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Abstract.  Data integration is expensive, largely due to the difficulty of gathering relevant
metadata. We observe that a database may participate in multiple integration efforts, and that
much of the same metadata is required, regardless of which kind of effort is being
undertaken. This presents a tremendous opportunity to reduce the long-term development
and maintenance cost of interoperable systems, by gathering relevant metadata only once and
representing it in ways that are amenable to reuse. We present metadata management
strategies that promote reuse and describe a repository-based vision for the development of
interoperable systems.

1. Introduction

Metadata collection and management play a critical role in developing and maintaining data
integration – the ability to meaningfully exchange or combine information across
independently developed databases and applications. We focus here on metadata that
describes the meaning and representation, rather than metadata that summarizes the contents
of some object or document.  Such metadata helps us ensure that when we communicate data
between systems, the recipient interprets it as the sender intended.

In the emerging information-rich world, there will be many data providers and consumers,
and a consumer may require information from multiple data providers. Two systems
interoperate if they communicate information amongst themselves.  Data is fused if
consumers see logical objects that combine information from multiple sources. Integration
will be used as a generic term, to include both modes.

Much published research in data integration concerns support for one-shot schema
integration or integration via multidatabase query. Many methodologies ignore the need to
coexist with other forms of integration. This paper examines a complex environment in
which organizations carry out multiple integration efforts, with multiple partners, producing
different kinds of integrated systems that involve overlapping subsets of its component
databases. This environment, which we call “data integration in the large,” is typical of our
clients and most large organizations.
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There are surprisingly many varieties of data integration efforts including (1) providing a
federated view of multiple databases [9], (2) reverse engineering existing systems,
consolidating them, and migrating them toward a new target system [2], (3) supporting data
flow among loosely coupled interoperable systems, (4) "scrubbing" and fusing information
from multiple databases in order to build a data warehouse [11], and others.  Figure 1
illustrates options 2 -4, which are less frequently discussed in the research literature.
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Figure 1. Other Ways to Provide “Integrated” Data

Data heterogeneity is the most serious obstacle to integration efforts.  It will remain a major
pain in the development budget, long after it becomes routine to use DBMS gateway
products to give the illusion that a server users the client’s query language. Collecting and
validating the necessary metadata (e.g., determining whether concepts used in two
organizations are really the same, based on their code, documentation, procedures manuals,
and oral lore) is very costly. Tools will be able to assist, but the effort will remain time-
consuming. It is therefore critical to devise ways to reuse integration metadata across
integration efforts.1

In this paper, we describe the metadata requirements of several varieties of data integration
and note their large overlap. Based on these requirements, we recommend methodologies for
improving the management of intersystem metadata and for providing automation support
for system integrators. Finally, we propose a vision for metadata-driven development and
evolution of interoperable systems.

                                               
1 Some of the material here has been adapted from [5], which focused entirely on reuse.
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2. Varieties of Data Integration Problems

This section describes a variety of integration problems that need to be solved, sketches their
metadata requirements, and notes the substantial overlap in these requirements. This overlap
is significant, because it presents opportunities for metadata reuse and resulting cost-savings.

2.1. The Unary Case: Providing a New Interface to an Existing System

The simplest step is to provide an alternative interface through which a data source can be
viewed and manipulated. Since our topic is interoperability, we focus on new interfaces that
make the data source better able to interoperate with other schemas in the system, especially
a federation’s schema.2

We call this the “unary” case because one deals with a single system. A benefit of the unary
focus is that the metadata, new interfaces, and perhaps view definitions are available for
reuse when integrating with other different federations. As part of mapping to a preexisting
federation schema, the unary case defines natural modules for metadata, for view definitions,
and for a schema integration toolkit.

When several component systems are individually mapped to the same schema, users can
then be given a uniform interface that can be used to access a number of sources. (This is not
yet a unified interface, since it applies to one source at a time.) With a uniform interface, an
application can run on any source that provides sufficient information. Above this uniform
interface, additional modules of metadata, plus mediation that produces view-mappings, can
provide fusion across a set of sources.  One can also provide a source-selection mediator,
which determines what set of sources should be used for a particular request. (Such an
approach is more flexible than having a federated schema, which normally fuses data from a
fixed set of sources).

The specifications and mediation code that support the new interface can be considered a
semantic gateway, closely analogous to the (syntactic) DBMS gateway that can make DB2
look like Sybase. Note that just as a DBMS gateway does not include a distributed query
capability, for modularization reasons a semantic gateway does not attempt fusion.

