
A Metadata Schema Framework for Functional

Extension of Metadata Schema Registry
Mitsuharu Nagamori, Shigeo Sugimoto

Graduate School of Library, Information and Media Studies
University of Tsukuba

{nagamori, sugimoto}@slis.tsukuba.ac.jp

Abstract:
The DCMI metadata schema registry has

been developed as an authoritative source of
DCMI metadata terms. The DCMI registry has
an important role to enhance semantic
interoperability of the metadata terms. From
our experiences in the development of the
DCMI registry, we have learned that the
registry has large potential to serve as a center
of various service functions related to metadata
schemas such as metadata editors and search
tools. This paper presents a framework of
metadata schemas and discusses its application
to schema registries for extending the registry
functions. The metadata schema framework
presented has a layered structure in order to
explicitly separate semantic and syntactic
features of metadata schemas. This paper
presents a few functional extensions of the
registry and discusses the extension based on
the proposed schema framework.
Keywords:

DCMI Metadata Schema Registry;
Metadata Schemas; Layered Model for
Matadata Schemas; Metadata Interoperability.
1 Introduction

Interoperability is one of the most crucial
topics for the metadata and digital library
communities. The most significant part of the
efforts of the development of the Dublin Core
has been paid to realize semantic
interoperability of metadata across domains
and cultures. The Dublin Core community has
developed and crystallized a few fundamental
concepts for metadata interoperability, e.g., the
Dumb-down principle for designing qualifiers
and the Warwick Framework as a framework
to define an application specific metadata
schema based on multiple metadata element
sets. These concepts are a major contribution
of the Dublin Core community to the broader
communities in addition to the Dublin Core

Metadata Element Set (DCMES).
The authors have been involved in the

development of the DCMI registry since 1998.
We developed an experimental system, which
is called the ULIS Registry in this paper [1].
DCMI has launched the operational DCMI
registry [2] to which the ULIS registry
contributed in certain crucial aspects,
especially in the aspect of multilingual services.
The current DCMI registry provides users with
search and browsing functions of reference
descriptions of the DCMI metadata terms. It
has a set of functions to organize and manage
the terms in its database. All metadata terms
are encoded in RDF Schema. They are
provided to human users through user friendly
interfaces and to machines through an
application program interfaces (APIs). The
authors have experimentally installed a few
sets of non-DCMES metadata terms in the
registry in addition to the DCMI metadata
terms.

Thus, the DCMI metadata schema
registry works as an authoritative dictionary of
metadata terms. The authors have found that
we can extend the metadata schema registry to
provide services related to metadata schemas
and software tools for metadata schemas. We
have experimentally developed a few functions
in order to extend the functionality of the
registry at Tsukuba; for example, a
cross-schema search function which associates
metadata terms across multiple metadata
element sets, a element extraction function
which extracts common elements among
multiple application profiles, and a software
generator which produces software tools such
as a metadata editor, a metadata search tool and
a metadata database management tool.

In parallel to these studies, based on the
discussions on metadata schema registries, the
authors have developed a conceptual

framework for metadata schemas to enhance
interoperability of metadata and metadata
schemas. The framework has three layers
organized to explicitly separate semantic and
syntactic features of the metadata schema. In
this paper, we use the layered model to identify
the scope of the functional extension of the
metadata schema registries. The layered model
is advantageous in finding requirements to
make metadata schemas interoperable each
other.

The rest of this paper is organized as
follows. Section 2 describes basic concepts and
related works of this study. Section 3 describes
the layered model of metadata schema. Section
4 shows a few experimental software tools.

2 Backgrounds
2.1 Basic Concepts of Metadata
Schema

This section describes some basic
concepts of the model and process of Dublin
Core [3].

2.1.1 Metadata Schema

In this paper, we define a metadata
schema as a set of description that defines a
description scheme of metadata. A metadata
schema of an application includes semantic
definition of terms used in the schema,
structural constraints and data structure
definitions, and bindings to physical
description syntax such as XML.

For example, Simple Dublin Core gives
the definition of the 15-elements as the
semantic definition and the structural
constraints “every element is optional and
repeatable” [4]. The bindings to HTML, XML
and RDF are given in separate documents
[5][6][7].

