, we
examined their distributions more closely. Figure 2 shows the
concentrations of serum C-mannosyltryptophan, pseudouri-
dine, serum creatinine (standard method), and cystatin C as a
function of age and sex. As opposed to the other markers,
serum creatinine concentrations increase less with advanced
age and they are clearly higher in men than inwomen, suggest-
ing that accounting for the effect of age but not sex would be
important when considering whether to incorporate either C-
mannosyltryptophan or pseudouridine into GFR-estimating
equations.

C-Mannosyltryptophan and Pseudouridine Associate
with Measured GFR
To further explore whether C-mannosyltryptophan or pseu-
douridinemay represent potential novel filtrationmarkers, we
examined their concentrations in 200 participants in the
African American Study of Kidney Disease and Hypertension
(AASK) with three consecutive measures of GFR (mGFR; see
the Concise Methods). The adjusted partial correlations of
both markers with mGFR were 20.78, slightly lower than
the corresponding correlations with eGFR (Table 4). Per dou-
bling of metabolite concentration, both metabolites showed
highly significant associations with incident ESRD, with
hazard ratios of 11.4 (95% confidence interval [95% CI], 5.9
to 22.2) for C-mannosyltryptophan and 11.2 (95% CI, 5.3 to
23.7) for pseudouridine. Both associations were greatly atten-
uated when adjusting for eGFRcr at study baseline and were
abolished completely when adjusting for mGFR (Table 4).

Prediction of CKD
We also assessed whether a broad panel of metabolites could
improve the prediction of incident CKD beyond that achieved
with known clinical risk factors using unbiased variable
selection (see the Concise Methods). For a model containing
clinical variables only, age, systolic BP, antihypertensive
medication use, smoking, and HDL were selected in additionTa
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to eGFRcr at the KORA S4 visit. For a model containing
metabolites only, 19 metabolites were selected using a
boosting approach (see the Concise Methods) and are
listed in Supplemental Table 6. Finally, six metabolites were
selected, including C-mannosyltryptophan, pseudouridine,
and N-acetylornithine, for a model combining the selected
clinical covariates as well as metabolites (Supplemental Table
6). The predictive ability for incident CKD, as measured by the
area under the curve, was 0.82 (95% CI, 0.77 to 0.86) for the
metabolites alone, 0.83 (95% CI, 0.79 to 0.87) for known clin-
ical CKD risk factors alone, and 0.84 (95% CI, 0.80 to 0.88)
for a model incorporating a combination of metabolites and
clinical parameters (Supplemental Figure 2). The integrated
discrimination improvement of 0.05 was not statistically signif-
icant (P=0.52). In addition, models with metabolites were less
well calibrated, even after recalibration (Hosmer–Lemeshow
test: P,0.05).

Genetic Associations for Highlighted Markers of
eGFRcr
Finally, we queried the seven kidney function–associated me-
tabolites in Tables 2 and 3 for their association with genome-
wide genetic markers in an existing database to which the
KORA study contributed,14 as well as in publicly available
data on the association between the genetic markers and
kidney function from the CKDGen Consortium,15,16 to gain
further insights into factors influencing their serum concen-
trations beyond kidney function. Supplemental Table 7 dis-
plays all genetic variants that showed a significant association
(P,7.131029 or 5.031028/7) with any of these metabolites.
In several instances, the metabolite matched the function of
the gene that contained metabolite-associated variants. For
example, genetic variants in ISYNA1, encoding a protein im-
portant in myo-inositol synthesis, and in SLC5A11, encoding
an inositol transporter, were significantly associated with
myo-inositol concentrations. Thus, the concentrations of
this biomarker are associated not only with kidney function
but also with genetic variation related to its generation and
handling. When evaluating the association between the ge-
netic variants and eGFRcr, only rs6804368 in GADL1
showed a significant association with eGFRcr after correction
for multiple testing (P,6.253102 3 or 0.05/8). The

associations of the same allele with higher concentrations of
N-acetylcarnosine and lower eGFRcr complement the inverse
association between N-acetylcarnosine and eGFRcr observed
in our screen. The lack of association between the other ge-
netic variants and eGFRcr is another piece of evidence that
these metabolites may represent kidney function markers,
rather than causing kidney disease.