Metadata Requirements for Providing a New Interface

                                               
2 Export schemas that determine what data shall be made available are not part of

integration; only views that reduce schema heterogeneity are considered here.
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In order to support this kind of “integration,” one must capture metadata about the
component system and the new interface. This includes not only the schemas, but for each
schema constituent (e.g., table, attribute) one must describe the meaning and the
representation details.
Meaning can be described internally to the constituent, or by relating the constituent to a
constituent elsewhere, or by relating the constituent to a reference definition that is
maintained outside the individual systems.  The first case tends to promote unnecessary
diversity.  The second case does not increase diversity, but it results in pairwise connections
that are difficult to reuse in subsequent integration efforts. As described in Section 3.4, the
third approach of specifying semantic relationships with reference definitions  seems to
maximize reuse.

In order to support the new interface, one needs a mapping between the component and
interface schemas in executable form (e.g., an SQL view definition). However, as described
in Section 3.3, these executable mappings can often be generated from smaller, more
modular chunks of information. Extensible libraries of conversion functions provide an
important building block.

Additionally, the metadatabase should capture information on access controls and
information sharing.  To support change impact analysis, the metadata should record the
obligations the administrator of each component system owes to others. For example, such
metadata could record the obligation of a database administrator to support a particular
interface and that a certain individual must be given six month’s notice prior to changing it.

2.2. Transparent Unified Access to Heterogeneous Sources

This is the most familiar type of data integration. The user formulates queries in terms of an
integrated view. This could be an enterprise schema or a federated view [9]. In either case,
the user is insulated from source selection and data fusion, as well as the representation
details of each component data source. This is illustrated in Figure 2, in which a user
formulates his query without regard to the location of particular data or the (possibly
heterogeneous) representations used by the various Fisheries, Water Board, and Land Use
databases.

Creation of a federated view involves determining the view’s interface, and mapping
individual components to that interface. In the literature on schema integration, the two are
tightly coupled, but that need not always be the case. In our experience, it seems rare that two
large schemas are integrated completely (and successfully). In addition, while the literature
stresses producing a federated interface by means of schema integration, often the federated
interface is specified to meet the needs of a new application. One then must produce views
that derive this information from existing components.
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Figure 2. Transparent Access via a Federated View

Once the federated schema is known, creation of an integrated view can be decomposed into
a series of efforts to support new unary interfaces. For example, to provide a federated view
F which is derived from components A, B, and C, one must create a new interface
conforming to F for each component A, B, and C.

The only additional metadata required beyond that collected for the unary case is the
following:

• Descriptions of which component systems are to be included in a given integrated
view

• Rules for object fusion. Object fusion provides virtual objects that gather together all
the information about a single real world entity (e.g., news reports about both Elvis
and E. Presley).

• Rules for value fusion . Value fusion provides a single virtual object when the inputs
have different assertions about the same property value.  (For example, if three
components list Elvis’ weight as 170, 230, and -999, what value or set of values
should be returned?)

2.3. Data Flows Among Loosely-coupled Interoperable Systems

Many data-intensive systems exchange information through Electronic Data Interchange
(EDI) messages, extract programs, files conforming to an exchange standard, and other
mechanisms that cause data to flow from a source to a recipient.  (Recursing, one can often
consider there to be two separate dataflows, from the source to the intermediate form and
from the intermediate form to the recipient). Data flows are sometimes used instead of a
federated approach, because performance and reliability needs may rule out pulling data
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from widely-scattered sites at run time. Instead, data flows are scheduled so that each site has
an adequately recent snapshot of information.

Knowledge of many kinds goes into the programs that create and consume these data flows,
but that knowledge is rarely documented well. This knowledge concerns both the contents of
the data flows, and their scheduling. For example, over several weeks we partially
unscrambled a 6000 line C program with embedded SQL that extracts data from one Oracle
database, converts it, and loads into another. The code performs data extraction from the
source, attribute and class transformations, constraint checking, and information fusion at the
recipient.

The knowledge needed to create such programs would be invaluable for other integration
efforts (e.g., to create a federated view), but it has been quite effectively encrypted. The
threads need to be separated, and each one documented as declaratively as possible. Current
tools can barely determine which C variables are referenced in each SQL statement; they
certainly cannot follow a value from an SQL read, through various constraints and
conditionals and other C variables, and into an update.

At a minimum, it would be useful simply to document the data interrelationships that are
now only implicit in the extract and load programs. Ideally, this knowledge would be
captured in reusable modules from which extract and load programs could be automatically
generated.