In general, a metadata schema consists of
the following components,
(1) a set of terms defined to express

properties of a resource, e.g., Title, Creator,
alternative and so on,

(2) a set of terms which expresses types of
property values and/or which are used as a
property value, e.g. ISO-8601, DCMI Type
Vocabulary, LCSH, and DDC,

(3) a set of rules which defines structural
constraints and syntactic features neutral to
any implementation specific description
scheme, e.g. mandatory levels,

repeatability/cardinality, order, and so on,
and

(4) a set of binding rules to a specific
description language, e.g., XML, HTML
and RDF.

The first two components define a name(s)

and meaning of every term, which give the
semantic basis of the schema. On the other
hand, the latter two define syntactic features,
which we call abstract and concrete syntax. In
a real application environment, a set of
guideline statements to create metadata
instances in accordance with the application is
required. These guidelines are not included in
the definition of metadata schema in this paper
because they are not included in the formal
specification of metadata schema in schema
specification languages. (By the same reason,
guidelines are excluded from definition of
Application Profile in this paper.)

2.1.2 Warwick Framework and

Application Profile
Since the Internet is a very diversified

environment, it is useless to assume that a
single metadata element set will meet the needs
of all domains and purposes. It is also
impractical to develop metadata sets
application by application: the result would be
expensive and chaotic, and interoperability
would be non-existent. On the other hand, it is
desirable for application developers to use
established metadata schemas and adopt them
in accordance with local requirements. The
Warwick Framework, a conceptual model that
resulted from the 2nd Dublin Core Workshop
in 1996, gave an early expression to the notion
of metadata as modular components that may
come from more than one metadata schema [8].
In this model, a metadata instance is expressed
as a container which contains one or more
packages, each of which is expressed in a
given metadata schema. The Resource
Description Framework (RDF) provided a
practical realization of many of the ideas of the
Warwick Framework [9]

Application Profiles, which provide a
framework to adopt one or more element sets
in accordance with an application, could be
also caught as a realization of the Warwick
Framework. Dublin Core Metadata defines the
vocabulary of metadata, i.e., terms and their

meanings, but in general does not specify the
encoding or syntactic characteristics. An
exception is the feature included in Simple DC
that is “Any of the 15 elements is optional and
repeatable.” Local applications, however, may
have domain specific requirements appropriate
to a given domain or application:
• Title, Creator and Description might be

mandated but others are optional,
• Use only Title, Creator, Description, Date

and Language elements,
• Use the 15 elements of Simple DC and

some elements from other metadata sets
such as the IEEE Learning Object Metadata
(IEEE LOM), and so forth.

These requirements can be defined
independently of the vocabulary definitions.
Description of this application-specific
syntactic feature is called an application profile.
Any application can have its own application
profile, which specifies a set of metadata
vocabulary terms used in the application as
well as syntactic or structural features of the
particular application. Figure 1 shows a model
of application profiles. The vocabulary terms
could be borrowed from one or more source
schemas. More importantly, the application
profile could be used to define a mapping
between the application’s scheme to a global
scheme(s), which is crucial for interoperability.

2.1.3 Dumb-down Principle

The Dumb-Down principle gives a
guideline for qualification. The Dumb-Down
principle suggests that a value of a qualified

element has to be consistent as a value of the
element without any qualification. For example,
assume the following qualified values:
(1) (Element Refinement) Date Accepted:

“2004-10-12”,
(2) (Encoding Scheme) Language: “en”

encoded in RFC 1766, and
(3) (Value Structure) Creator: {name:

“Sugimoto, Shigeo”, affiliation: “University
of Tsukuba”, contact:
“sugimoto@slis.tsukuba.ac.jp”}

Then, assuming that the qualifications in
the above examples, Accepted, RFC 1766 and
the component names of the value structure
(i.e., name, affiliation and contact) are removed.
The values of example 1 and 2, “2004-10-12”
and “en” are still consistent with their elements
after the removal. However, the value of
example 3 {“Sugimoto, Shigeo”, “University
of Tsukuba”, ”sugimoto@slis.tsukuba.ac.jp”}
causes problems since the second and third
values are not valid values of Creator.

Dumbing-down is a crucial function for
metadata interoperability in the global
community since local communities can
extend their schemas in accordance with their
requirements, and at the same time they can
also keep their metadata interoperable with
other metadata communities.

