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Abstract

Background: Gut microbiota and the host exist in a mutualistic relationship, with the functional composition of
the microbiota strongly affecting the health and well-being of the host. Thus, it is important to develop a synthetic
approach to study the host transcriptome and the microbiome simultaneously. Early microbial colonization in
infants is critically important for directing neonatal intestinal and immune development, and is especially attractive
for studying the development of human-commensal interactions. Here we report the results from a simultaneous
study of the gut microbiome and host epithelial transcriptome of three-month-old exclusively breast- and formula-
fed infants.

Results: Variation in both host mRNA expression and the microbiome phylogenetic and functional profiles was
observed between breast- and formula-fed infants. To examine the interdependent relationship between host
epithelial cell gene expression and bacterial metagenomic-based profiles, the host transcriptome and functionally
profiled microbiome data were subjected to novel multivariate statistical analyses. Gut microbiota metagenome
virulence characteristics concurrently varied with immunity-related gene expression in epithelial cells between the
formula-fed and the breast-fed infants.

Conclusions: Our data provide insight into the integrated responses of the host transcriptome and microbiome to
dietary substrates in the early neonatal period. We demonstrate that differences in diet can affect, via gut
colonization, host expression of genes associated with the innate immune system. Furthermore, the methodology
presented in this study can be adapted to assess other host-commensal and host-pathogen interactions using
genomic and transcriptomic data, providing a synthetic genomics-based picture of host-commensal relationships.

Background

The gut microbiota has profound effects on the health

and wellness of the host. For example, studies in germ-

free piglets clearly illustrate altered intestinal growth [1],

digestive enzyme activity [2] and development of the

gut-associated lymphoid tissue [3]. Molecular-level stu-

dies, enabled by metagenomic, metatranscriptomic and

metaproteomic analytical techniques, are reshaping our

understanding of how the gut microbiome modulates

gastrointestinal morphological, immune development

[1-4], gene expression [5], and the biology of the host in

general [6,7]. Although many studies have shown an

effect of diet on the infant microbiota [8-10], little is

known of the genome and transcriptome-level cross-talk

between the developing infant gut and the colonizing

microbiota. At birth, the intestinal tract of the human

infant is functionally immature and sterile. Accordingly,

the early neonatal period is a critical phase for both

intestinal digestive development as well as colonization

by the commensal microbiota.

The human intestine is lined by epithelial cells that

process nutrients and provide the first line of defense

against food antigens and pathogens. Approximately

one-sixth of intestinal epithelial cells are shed (exfo-

liated) daily [11]. This corresponds to the daily exfolia-

tion of 108 to 1010 cells [11]. Because colonization of

* Correspondence: r-chapkin@tamu.edu
1Training Program in Biostatistics, Bioinformatics, Nutrition and Cancer, Texas
A&M University, 155 Ireland Street, College Station, TX 77843, USA
Full list of author information is available at the end of the article

Schwartz et al. Genome Biology 2012, 13:r32

http://genomebiology.com/2012/13/4/r32

© 2012 Schwartz et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:r-chapkin@tamu.edu
http://creativecommons.org/licenses/by/2.0


the intestine with non-pathogenic (commensal) micro-

biota is vital for neonatal intestinal development [1,2,5],

it is important to understand how epithelial cells and

the microbial ecosystem are modulated by diet. There-

fore, our ongoing efforts have been directed at under-

standing the regulation of neonatal development by

components present in human milk. Our initial work

isolated exfoliated eukaryotic ‘host’ cell mRNA from

feces, which contain sloughed (intact) intestinal cells, to

determine which gene combinations best distinguish the

feeding groups. We previously reported that two- and

three-gene combinations provide classifiers with poten-

tial to non-invasively identify discriminative molecular

signatures in the developing human neonate [12]. Speci-

fically, linear discriminant analysis (LDA) was used to

identify the best single, two and three-gene combina-

tions for classifying the experimental treatments. LDA is

a technique developed for the purpose of statistical pat-

tern recognition [13]. Using a selected list of features, it

aims at constructing a discriminating hyperplane that

separates the observations from two different classes

with a minimum misclassification error. Therefore, gene

sets or combinations are identified in response to treat-

ments, as opposed to simply determining up- or down-

regulated mRNA expression levels. It is important to

emphasize that, previously, our main objective was to

identify candidate biomarker genes [12], and not to

probe for interrelationships between the host gut tran-

scriptome and metagenome. In particular, we focused

on two major issues: finding groups of genes that discri-

minate between breast-fed and formula-fed babies, in

terms of LDA classification; and identifying potential

‘master’ regulators as defined by the statistical properties

of the non-linear coefficient of determination (CoD).