Interdatabase consistency is often required [6], but the required and achieved consistency are
rarely documented. For example, one might want to enforce a constraint that a data receiver’s
value for FuelOnHand should not deviate by more than 20% from its current value in the
source database. In most current systems, these constraints are poorly documented and are
managed in an ad hoc manner, both in the semantic constraints and the required timeliness of
repair. Typically one documents only the operational procedures (e.g., daily download) and
some of the mechanisms (e.g., triggers) used; other consistency enforcement may be hidden,
e.g., in programs that update several databases simultaneously. A metadata-based approach
that captures the constraints declaratively offers clear advantages, and may even make it
possible to automatically generate constraint handlers [8] or replication server subscriptions.

Most of the metadata required to drive loosely-coupled interoperable systems is shared with
the unary case. However, at least two new kinds of metadata are required:

• Assertions about the frequency and regularity of data flows. For example, is the data
shipped daily, weekly, as soon as relevant updates take place? Or perhaps they
happen erratically, but never more than a month apart?

• Descriptions of the mechanisms used to send data from the source system to the
receiver. For example, are EDI messages used, and if so, what is the format? Is a
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combination of 3GL code and SQL view definitions used? Or perhaps a commercial
data replication product (e.g., Sybase Replication Server)?

Additional metadata is required to support interoperable systems which perform consistency
enforcement between data sources and receivers:

• The constraints themselves, in a declarative form.
• The handlers used to monitor constraint conditions and to initiate data flow upon

violation of those constraints.

2.4. Data Warehousing

Data warehousing brings together selected data from component data sources, cleans it (e.g.,
by removing inconsistencies), and transforms it so that it is suitable for end-user query and
analysis (e.g., by creating summary tables along different “dimensions,” such as sales by
product, by region, and by supplier).

Administering a data warehouse requires a great deal of metadata, but it does not appear to
require any new kinds. Essentially, warehouse development requires the union of the
metadata required to support the previous two integration scenarios: Federated Views and
Loosely-coupled Interoperable Systems.  Below we elaborate on this observation.

Data warehouses are collections of views, each of which is derived from selected data in the
component databases. As a result, one needs all the metadata used to construct federated
views. As with federated views, the integrator (1) constructs a common target interface for
the relevant subsets of all component databases that feed the warehouse, and (2) specifies
rules for doing object and value fusion. Admittedly, the kinds of transformations and
reconciliation supported in a warehouse are likely to be more complex than in a federated
database, which performs these operations at query time. However, the metadata constructs
should be the same.

Additional metadata is needed to describe the required flow of data from the component
databases to the warehouse—descriptions of the frequency and regularity of these data flows
and the mechanism to be used. Also, if consistency constraints are to be enforced between
the component data sources and the warehouse, then these should be captured in the
metadatabase, along with a description of the mechanisms that check the constraints.

2.5. Data Migration

When systems are reengineered, it is often necessary to migrate a database and its
applications to a new environment, e.g., from a legacy file system or DBMS such as VSAM
or IMS to a relational or object database. An even more challenging task arises when several
organizations with functionally similar databases (e.g., Inventory) are to be merged.
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Like the unary case, migrations require creating a new schema and mapping the old schema
to the new one. Data must then be shipped from the old system(s) to the new, typically via
bulk load statements. This process may require difficult reverse engineering and integration
efforts. One must define a schema that contains the essential information from all the
components, but omits data elements that were implementation artifacts (e.g., status fields
that help control multistep processes). In addition, the old and new systems may need to be
run in parallel for a period of time. As in the “Loosely-coupled Interoperable Systems”
scenario, the two systems may need to be kept consistent.  These consistency constraints can
sometimes be handled by propagating database changes, possibly in both directions [2].

The Data Migration scenario may involve bidirectional dataflows, but requires essentially the
same metadata as the construction of a data warehouse. Careful configuration management
will also be essential.

2.6. Summary

Figure 3 illustrates the substantial overlaps in metadata requirements among integration
scenarios. In that figure, rectangular boxes represent different data integration scenarios.
Boxes with rounded edges represent different kinds of metadata. An arrow from a metadata
box to a scenario means that that metadata is required to support the integration scenario to
which is connected. For example, Federated Views require all the metadata used by the
New Interface scenario plus metadata on the rules for doing object and value fusion. Some
scenarios have no unique metadata requirements; for example Warehousing and Migration
require only the metadata used by Federated Views and Loosely-coupled Interoperable
Systems.
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Figure 3. Overlapping Metadata Requirements Among Integration Scenarios

3. Guidelines for Capturing Reusable Metadata

This section proposes some guidelines to help methodology and tool developers maximize
the reusability of collected metadata. This reuse is critical if we are to reduce the cost of data
integration in the large. Some of this material is described in greater detail in [5].