DISCUSSION

In this study of serum metabolites quantified using non-
targeted metabolomics, we identified six metabolites that
were reproducibly associated with eGFR and CKD in in-
dependent studies and showed high correlation with estab-
lished kidney function markers. C-mannosyltryptophan
and pseudouridine emerged as particularly interesting
markers of kidney function that were highly correlated
withmeasuredGFR and showed less dependence on sex than
serum creatinine, the marker currently most widely used to
estimate GFR.

In Light of the Current Metabolomics Literature
We applied a nontargeted metabolomics approach, aimed at
a broad coverage of the human metabolome. We previously
investigated the association between kidney function and serum
metabolites quantified using a lipid-focused targeted approach
(Biocrates AbsoluteIDQp150 and p180 assays) in theKORAand
TwinsUK studies. We found that higher concentrations of
multiple acylcarnitines were significantly associated with lower
eGFR.6 Although targeted, absolute quantitative metabolomics
techniques are generally more precise and accurate, they can
only examine a predefined set of metabolites. The metabolite
with the strongest association reported in our previous study,
glutaroylcarnitine, was also identified in this project as strongly
associated with eGFRcr and CKD, thus supporting the view that
the nontargetedmetabolomics approach used here has sufficient
power in order to replicate previous findings from a targeted
assay, while providing access to a much wider metabolite spec-
trum. The reported lack of a significant association between
glutaroylcarnitine and kidney function decline7 could be
confirmed in this study, indicating that acylcarnitines such as

Table 3. Metabolites significantly associated with annual eGFRcr change and incident CKD in the KORA study between visits
S4 and F4

Metabolite
Annual eGFRcr Change Incident CKD (n=95 cases)

n Direction P Value n Direction P Value

C-mannosyltryptophan 985 + 8.7E-06 920 + 1.1E-03
Pseudouridine 989 + 1.3E-05 924 + 3.7E-03
O-sulfo-L-tyrosine 987 + 6.8E-05 922 + 1.4E-02

A positive direction in eGFRcr change denotes a decline of kidney function over time per unit increase in metabolite concentration and a positive association with
incident CKD with higher odds of CKD. For the analysis of incident CKD, patients with CKD at the S4 visit had been excluded (see the Concise Methods). Pairwise
metabolite Pearson’s correlation coefficients in the eGFRcr change sample were 0.74 (C-mannosyl-tryptophan, pseudouridine), 0.41 (C-mannosyltryptophan, O-
sulfo-L-tyrosine), and 0.46 (pseudouridine, O-sulfo-L-tyrosine). Mean eGFRcr among those who developed incident CKD was 73.4 (SD 9.5) at the S4 visit and 51.7
(SD 8.4) at the F4 follow-up visit.
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glutaroylcarnitine might be markers of kidney function rather
than etiologic factors in CKD development or progression.

Other studies have identified kidney function– or disease–
associated metabolites that were quantified using the same
nontargeted metabolomics approach used here. Niewczas
et al. conducted a small study of 80 individuals with diabetes
and found 16 metabolites associated with incident ESRD,

including myo-inositol, erythronate, pseudouridine,
C-mannosyltryptophan, and glutaroylcarnitine.9 Our study
extends these findings to show altered concentrations of these
metabolites already at early stages of reduced kidney function in
general population samples with a low prevalence of diabetes,
supporting their potential use not only as progression markers
of advanced kidney disease but also as early markers of reduced