2.1.4 Evolution and Maintenance

of Metadata Vocabularies
Any living metadata standard needs its

process model to keep the standard updated in
accordance with the requirements given to the

termA:
Mandatory

termC:
Optional

Repeatable

termX:
Mandatory
Repeatable

termZ: Mandatory
if applicable

Application Profile:
Terms used in an
application and
structural constraints

termX termY termZ

Metadata Vocabulary 2
(Metadata Element Set)

Metadata Vocabulary 1
(Metadata Element Set)

termA termB termC

<meta name=”mv1:A”
content=”an example”>

<meta name=”mv2:X”
content=”bar”>

 ...

<rdf:Description about=”foo”>
 <mv1:A>an example.</mv1:A>
 <mv2:X>bar</mv2:X>
 ...

Description in a syntax
defined in an
application

Figure 1 Concept of Application Profile

standard. The first part of this section shows
the maintenance process model of metadata
terms by DCMI, and the second part shows
some discussions on a model for maintenance
of metadata terms.

(1) Process Model of DCMI Metadata
Terms

To remain relevant in a rapidly evolving
Web environment, Dublin Core must be able to
grow and evolve in response to user needs.
DCMI has therefore instituted a Usage Board
and a process model for reviewing proposals
for expanding or clarifying the standard.
Proposed elements and element refinements
that conform to Dublin Core principles are
taken into the standard with the status of
conforming. To some proposed terms of
proven usefulness for resource discovery
across domains the Board may assign the
status of recommended. Proposals for encoding
schemes are reviewed for accuracy and given
the status of registered. Once approved, each
new term is assigned a Uniform Resource
Identifier using one of the official namespace
URIs maintained by DCMI. A “namespace
policy” defines limits within which the
metadata terms maintained by DCMI can
evolve or change over time. According to
this policy, editorial changes or updates are
allowed, but changes of semantics (meaning)
are not; new semantics require the creation of
new element.

(2) Maintenance Model for Metadata Terms

DCMI metadata terms are stored in the

DCMI metadata schema registry and its
cooperating registries. The terms are made
accessible via the Internet and maintained in
the registries. Authoritative reference
descriptions of the metadata terms in English
are translated into non-English languages for
adoption of local communities. By the nature
of Dublin Core, this translation of the
vocabularies has been and will be done by
grassroots volunteers. In addition, a local
community can define their own metadata
terms, which may or may not be approved as
conforming. Therefore, metadata vocabulary
maintenance has to be performed in two
aspects; one is the authoritative description
directly maintained by the Usage Board, and
the other is translations in non-English
languages. The authoritative description is
stable but, on the other hand, a translated
description is rather unstable unless it is
translated by a local authority.

2.2 Metadata Schema Registry

A goal of metadata schema registries is to
make metadata schema understandable both by
human and machines and shareable among
user communities. Metadata schema registries
have gained interests of broad metadata
communities because of the strong
requirements of interoperability and longevity
of metadata and metadata schemas.
ISO/IEC11179 describes the standardizing and
registering of data elements to make data
understandable and shareable. Data element
standardization and registration as described in
ISO/IEC 11179 allow the creation of a shared

Figure 2 Layered Model of Metadata

Layer 1

Layer 2

Layer 3

Simple DC
Use the 15-Elemets.
Every element is
optional and repeatable.

HTML
Use meta tag.

RDF An Oracle schema XML
 implementation based on

an XML Schema

A Simple Scheme
Use Title, Creator, Date and Subject.
Title is mandatory and non-repeatable.
Other elements are optional and repeatable at most five
times.

Definition of Terms (DCMI Metadata Terms)
Title Creator Date Subject

data environment. Universal Description
Discovery and Integration (UDDI) registries
act as reference points for Web Services that
allow for common descriptions and discovery
of those services, based on XML standards and
independent of platform. ISO IEC JTC1 SC32
WG2 has been organizing a series of
workshops on metadata registries.