The current manuscript uses a linear model, canonical

correlation analysis (CCA), in order to detect interde-

pendencies between the host intestinal transcriptome

and the metagenome in healthy full-term infants.

We now present a systematic and statistically rigorous

analytical framework for the simultaneous examination

of both host and microbial responses to dietary/environ-

mental components in the early neonatal period. Specifi-

cally, we tested the hypothesis that the integration of

infant (host) epithelial cell transcriptome and function-

ally profiled microbiome can be used to suggest impor-

tant regulatory pathways of the microbiome affecting

intestinal development in the first few months of life.

Initially, we examined the multivariate correlation struc-

tures between host intestinal mRNA gene expression

levels and functional annotations in genes in the gut

metagenome of exclusively breast-fed (BF) and formula-

fed (FF) infants at three months of age. Interestingly, we

found that the microbiome of BF infants is significantly

enriched in genes associated with virulence functionality.

Furthermore, we demonstrate a multivariate correlation

between the gut flora genes associated with bacterial

pathogenicity and the expression of host genes asso-

ciated with immune and defense mechanisms. In addi-

tion, the operational taxonomic unit (OTU) composition

and genetic potential of the microbiota differed between

BF and FF infants. Our findings suggest that human

milk promotes the mutualistic crosstalk between the

mucosal immune system and the microbiome in the

maintenance of intestinal homeostasis.

Results

A total of six mothers of BF infants and six mothers of

FF infants were recruited for the study. Briefly, stool

samples from each infant were collected, and microbial

DNA was extracted and sequenced. Additionally, mRNA

was isolated from stool containing host gut exfoliated

epithelial cells and processed for microarray analysis

[12]. These two concurrent operations provided the raw

microbial metagenomic and host transcriptomic data.

We subsequently analyzed the sequence and microarray

data independently and then simultaneously to identify

multivariate correlations between the gut epithelium

transcriptome and the microbial metagenome. The pro-

cedure is outlined in Additional file 1 (see Materials and

methods for details). As shown in Table 1, infant and

mother data were appropriately balanced across FF and

BF infants.

Effect of diet on host transcriptional responses

As shown in Additional file 2, in general, FF host cell

samples exhibited lower gene expression values relative

to BF host cell samples. These data are consistent with

a Rhesus monkey study, in which formula-feeding

Table 1 Infant growth characteristics

Breast-fed (BF) Formula-fed (FF)

Sample size 6 6

Maternal age 30.0 ± 4.6 30.7 ± 5.9

Parity 2.0 ± 0.0 2.1 ± 0.6

Infant gender 5 male/1 female 4 male/2 female

Length at birth (cm) 53.2 ± 3.1 51.0 ± 2.5

Body weight (kg)

At birth 3.79 ± 0.50a 3.46 ± 0.20a

At month 1 4.98 ± 0.73b 4.61 ± 0.65b

At month 2 6.43 ± 0.73c 5.66 ± 0.85c

At month 3 7.02 ± 0.72d 6.45 ± 0.96d

BF or FF diet intake (ml/kg/day)

At month 1 166.0 ± 18.3a 162.5 ± 28.4a

At month 2 127.6 ± 19.5a 138.5 ± 14.3a,b

At month 3 129.0 ± 20.1b 134.8 ± 9.5b

Values are means ± standard deviation. Superscripts indicate significant

differences over time, P = 0.001.
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down-regulated overall intestinal gene expression rela-

tive to breast-fed monkeys [14]. Genes from two data

subsets - 459 intestinal biology-related genes and 660

immunity and defense-related genes - were tested for

differential expression between BF and FF infants using

a permutation test with a false discovery rate (FDR) [15]

multiple testing correction. As seen in Figure 1, the

genes expected a priori to be responsive to diet were

enriched for differential expression. This suggests our a

priori knowledge allowed for the detection of relevant

genes. As a follow-up examination, 146 of 459 intestinal

biology genes and 191 of 660 immunity and defense

genes exhibiting an FDR q-value <0.2 were subjected to

an independent Gene Ontology (GO) [16] analysis.

Since these sets were chosen a priori for related biologi-

cal functionality, GO enrichment analysis was performed

with respect to the original gene sets (459 and 660

genes). Additional file 3 lists the GO categories for

genes in the list and the GO analysis p-values and q-

values, indicating that the categories are significantly

affected by treatment. As expected, we did not detect

enrichment of GO categories on which the sets are

based. For example, genes with GO immune response

attributes were not enriched with respect to the immu-

nity and defense gene set since these are exactly the

types of genes comprising this set. Nonetheless, Addi-

tional file 3 provides a general characterization of the

genes. Interestingly, there was no enrichment of differ-

ential expression in genes related to the cell death biolo-

gical process.