Figure 1. Distribution of eGFR-associated markers across strata of CKD and its major risk factors. (A) Creatinine (MS-quantified). (B)
N-acetylalanine. (C) Myo-inositol. (D) C-mannosyltryptophan. (E) O-sulfo-L-tyrosine. (F) Pseudouridine. (G) Erythronate. (H)
N-acetylcarnosine. The two box plots on the right of each panel represent strata of cystatin-C based CKD and show that especially
concentrations of erythronate, pseudouridine, and C-mannosyltryptophan differ more strongly by CKD status than does serum
creatinine. Differences in the dependencies on sex and age can be observed for different metabolites.
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kidney function. Yu et al. conducted a population-based study
among African-American participants in the Atherosclerosis
Risk in Communities Study cohort.10 The authors reported
some of the same markers to be associated with eGFR, including
N-acetylalanine, which our study shows to be generalizable to
Europeanpopulations. They also highlighted but did not replicate
associations between concentrations of 5-oxoproline and 1,5-

anhydroglucitol with incident CKD among
African Americans, neither of which was
significantly associated with eGFR decline
or incident CKD in our study. A potential
explanation for this observation, other than
or in addition to differences in statistical
modeling, could be the presence of popula-
tion-specific factors that influence these as-
sociations or the low prevalence of diabetes
in our sample, because both markers have
been linked to abnormal glucose metabo-
lism.17

Biologic Mechanisms
Acommonthemeamongmanyoftheassociated
metabolites identified here (N-acetylalanine,
N-acetylcarnosine, C-mannosyltryptophan,
erythronate, pseudouridine, and O-sulfo-L-
tyrosine) is that they have all been linked to
post-transcriptional or post-translational
modifications. Although it is known that
certain post-translational protein modifica-
tions such as carbamylation accumulate in
the setting of renal failure and have been
proposed to possess pathogenic properties,18

it is unclear whether the observed accumu-
lation of metabolites that indicate specific
post-translational modifications in the set-
ting of a population-based study occurs
as a consequence of an early decrease in kid-
ney function. Altered renal handling of such

metabolites in the setting of reduced GFR or a role in the devel-
opment and progression of kidney disease, such as has been de-
scribed for advanced glycation end products,19 are alternative
explanations.

The C-glycosylation found in both C-mannosyltryptophan
andpseudouridine is a glycosylation rarelyobserved inhumans.20

While the sugar molecules are linked via oxygen or nitrogen to

Figure 2. Comparison of serum C-mannosyltryptophan and pseudouridine with serum
creatinine and cystatin C over age by sex. (A) C-mannosyltryptophan. (B) Pseudouridine.
(C) Serum creatinine (standard method). (D) Serum cystatin C. Results are shown with solid
lines for men and dashed lines for women. The three lines correspond to the median and
25th and 75th percentiles. Creatinine and cystatin C are transformed (median-scaled, log10
transformed) similarly to the MS-quantified metabolites to facilitate comparison. In con-
trast to other markers, serum creatinine concentrations are clearly higher in men than in
women. They increase less with advanced age, when muscle mass typically declines.

Table 4. Correlation of C-mannosyltryptophan and pseudouridine with measured GFR and their association with ESRD in the
AASK study

C-Mannosyltryptophan Pseudouridine

Correlation P Value Correlation P Value

Partial correlation with eGFR, r -0.718 1.9E-31 -0.714 7.0E-31
Partial correlation with mGFR, r -0.783 1.2E-40 -0.773 5.6E-39

N HR 95% CI P Value N HR 95% CI P Value

Association with incident ESRD
Model 1: adjusted for age, sex,

BP, treatment, and proteinuria
199 (32) 11.4 (5.87 to 22.2) 7.8E-13 199 (32) 11.2 (5.27 to 23.7) 3.2E-10

Model 1 plus adjustment for eGFRcr 191 (31) 3.39 (1.25 to 9.19) 0.02 191 (31) 2.32 (0.83 to 6.45) 0.11
Model 1 plus adjustment for mGFR 199 (32) 1.64 (0.48 to 5.60) 0.43 199 (32) 0.77 (0.21 to 2.78) 0.69