The ULIS registry developed by the
authors provides reference descriptions of
metadata terms in multiple languages encoded
in RDF Schema [1]. We have experimentally
stored metadata elements of Internet Public
Library Asia (IPL-Asia)[10] and those of the
Nippon Cataloging Rules (NCR) in the ULIS
registry. The DCMI registry which is in
operation provides authoritative reference
descriptions of metadata schema, which are

internally encoded in RDF Schema and
translated in 24 different languages. The
reference descriptions are presented in a user
friendly form for human users and in RDF
Schema for machines. The application program
interface is provided based on the Web
Services protocols, i.e., SOAP or REST.
Description of each metadata term includes the
unique name of the term, language dependent
labels, definition statement of the term, date(s),
type of the term and links to related terms. The
descriptions are maintained in accordance with
the DCMI terms approved by the Usage Board.
The DCMI registry is provided as an open
source software for use by broader
communities. As of spring 2004, the DCMI
registry has been made available in Germany
and Tsukuba, Japan in addition to OCLC. The

Figure 3 Layered Model of Metadata Schema based on multiple element sets

Layer 1

Layer 2

Layer 3

DCMES
(Elements and

Qualifiers)
IEEE-LOM ULIS element

extension

DCMI Library
Application

Profile

Open Archives
Initiative Schema

IPL Asia
Schema

ULIS Core
Schema

XML
implementation in
an XML Schema

An Oracle
implementation

RDF
implementation

Metadata
Instances in XML

and RDF
Layer 3

Concrete
Syntax

Figure 4 Layers and description schema based on XML

Layer 1
Semantics

Layer 2
Abstract
Syntax

An Application Profile
for an Application

System

XML, RDF

RELAX NG
XML Schema

RDF Schema
OWL

DCMES An Element Set
for a Tsukuba
Application

Element Sets

DCMI registry at Tsukuba provides reference
descriptions of NCR and IPL-Asia
vocabularies which have been transported from
the ULIS registry.

2.3 Related Studies and Concepts

The white paper reported by the DELOS
Working Group on Registries [11] describes
basic concepts of metadata schemas, i.e.,
metadata vocabulary, layers for metadata
interoperability, data models, and so forth. This
study is based on the concepts described in this
white paper. The layered model discussed in
the white paper gives relationship a framework
of metadata vocabularies. On the other hand,
the layered model presented in the next section
gives a logical framework for metadata
schemas. This layered model was primarily
introduced to separate syntactic and semantic
features of metadata schema descriptions in
order to clarify relationships among constructs
of metadata schemas and to help cross-schema
mappings for metadata interoperability [12]
and [13].

This study is primarily based on the XML
technologies for metadata and metadata
schema. In the experimental studies shown in
section 4, we have used Relax NG, RDF, RDF
Schema, DAML+OIL, OWL, and so forth.
This is also based on the conventions of the
schema description of Dublin Core in RDF
Schema.

3 A Layered Model for Metadata
Schema

This section first defines the layered
model of metadata schemas, and then discusses
requirements analysis of interoperability based
on the model.

3.1 A Layered Model of Metadata
Schema

As introduced in section 2.1.1, a metadata
schema includes semantic and syntactic
components. These components can be
organized into layers as follows.
Layer 1 - Semantic Definition Layer

(semantics layer or ontology layer):
Definition of terms used in the schema. In
other words, definition of metadata
vocabulary, i.e. metadata element set. In

general, two types of metadata terms are
included in the metadata vocabulary ?
property vocabulary and value
vocabulary[11]. A property vocabulary, or in
other words element vocabulary, is a set of
property terms, for example, elements and
element refinement qualifiers of DCMES. A
value vocabulary is a set of value terms, for
example, encoding schemes of DCMES.
Definition of each term should primarily
include a primary name and its meaning.
Thus, a vocabulary definition gives the
semantic basis of a metadata schema.

Layer 2 - Structural Constraints Definition
Layer (abstract syntax layer): Definition of
syntactic features which does not depend on
any particular implementation scheme. A set
of terms used in the schema and structural
constraints applied to each term should be
included in a definition. Application profiles
are given in this layer. The structural
constraints would include composition,
ordering, mandatory levels, repeatability and
cardinality, and specification of controlled
vocabularies used in a metadata element. In
other words, this layer defines application
profiles in implementation neutral syntax.

Layer 3 - Implementation Dependent Syntax
Definition Layer (concrete syntax layer):
Definition of syntax of metadata in an
implementation; for example, metadata
description syntax in HTML, XML, RDF or
in a specific database management system
such as Oracle and MySQL.