3.1. Go Beyond the Data Dictionary: Capture Information on Representation and
Semantics

Data dictionaries capture useful information about component databases. However, much
more metadata is required to facilitate data integration.

Data dictionaries are very limited in the amount of representation information they capture.
At the table level, they capture the names of the attributes, while at the attribute level, they
typically capture the datatype and possibly domain constraints. Information on the
interpretation of the attributes (e.g., “Aircraft.Altitude is in kilometers”) may be expressed in
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textual form, but is usually not represented in a form that can drive automated tools such as
mediators [12].

Techniques for capturing more of this information in a modular way are proposed in [7].
Meta-attributes are <property, value> pairs that describe the representation and interpretation
of attributes. Given two attributes that are described in terms of common meta-attributes, it is
often possible to determine if meaningful data exchange can occur and, if so, to
automatically generate the required transformations using a library of conversion functions.
Some data dictionaries (e.g., the U.S. Government’s Defense Data Repository System)
capture certain predefined meta-attributes (e.g., UnitOfMeasure), however, users cannot
easily extend them to capture additional descriptive properties for new kinds of data (e.g.,
format and version level for attributes of type document).

3.2. Capture Information on all Data Containers, Not Just Those Managed by
DBMSs

It is important to capture this metadata not only on databases and files, but also on Electronic
Data Interchange (EDI) messages. Often, these messages are the mechanism by which data
flows from one system to another. For example, the U.S. military has several families of
messages by which information (e.g., mission plans) flows from one system to another. Data
carried in such messages presents most of the same administration requirements as fields in a
database. Another example of non-DBMS data containers is file exchange formats. These
have been defined for logistics, geospatial data, and other domains; their metadata
requirement seems essentially identical to the treatment for messages.  Both messages and
files may require constructs beyond flat schemas, e.g., set- and entity-valued attributes. Use
of the same metadata constructs as those used to describe database fields will greatly
facilitate interoperability.

In addition, it is important to recognize that not all views of data are managed by database
management systems. For example, many organizations now use commercial data replication
products to populate data warehouses. These products employ “replication subscriptions” to
determine what data should be cached and how often the data should be refreshed.
Subscriptions have many of the same properties as database views, however, the
subscriptions are expressed in a variety of proprietary languages. To facilitate metadata
reuse, it is important that metadata about the subscriptions be captured in a standard form,
from which replication subscription can be generated. As another example, applications often
restructure data, and when they do, the transformations should be described in a
metadatabase using the same operators used to describe database views.
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3.3. Capture Small Modules of Information

To maximize reusability, one needs metadata granules of varying size. A small granule is
more likely to match the needs of many systems; on the other hand, if many small granules
are all held in common (e.g., for systems that share a data feed), then it is easier to administer
if they are gathered into larger granules.

We illustrate the granularity issue by considering large SQL view definitions. If a view
contains all the data needed for a new requirement, in the proper form, then it is a convenient
granule. Otherwise, one wishes to reuse smaller granules (and to generate the view definition
automatically). We give two examples.

First, a view that defines a new interface may involve many attributes, and the query that
derives it may be a large expression in a textual query language. These are awkward units for
reuse. The next integration effort may require different transformations on some of the
attributes, and may require attributes not mentioned in the view. It is undesirable to
administer multiple layers of view, where some layers undo the work of lower ones..

Reuse will be easier if the information in the view definition is modularized. Frequently, the
derivations of attributes in a view’s target list are independent. The fact that Name is
truncated to 20 characters is independent of the fact that Aircraft_Range is converted from
miles to kilometers. Each of these can be stored in the repository as a single assertion,
reusable as needed. An analyst who wishes to reuse or modify the conversion on
Aircraft_Range can now avoid poring through a view definition that derives thirty other
attributes. Security is also improved because one can release definitions selectively.

Second, a similar tactic can be used with views that span components. As in [10], one can
capture a collection of intercomponent assertions, and use them to generate the view. For
example, suppose in separate integration efforts, a view that spans components 1 and 2
combines  EMPLOYEE and WORKER, while a view that spans components 2 and 3
combines WORKER and PERSON. If a later integration effort on components 1 and 3 needs
to combine information about EMPLOYEE and PERSON, it will be difficult to do so.