Data are presented as n (number of events) and hazard ratios (95%CIs), unless otherwise indicated. Partial correlations were adjusted for age and sex. Sample sizes
for individuals with complete covariate information and number of ESRD events are listed for each regressionmodel. HR is per 2-fold increase in themetabolite. For
comparison, corresponding correlations with mGFR were 20.784 for creatinine (Jaffe, P=7.4e-41) and 20.864 for cystatin C (P=8.1e-57).
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another molecule such as an amino acid or a nucleoside in most
glycosylationproducts,C-glycosylic compounds connect themol-
ecules in a C-C bond. C-glycosylation as a novel type of protein
glycosylation has first been described for C-mannosylation of
Trp-7 in human ribonuclease 2.21 C-2 mannosylation of trypto-
phan residues represents a novel enzymatic pathway in trypto-
phan metabolism in humans.22 C-mannosyltryptophan is found
in human serum, urine, and cerebrospinal fluid as well as in var-
ious food products.22 It has been postulated as amarker of kidney
function in individuals with kidney disease.23 The association be-
tween C-mannosyltryptophan and annual eGFR decline even af-
ter adjusting for baseline eGFRcr and clinical CKD risk factors
may point toward an etiologic role in CKD progression. Alterna-
tively, it may be a more sensitive kidney function marker com-
pared with serum creatinine in early phases of CKD, when GFR is
only mildly impaired and serum creatinine is still unchanged. In
support of the latter hypothesis, Yonemura et al. documented a
higher sensitivity of C-mannosyltryptophan compared with cre-
atinine for the detection of normal renal function.24 Moreover,
the high correlation of C-mannosyltryptophan with both
mGFR and eGFRcr as well as the abolished association be-
tween C-mannosyltryptophan and incident ESRD upon inclu-
sion ofmGFR as a covariate in the AASK study further support
C-mannosyltryptophan as a filtration marker.

Pseudouridine is the C-glycosidic derivative of uridine, a
modified nucleoside found in RNA. Pseudouridine concen-
trations have long been recognized as elevated in uremia in
studies of smaller sample sizes,25–28 but our study provides the
first replicated association between pseudouridine con-
centrations and reduced kidney function and its progres-
sion in individuals from the general population. Similar to
C-mannosyltryptophan, the high correlation of pseudouri-
dine with mGFR and eGFRcr highlights its potential as an addi-
tional marker for the estimation of GFR.

Erythronic acid is an organic acid thought to be a breakdown
product of glycated proteins or ascorbic acid, specifically in
patients with diabetes.29 Erythronic acid is also a prominent uri-
nary biomarker of transaldolase deficiency, a rare inherited in-
born error ofmetabolism, which also features kidney disease.30,31

Two metabolites highlighted in our study, N-acetylalanine
and N-acetylcarnosine, contain an N-acetylation as a post-
translational modification.32 Higher concentrations of these me-
tabolites were associated with lower eGFR. Previous studies have
reported an association between genetic variants inNAT8 and both
kidney disease15,33 and concentrations of N-acetylornithine.34,35

Likewise, we observed an association between a genetic variant in
GADL1 and both higher concentrations of N-acetylcarnosine and
lower eGFR.While not establishing causality, these combined find-
ings justify the further study of the role of N-acetylation,
an important mechanism for detoxification, in kidney disease.

Myo-inositol is a polyol produced from glucose-6-phosphate
and serves as an important precursor of inositol phosphates,
important intracellular secondmessengers, and as a component
of phosphatidylinositols. The kidney is the most important
organ in humans both for the synthesis as well as catabolism of

myo-inositol.36 High blood concentrations of myo-inositol
were found to associate with progression to ESRD among
individuals with diabetes.9 In our study of population-based
individuals, myo-inositol concentrations were associated with
eGFR but not incident CKD, suggesting that its association
with reduced kidney function is a reflection of the altered
ability of the kidney to degrade or excrete myo-inositol rather
than supporting it as a marker causally involved in the patho-
genesis of CKD.