Figure 2 illustrates a layered model which

is based on a single element set, i.e. DCMI
Metadata Terms. Simple Dublin Core, which
specifies “use the 15 elements of Dublin Core
where every element is optional and
repeatable.” Figure 3 shows a layered model
which is based on multiple metadata element
sets.

An application schema developer would
provide guidelines for creating metadata in
addition to their schema. The guidelines can be
documented in the layers 2 and/or 3 in
accordance with the implementation
specificity; for example, the DCMI Library
Application Profile includes some general
guidelines in implementation neutral level,
which should be associated to the layer 2.

A metadata term defined in the layer 1

can be defined in an ontology specification
language such as RDF Schema and OWL.
Structural constraints in the layer 2 can be
defined in a syntax description scheme such as
DTD, RELAX NG and XML Schema. Figure
4 illustrates relationships between the layers
and description scheme based on XML which
are adopted at Tsukuba for realizing software
tools described in the next section.

3.2 A Simple Requirements Analysis
for Metadata Interoperability

The layered model helps us understand
requirements to realize functions for
cross-repository retrieval. The following
paragraphs show requirements analysis cases
for retrieval across metadata repositories.
Case 1: Repositories A and B have the same

metadata schema in all layers. Metadata
instances of both repositories are
interoperable as they are.

Case 2: Metadata schemas of A and B are the
same in the layers 1 and 2. This case needs
common implementation syntax but
conversion from original physical syntax to
the common syntax should be
straightforward.

Case 3: Metadata schemas of A and B use the
same vocabularies defined in layer 1 but
syntactic features in the higher layers are
different. This case needs extraction of
commonly used metadata terms and
definition of a set of metadata terms as an
interoperability set. Detailed discussion on
the structural constrains is given in the next
section.

Case 4: Metadata Schema of A and B partly
share vocabularies in layer 1. This case
needs extraction of a common set of terms
and definition of an interoperability set. For
the extraction, dumb-down function could
be applied.

Case 5: Metadata schema A and B have no
common vocabulary. This case needs
definition of crosswalks between A’s and B’s
vocabularies for creating a common set of
metadata terms and a common syntax of
metadata instances.

In the requirements analysis above,

metadata vocabulary gives the basis for
metadata interoperability. Formal definition

scheme of metadata vocabulary should be used
to create descriptions of metadata term
definitions that have to be both machine and
human understandable. RDF Schema has been
used by the DCMI metadata schema registry as
a formal vocabulary description scheme. In
RDF Schema description, every metadata term
is given a unique identifier which works as its
primary name. A term definition could include
one or more secondary names and related
information as well. The primary name ?
typically a URI ? is defined to uniquely
identify the term. On the other hand, since
secondary names are given as a
human-friendly label, the secondary names
could be translated, for example, Title element
of Dublin Core could have labels in English,
German, Japanese, and so forth. The primary
names are used in the formal specification of
metadata schemas to identify metadata terms
and other constructs and to define relationships
between them.

3.3 Discussion on Structural
Constraints for Interoperability
Requirements Analysis

Structural constraints are classified into
the following types:
(1) A composite value composed of named
sub-elements. For example, a person name
composed of a first-name, a given-name, an
affiliation, and a contact address.
(2) A composite value composed of ordered
or unordered sequence of component values.
For example, an ordered list of component
values whose minimum and maximum lengths
are 5 and 10, respectively.
(3) Mandatory levels, e.g., optional,
recommended, mandatory if applicable,
mandatory.
(4) A set of value types of an element
adopted in the application, which should be a
proper set of the value types of the element
defined in the layer 1.
(5) Ordering constraints, i.e., descending or
ascending order of values or significance of
values, e.g. list of authors.

In general, mapping of metadata
structures between different schemas needs
structural transformation case-by-case basis. It
is possible to define a generic function for the

transformation, e.g., a function to structurally
dumb-down a composite value into a simple
value which conforms to the schemas, and a
function to extract elements which are
common among the schemas being cross-used.
On the other hand, some information could be
lost during this transformation.