If one has intercomponent assertions instead of just views, the situation is easier. For
example, one might have assertions on the actual populations, that every instance of
EMPLOYEE in component 1 appears as an instance of WORKER in component 2, and that a
similar inclusion holds between WORKER in component 2 and PERSON in component 3.
Now one can infer an inclusion between EMPLOYEE and WORKER.

Negative and uncertain information should also be considered part of the metadata resource.
Suppose an administrator has answered “No” to the question “Does Aircraft.Readiness in
the maintenance database mean the same as Aircraft.Readiness in the air defense system?”.
This question should not be asked again.
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3.4. Use Reference Definitions

One powerful technique is to support a library of reusable reference definitions, capturing
commonality wherever  it is discovered. As discussed in section 3.3, these can be for either
small or large chunks of information. One infers correspondence between component system
metadata objects from the fact that they are asserted to be the same as some reference object
X. (Assertions of lesser degrees of similarity are useful for information exploration but seem
of limited use in generating operational applications).

Reference definitions can come in many forms. First, one can define the name and meaning
of a small number of common domains, and tell what representation properties need to be
understood for each. For example, one can predefine Distance (in prose) and note that
distances are numeric and have LengthUnits. (The reference definition may subsume
multiple database attributes (e.g., for Location as <Latitude, Longitude>, or for Price as
<Amount, Currency>). Other approaches connect small reference definitions into a larger
structure that provides a conceptual schema for an application requirement or for a problem
domain. These schemas can be local to an organization, or can be provided by a standards
committee. As an extreme case, MCC’s Carnot project [3] employs the huge Cyc knowledge
base (which has millions of definitions) as a reference model for objects in “common sense
reality.”

The reuse advantage of reference definitions is that to relate n systems one needs only n sets

of intercomponent assertions, rather than O(n2). The information that one component
system’s class “Car” means the same as another component’s “Voiture” is hard to reuse; the
information that it matches the definition of Automobile in a particular organizational or
domain-specific ontology is more helpful. Also, the enterprise schema may be well
considered and documented, as it receives substantial attention.

As a modest extension, one can provide multiple reference schemas instead of one. This
enables integrators to refer to any “well known” object, even when there is no universally
accepted conceptual schema. Further research is required in how to manage the evolution of
reference schemas, and (even tougher) of multiple, coexisting reference schemas.

4. Conclusions

This paper has described the challenges of data integration in the large, in which component
databases participate in multiple integration efforts. There is significant overlap in the
metadata requirements of several important integration scenarios, which presents an
opportunity to reduce costs through metadata reuse.
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Figure 3 presented an overview of the relationship among integration problems. What is most
striking is that all the metadata captured to support the unary case is useful for every other
integration scenario. We anticipate that similar reuse will be possible with mediators, e.g., a
mediator that uses the metadata to generate view definitions in a query language. In addition,
because the unary metadata provides improved or alternate documentation of an individual
system, it can be used in other efforts in which that system participates. The previous section
presents more detailed guidelines for reuse.

In order to achieve the desired reuse, however, organizations must effectively manage
integration-relevant metadata. We advocate the use of a repository-centered development
approach [1]. A repository is a database that stores and manages metadata about an
organization’s information assets and which sits at the center of an Integrated Computer-
aided Software Engineering (I-CASE) environment. In I-CASE, there are multiple
specialized CASE tools, each of which focuses on a particular aspect of the design and
implementation process. Each tool stores its outputs in the repository, thereby making it
possible to use multiple niche tools as a part of the same design effort. To date, the I-CASE
approach has been employed mainly for the development of single systems, however, we
believe it has great promise for supporting interoperable systems.

We close by presenting a vision for data integration in the large, illustrated in Figure 4. We
envision a loose collection of tools for collecting, maintaining, and exploiting the metadata
which enables data integration. This metadata is stored and managed in a repository, which
includes information on component systems, reference definitions (including reference
schemas, ontologies, organizational data standards, etc.), assertions about correspondences
among components and between components and the reference definitions, libraries of
conversion functions, and schemas for any integrated views (which might be used for a
distributed query tool or as the schema of a data warehouse). Once collected, this metadata
can be used to drive several different kinds of integration efforts. For example, in Figure 4,
descriptive information on the Land DB and the River DB need only be collected once, even
though they both participate in multiple integration efforts.

We are currently prototyping the architecture shown in Figure 4, including parts of the
integration toolkit (to identify corresponding data elements across systems), the metadata
repository, and a generator of semantic gateways which exploits metadata stored in the
repository. Preliminary indications are that we can use the metadata-driven approach to
support semantic interoperability among heterogeneous databases [7], argument lists for
service invocations [4], and file exchange formats.
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