The only marker that showed a significant association with
kidney function decline over time, but was not highly correlated
with established kidney function markers cross-sectionally, was
O-sulfo-L-tyrosine. Such a pattern of association may be
expected from a marker that is related to the development
and/or progression of kidney disease. Secreted and transmem-
brane proteins can contain O-sulfated tyrosine residues, where
the transfer of sulfate to tyrosine residues is a post-translational
modification catalyzed by tyrosylprotein sulfotransferases.37

Clinical Relevance and Future Work
Our results show that concentrations of several serum metab-
olites, most notably C-mannosyltryptophan and pseudouridine,
discriminate individuals in early stages of cystatin C–based CKD
at least as well as serum creatinine, with the advantage of being
less dependent on sex. If the new markers described here, or a
combination thereof, are more sensitive markers of early
changes in kidney function compared with serum creatinine,
they may be able to add information to already established kid-
ney function markers in order to identify individuals prone to
kidney function decline and CKD. Although the metabolites did
not improve risk prediction for incident CKD above and beyond
well known clinical risk factors in the general population, semi-
quantitative measurements of serummetabolites agnostic to the
presence of clinical risk factors predicted risk equally well. A
limitation of our study is that our approach does not provide
absolute quantification of these markers; therefore, future stud-
ies utilizing targeted, absolute quantitative assays are needed to
verify the reported associations and to establish reference ranges.

In conclusion, the metabolites C-mannosyltryptophan and
pseudouridine are strongly and reproducibly associated with
eGFRandCKDinpopulation-based studies, arehighly correlated
with measured GFR in patients with CKD, and show favorable
properties such as less dependence on sex compared with the
established kidney functionmarker serum creatinine. Additional
studies are required to establish absolute concentrations of the
highlighted metabolites and to evaluate whether they represent
kidney functionmarkers whose serum concentrations increase at
early stages of reduced kidney function.

CONCISE METHODS

Study Design and Participants
Subjects in this study participated in the Fourth Cooperative Health

Research in the Region of Augsburg Survey (KORA S4) and were
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between the ages of 55 and 74 years at their baseline visit (S4 visit,

1999–2001). A subsequent follow-up visit was conducted from 2006

to 2008 (F4 visit) 7.1 years after the baseline visit, on average.

Measurements of 488 serum metabolites that passed quality

control were available for 1735 individuals at the F4 visit. Of those

individuals that attendedboth the S4 and theF4 visits, 991participants

had available information on serum creatinine (standardmethod, see

below) at both visits and on covariates and 422 serum metabolites at

the S4 visit. Standardized examinations, interviews, and laboratory

tests conducted in the KORA study were previously described in

detail.38

TheTwinsUKstudy is anadult twin registry:Unselected twinswere

recruited through national media campaigns in the United Kingdom.

Participantswere reported tobe comparable to age-matched singleton

members of the general population in disease-related and lifestyle

characteristics.39 The 1164 participants for this study were selected

from cross-sectional visits taking place between 1997 and 2008.Writ-

ten informed consent was obtained from all participants. The studies

were approved by their local ethics committees.

AASKwas a two-by-threemulticenter randomized clinical trial of BP

control and specific agents (angiotensin-converting enzyme inhibitors

versus metoprolol versus calcium channel blockers), as previously

described. Participants were African-American men and women with

hypertensive kidney disease and GFR between 20 and 65 ml/min

per 1.73 m2.40,41 GFR was measured as urinary clearance of 125

I-iothalamate.42 For our analysis, 200 AASK participants with consis-

tent mGFR at the AASK 48-month follow-up visit (previous and next

semiannual visits within 25% of the 48-month mGFR) were selected

for metabolite quantification of samples collected at the 48-month

follow-up visit. Characteristics of 188 individuals with data on the

two candidate metabolites and serum creatinine measurements are

provided in Supplemental Table 8.