4 Extending the Functions of
Metadata Schema Registry:
Experimental Studies
4.1 Functional Extension of
Metadata Schema Registries

The primary function of the DCMI
Metadata Schema Registry is to provide
reference descriptions of DCMI Metadata
Terms both for human users and machines. The
metadata terms are instances defined in the
layer 1. On the other hand, metadata schema
registries can provide metadata schema
components defined in the higher layers such
as application profiles. In addition, certain
types of generic functions such as dumb-down
and crosswalk can be provided by the registry
for users. Thus, metadata schema registries
have potential to provide wider range of
services based on the metadata schemas. We
have experimentally developed a few functions
to evaluate feasibility of functional extension

of the metadata schema registry. The functions
presented below are to be incorporated with the
basic functions of the metadata schema registry.
The functions are software tools to support
information access across metadata schemas, a
software generator based on metadata schemas,
and a support tool for developing and
maintaining metadata vocabularies.

4.2 Experimental Study 1:
Metadata Vocabulary Centered
Tools for Resource Access

We developed a crosswalk function
which connects multiple metadata element sets
and a cross-schema search function [14]. We
defined an element set called abstract element
set (AES) as a hub set to associate related
elements with each other. In this experiment,
we chose DCMES and NCR as the base
vocabularies to define the hub set and defined
a set of association rules between the base
vocabulary terms and the hub vocabulary terms.
The vocabularies and the association rules
were encoded in RDF Schema and
DAML+OIL. The association between the
base vocabularies and the hub vocabulary was
done manually. Figure 5 shows a description of
DAML+OIL description which defines
relationship between metadata terms.

 <rdfs:Property rdf:resource="http://purl.org/dc/elements/1.1/#Alternative">
 <rdfs:label>Alternative</rdfs:label>
 <daml:samePropertyAs rdf:resource="&aesns;#Alternative"/>
 <rdfs:subPropertyOf rdf:resource="http://purl.org/dc/elements/1.1/#Title"/>
 <rdfs:comment>Any form of the title used as a substitute or alternative to

 the formal title of the resource.</rdfs:comment>
 <rdfs:comment>This qualifier can include Title abbreviations as well as

 translations.</rdfs:domment>
</rdfs:Property>
<rdfs:Property rdf:resource="&iplns;#TITLE">
 <rdfs:label>TITLE</rdfs:label>
 <daml:samePropertyAs rdf:resource="&aesns;#Title"/>
 <rdfs:comment>A name given to the resource.</rdfs:comment>
 <rdfs:comment>Typically, a Title will be a name by which the resource

 is formally known.</rdfs:comment>
</rdfs:Property>

Figure 5 Definition of Title and Alternative elements of DCMES with relationship
specification
dc:altrenative is defined as a sub-property of dc:title. dc:title and dc:alternative are
associated with aes:title and aes:alternative as a same property, respectively.

In the ULIS metadata schema registry,
each metadata term was assigned multiple
labels and descriptions expressed in
non-English languages. In the IPL-Asia, every
subject term were given labels in multiple
languages, i.e., Chinese, Japanese, Korean and
English. In parallel to this multiple labels of a
single term, we gave a subject term multiple
labels that are defined based on the ages of the
audience. These 1:n association between a
subject term and its labels are useful to develop
user interfaces in accordance with the user
languages and user ages.

The metadata schema registry is a natural
place to store the association rules and the
multi-label definitions and provide them to the
users. These descriptions are associated with
the layer 1.

4.3 Experimental Study 2: A
Metadata Schema Driven Software
Tool Generator

From our experiences in developing
software tools for metadata applications, we
have learned that basic software tools such as a
metadata editor and a search tool can be
(semi-)automatically derived from metadata
schemas. Based on this idea, we have been
developing an experimental software tool
generator for metadata application systems,
which uses schema descriptions of metadata
vocabularies and application profiles [15][16].
This experimental system has a set of built-in
primitive functions, e.g., to load/store texts

from/to a database, to search text in a database,
and so on. This system produces a software
tool from a set of XML documents, which is
named Application System Description (ASD).
An ASD of an application software tool is
composed of the following four elements.
• Element Syntax Definition (ESD):

definition of syntactical features of the
application metadata schema tailored to
define application tool specific metadata
syntax.

• User Interface Definition (UID): definition
of logical structures of user interfaces of the
application software tool.

• System Interface Definition (SID):
definition of flow of data to built-in
functions prepared for the application.

• Association Definition: association
description of a ESD, UID and SID for the
application.