Measurement of Metabolites
Serum metabolites from KORA and TwinsUK participants were

quantified at Metabolon Inc. (Durham, NC) using a nontargeted

metabolomics gas and liquid chromatography coupled to mass

spectrometry (GC/MS and LC/MS, respectively) approach. Details

of the methods applied for quantification and identification of

metabolites were reported previously.43,44 Briefly, sample preparation

was performed on a Hamilton MLStar (Hamilton Company, Salt

Lake City, UT) robotics system: After thawing, 400 ml of extraction

solvent (methanol containing recovery standards) was added to each

100 ml of serum samples in a 96-well plate format. Extraction was

carried out by shaking for 2 minutes using a Geno/Grinder 2000

(Glen Mills Inc., Clifton, NJ). After centrifugation, the supernatant

was split into four aliquots: two for LC/MS analysis (positive and

negative electrospray ionization [ESI] mode), one for GC/MS analy-

sis, and one reserve aliquot. Solvent was removed on a TurboVap

(Zymark) and the samples were dried under vacuum overnight.

Samples were reconstituted with 0.1% formic acid for LC/MS positive

ion mode and 6.5 mM ammonium bicarbonate (pH 8.0) for negative

ion mode. Both reconstitution solvents contained also internal stan-

dards. The GC/MS aliquots were derivatized for 1 hour at 60°C with

N,O-bistrimethylsilyl-trifluoroacetamide in a solvent mixture of

acetonitrile/dichloromethane/cyclohexane (5:4:1), containing 5%

triethylamine and retention time markers.

LC/MS analysis was performed on an LTQ mass spectrometer

(Thermo Fisher Scientific, Waltham, MA) equipped with a Waters

Acquity UPLC system (Waters Corporation, Milford, MA). Two

separate columns (2.13100 mm, BEH C18 1.7 mm particle; Waters

Corporation) were used for acidic (solvent A: 0.1% formic acid in

H2O; solvent B: 0.1% formic acid in methanol) and basic (solvent A:

6.5 mM ammonium bicarbonate, pH 8.0; and solvent B: 6.5 mM

ammonium bicarbonate in 98%methanol) mobile phase conditions,

optimized for positive and negative ESI, respectively. After injection

of the sample extracts, the columns were developed in a gradient of

100% A to 98% B in 11-minute runtime at a 350 ml/min flow rate.

The eluent flow was directly connected to the ESI source of the LTQ

mass spectrometer. Full-scan mass spectra (mass-to-charge ratio [m/z]

of 99–1000) and data-dependentMS/MS scans with dynamic exclusion

were recorded in turns.

GC/MS analysis was done on a Thermo-Finnigan Trace DSQ

fast-scanning single-quadrupole mass spectrometer, equipped with a

20 m 3 0.18 mm GC column with a 0.18-mm film phase consisting

of 5% phenyldimethylsilicone. Electron ionization at 70 eV was used

and the column temperature was ramped between 60°C and 340°C

with helium as the carrier gas. Mass spectra in a scan range from 50 to

750 m/z were recorded.

Metabolites were identified from the LC/MS and GC/MS data by

semiautomated multiparametric comparison with a proprietary

library, containing retention times, m/z ratios, and related adduct/

fragment spectra. To account for differences in the times of sample

collection and because metabolite content for untargeted metabolo-

mics experiments can vary somewhat over time for technical reasons,

we applied stringent and consistent data cleaning procedures separately

for the two data sets. In total, 493 metabolites measured at S4 (n=427)

and/or F4 (n=488) could be matched to metabolites in the library, 321

with known and 172 with thus far unknown chemical identity. The

majority of metabolites (86%) were available in both data sets.

For every metabolite, the raw area counts were normalized to the

median value of the run day to correct for interday variation of the

measurements. After log10 transformation, outlier values were

removed for each metabolite by setting values of .4 SDs from

the mean of the respective metabolite to missing. Metabolites

that were measured in ,300 individuals were excluded before

analyses.

Untargeted, GC/MS-, and LC/MS‐based serum metabolite quan-

tification in the AASK study was performed using the same approach

as in the KORA and TwinsUK studies (global profiling v3; Metabolon

Inc.).45

Outcome Definition
The primary outcomes of the discovery study were eGFR from serum

creatinine measured by a standard method (eGFRcr) and eGFRcr

decline defined by the annual change in eGFRcr between the S4 and F4

visits.

Serum creatinine was measured using an enzymatic method at the

S4 visit and the Jaffe method at the F4 visit46 and in the TwinsUK

study.47 To account for differences in measurement methods, Jaffe
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creatinine values in the KORA F4 and TwinsUK studies were first

calibrated to representative estimates derived from the Third Na-

tional Health and Nutrition Examination Survey, using age- and

sex-stratified groups as described previously.48 Next, standard creat-

inine was calculated for the F4 measurements as follows: standard

creatinine = 0.95 3 calibrated serum creatinine.49 Enzymatic meas-

urements carried out at the S4 visit did not require any standardiza-

tion. The eGFRcr was then calculated from standard creatinine using

the Chronic Kidney Disease Epidemiology Collaboration equation in

all studies.50 Annual eGFRcr change in the KORA study, in which 7

years of follow-upwere available formost participants, was defined as

the difference in eGFRcr between the KORA S4 and F4 visits divided

by the time between visits in years. Because serum creatinine consti-

tutes an important component of the evaluated outcome, the creat-

ininemeasurements obtained byMSmeasurement were not followed

up further but are presented for comparison in the result tables.

In the AASK study, serum creatinine was measured using the Jaffe

method and cystatinCusing the Siemens nephelometrymethod; both

assays are traceable to international standards, as has been previously

described.4 ESRD was defined as beginning maintenance dialysis

therapy or receipt of a kidney transplant.51 Over a median follow-

up time of 6.75 years, 32 ESRD events were observed among the 200

patients.

Definition of Covariates
Ten known clinical CKD risk factors were assessed at the KORA study

visits and used as covariates in the statistical analyses: age (years),

sex, body mass index (kilograms per square meter), systolic BP

(millimeters of mercury), current smoking status, antihypertensive

medication use, antihyperlipidemic medication use excluding herbal

medications, serum triglycerides (milligrams per deciliter), serum

HDL cholesterol (milligrams per deciliter), and fasting serum glucose

(milligrams per deciliter). The natural logarithm of triglycerides and

glucose was used in the statistical analyses. In the TwinsUK study,

information for many of the covariables was not available from

the same time at which the blood draw for the serum metabolite

measurements occurred. Therefore, only age, sex, and cohort and

twins status, themost important covariates, were used for adjustment

in the TwinsUK study.

Statistical Analyses
The statistical analysis comprised two parts: the analysis of cross-

sectional and of longitudinal data. The statistical analysis plan of

the cross-sectional study in KORA F4 is outlined in Supplemental

Figure 1. Cross-sectional associations between eGFR and serum me-

tabolites were examined in the KORA F4 study, the only sample with

available cystatin C measurements. We calculated multivariable-

adjusted linear regressionmodels of eGFRcr and eGFRcys on the single

metabolites as well as the pairwise metabolite ratios (corresponding

to the subtraction of the log-transformed metabolite quantities)

among all 488metabolites of 1735 individuals available at the F4 visit.

This resulted in a total of 115,476 unique ratios after excluding ratios

that could be obtained in,300 individuals and those that contained

creatinine in either the numerator or denominator. Significantly as-

sociated metabolites were tested for association with the clinical

entity CKD, defined as eGFRcr ,60 ml/min per 1.73 m2.52 After

the discovery screen of the metabolite ratios, we additionally com-

puted the P gain for each ratio as follows: (minimum[P numerator,

P denominator])/P ratio, reflecting the order of magnitude by which

the P value for association decreased compared with the lower P value

of its individual components. A significant P gain was defined as

.1,154,760 (correction for 10 times the number of tested ratios) as

described previously.11 Only significantly associated ratios with a sig-

nificant P gain are presented throughout this article.