Figure 6 shows an overview of the
generation process. The generator reads an
ASD and definitions of metadata vocabularies.
A set of XML texts are created from the UID
and SID using syntactic constraints defined in
the ESD. The XML texts have interfaces to call
the built-in functions.

This software generator uses metadata
schema descriptions given in the layers 1 and 2.
The metadata instances handled in the
application software tools automatically
conform to the syntactic definition of the layer
3. Since user interfaces are derived from a
metadata schema which includes class
definitions of domain and range of a metadata

Metadata Application

XML texts created from ASD
ASD

ESD
UID
SID

Software Tool
Generator

Metadata
Vocabularies

Primitive
Functions

Metadata
Database

Figure 6 An overview of the generation process

element, we can choose user interface widgets
and built-in functions for the element in
accordance with the class definitions.

5 Concluding Remarks

We have been involved in the research
and development of the metadata schema
registry since 1998. During these years, the
process model and the data model of the
Dublin Core have been established. The
layered model shown in this paper was
inspired by the DELOS Registry WG white
paper.

The two experimental systems shown
above are rather straightforward extensions of
the metadata schema registry. We have found
that the separation of syntactic and semantic
features is useful to understand the
functionality of the extended functions.

From these studies presented in this paper
and other related studies, we have learned the
following lessons:
• A metadata schema registry can serve not

only as an authoritative information source
of metadata schemas but also as a center
which provides software tools defined in
association with the schemas.

• It is crucial to organize a network of
collaborating metadata schema registries in
order to share not only globally approved
metadata schemas but also locally
developed schemas.

• We need to establish a process model for
long-term maintenance of metadata
schemas which should be able to manage
life cycle of metadata schemas across
languages. We need an automated function
to collect revisions of authoritative
descriptions and translations and that to
manage an authoritative revision history.

• We need to develop a process model for
enhancing interoperability and reusability of
metadata schemas across communities.
XML-based ontology technologies seem to
be useful to develop the process model.

References
1. Nagamori, M., et al., A Multilingual

Metadata Schema Registry Based on RDF
Schema, Proceedings of DC-2001,
pp.209-212, Tokyo, 2001.

2. The Dublin Core Metadata Registry,

http://dublincore.org/dcregistry/
3. Sugimoto, S., et al., Models and Tools ?

Metadata-Centered Projects at Tsukuba
and Lessons Learned for Interoperability,
ICADL’04, India, 2004.

4. Dublin Core Metadata Element Set,
http://purl.org/dc/elements/1.1/

5. Hyper Text Markup Language,
http://www.w3.org/MarkUp/

6. Extensible Markup Language,
http://www.w3.org/XML/

7. Resource Description Framework,
http://www.w3.org/RDF/

8. Lagoze, C., The Warwick Framework ? A
Container Architecture for Diverse Sets of
Metadata, D-Lib Magazine, July/August,
1996,
http://www.dlib.org/dlib/july96/lagoze/07l
agoze.html

9. Resource Description Framework,
http://www.w3.org/RDF/

10. Lee, W., et al., A Subject gateway in
Multiple Languages: a Prototype
Development and Lessons Learned,
Proceedings of DC-2003, pp.59-66,
Seattle, 2003.

11. Baker, T., et al., Principles of Metadata
Registries,
http://delos-noe.iei.pi.cnr.it/activities/stand
ardizationforum/Registries.pdf

12. Sugimoto, S., Metadata Schemas, Models
and Tools - Metadata-Centered Projects at
Tsukuba and Lessons Learned for
Interoperability, Proceedings of ICDL'04,
India, 2004.2, pp.690-699

13. Sugimoto, S., et al., Developing
Community-Oriented Metadata
Vocabularies: Some Case Studies,
Proceedings of DLKC'04, 2004.3, pp.
128-135

14. Morozumi, A., A Cross-Referencing
Metadata Search Engine Based on the
Resource Description Framework, Master
Thesis, University of Library and
Information Science, Japan, 2003.

15. Syn, S., A Software Development Support
System for Metadata Application based on
Metadata Schemas, Master Thesis,
University of Library and Information
Science, Japan, 2002.

16. Kato, H., Construction of system
generator based on the application system
description system on metadata schema,

Master Thesis, University of Library and
Information Science, Japan, 2004.