For the prospective analyses, linear regression models and logistic

regression models were used to identify associations between annual

eGFRcr decline and incident CKD, respectively, and the 422 metab-

olites and 87,762 metabolite ratios available at the S4 visit. Necessary

data were available for 991 participants. Incident CKD was defined as

eGFRcr ,60 ml/min per 1.73 m2 at the F4 visit among 926 individ-

uals without CKD at the S4 visit. Baseline covariates were used for

multivariable adjustment, including baseline eGFRcr as a known im-

portant risk factor for eGFR decline.53 To assess whether identified

metabolites associated with eGFRcr decline and incident CKD in the

KORA study, a combined model including identified metabolites and

adjusting factors was assessed, to which backward elimination using

Akaike information criterion was applied.

Statistical significancewasdefined as aP value less thanaBonferroni-

corrected threshold adjusting for the number of metabolites or me-

tabolite ratios available at the applicable visit. For the cross-sectional

analyses at the F4 visit, significance was defined as P,1.031024

(0.05/488) for individual metabolites and P,4.331027 (0.05/115,476)

with a significant P gain for ratios. For the analyses of annual eGFRcr

decline, statistical significance was defined accordingly as P,1.231024

(0.05/422) for individual metabolites and P,5.731027 (0.05/87,762),

with a P gain .877,620. To provide information related to false dis-

covery rate, Q values were additionally estimated from the P values

obtained for the cross-sectional analyses using the R package

QVALUE.54

Replication of significant metabolite associations obtained in the

cross-sectional study in KORA F4 was attempted in the TwinsUK

study. Successful replication was defined as a Bonferroni-corrected

one-sided P value, namely P,4.931024 (0.05/103). Subsequently,

the estimates of replicated metabolites were meta-analyzed across

the KORA and TwinsUK studies using a sample size–weighted fixed-

effects model.

In addition, the predictive value of metabolites for incident CKD

(KORAF4)was assessed using an imputed data set of patients without

CKD at KORA S4. For imputation, metabolites with .20% missing

values and samples with missing values for .10% of the remaining

metabolites based on the complete S4 metabolomics data set were

excluded. Missing values were imputed using the R package MICE

with default settings (five imputations applying predictive mean

matching), such that the data set used for this analysis comprised

914 patients and 363 metabolites. Three different prediction models

were considered to evaluate the performance of metabolites either as

alternative or as complementary information to known clinical risk

factors: (1) a model based on clinical information only including

known CKD risk factors (clinical model), (2) a model based on me-

tabolites alone (metabolomic model), and (3) a model based on both
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sources of information (combined model). The derivation of the

logistic regression models as well as the assessment of their predictive

performance was done as previously described.7 Briefly, factors of the

clinical model were unbiasedly selected from the set of available co-

variates using backward elimination while metabolites were selected

out of 363 successfully imputed metabolites with a boosting ap-

proach.55 For eachmodel, the area under the receiver operating curve

was calculated together with a 95% CI and validated using a

bootstrap approach (without replacement).56–58 In addition, calibra-

tion was checked using the Hosmer–Lemeshow test.58 To assess the

added predictive ability in discrimination of the combined model

compared with the clinical model, the integrated discrimination im-

provement was calculated.59 In addition to incident CKD (93 events),

we also evaluated the more stringent outcome of incident CKD plus a

.10 ml/min per 1.73 m2 decrease in eGFRcr between both visits (77

events) in a sensitivity analysis, with similar results (data not shown).

Statistical analyses were conducted using STATA (version 11.2,

Special Edition; StataCorp LP, College Station, TX) and R (version

2.11.1, www.r-project.org; R Foundation for Statistical Computing)

software.

In the AASK study, log-transformed mGFR defined as the average

of the mGFR measurements at the 42-, 48-, and 54-month follow-up

visits was correlated to log-transformed metabolite concentrations,

adjusted for age and sex.Coxproportional hazards regressionwasused

to relate log-transformed metabolites to time to ESRD, without and

with adjustment for covariates including age, sex, BP, treatment and

proteinuria (model 1). Model 1 was subsequently extended by either

eGFRcr or mGFR.
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