Effect of diet on the gut microbiome

Taxonomical analysis

As seen in Figure 2a,b, there were substantial differences

in the taxonomic distribution of identifiable 16S rRNA

in FF and BF infant microbiota. The FF infant

Figure 1 Effect of diet on host transcriptional responses. Genes known a priori to be involved in intestinal biology or immunity and defense

mechanisms were enriched for differential expression between BF and FF infants. (a-d) The distribution of P-values (a,b) and the distribution of

q-values (c,d). (a,c) Intestinal biology: 459 genes known to be related to intestinal biology passed the quality control measures and were tested
for differential expression between the BF and FF infants - 146/459 genes (32%) had FDR corrected q-values <0.2. (b,d) Immunity and defense:

660 genes known to be related to immunity and defense that passed the quality control measures and tested for differential expression

between the BF and FF infants - 191/660 genes (29%) had FDR corrected q-values <0.2.
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Figure 2 Effect of diet on infant microbiota. BF (breast-fed) infants (green) exhibited more heterogeneity than FF (formula-fed) infants (blue)

with respect to phylogenetic composition. (a) Taxon assignment (phylum level) variability for BF and FF samples using 16S rRNA alignments to

GreenGenes (see Materials and methods). A diet label permutation test using the statistic ∑s |∑iεBF pis/6 - ∑iεFF pis/6|, where s indexes phylum and

iεBF and iεFF denote that sample i is BF or FF infant, respectively, and p denotes the associated taxon proportion, rejected the null hypothesis
that variability in phylogenetic composition was unrelated to BF/FF status with a P-value of 0.011. (b) Taxon assignments for all the shotgun

reads (not just 16S rRNA homologs) using PhymmBL [17]. (c) Shannon-Weiner index for BF and FF infants, indicating alpha-diversity for each

sample.
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microbiota was very homogeneous in phylum-level dis-

tributions. Specifically, there were approximately an

equal proportion of Firmicutes and Actinobacteria

(about 40% each), with the remaining bacteria composed

of predominantly Proteobacteria. One FF infant micro-

biota was a clear outlier and was dominated by Actino-

bacteria. In comparison, BF infants were much more

heterogeneous with respect to their phyla composition.

The microbiota of three BF infants were dominated by

Actinobacteria, one was dominated by Proteobacteria,

one was dominated by Bacteroidetes, and one was very

balanced across the phyla. As seen in Figure 2c, with

the exception of the outlying FF infant microbiota, the

BF infant microbiota exhibited a higher alpha-diversity

than the FF infant microbiota as quantified by the Shan-

non-Wiener index.

To confirm our findings, we used PhymmBL to taxo-

nomically classify shotgun sequence reads. PhymmBL

[17] is a classification approach for metagenomics data

that uses interpolated Markov models (IMMs) and Basic

Local Alignment Search Tool (BLAST) to taxonomically

classify DNA sequences. The reads were assigned to

phyla as summarized in Additional files 4 and 5. While

there was general agreement between the 16S-based

analysis and the whole shotgun-reads-based analysis, we

did identify some inconsistencies. These corresponded

to similar discrepancies found in Koenig et al. [18], and

are possibly due to under-representation of 16S rRNA

from Actinobacteria. Overall, both analyses are consis-

tent with a previous report indicating a high level of

Actinobacteria and Proteobacteria in infants at 3 months

of age [18].

Functional analysis

To investigate the diet-driven variation in the gut meta-

genome, the shotgun sequenced data were aligned using

Rapid Annotation using Subsystems Technology (MG-

RASTv2) against the SEED subsystems database [19].

Genes in SEED were annotated using a three-level biolo-

gical-function ontology, with level 1 being the most gen-

eral, and level 3 being the most specific. The gene-level

annotation describes the type of subsystem to which

each gene belongs. A subsystem ‘represents the collec-

tion of functional roles that make up a metabolic path-

way, a complex (e.g., the ribosome), or a class of

protein’ [20]. Figure 3 (upper panel) shows the fre-

quency of SEED functional terms in the BF and FF

microbiomes. A permutation test was used to examine if

the relative abundance of the functional category varied

between BF and FF infants for SEED level 1 categories

(with at least 200 reads comprising a minimum of 2% of

all reads for all BF or FF samples). Upon correction for

multiple testing using the FDR [15], the virulence char-

acteristics of the microbiota were the only potentially

responsive characteristics with respect to diet

composition (q-value = 0.058, all other q-values >0.3).

Strengthening this finding, a permutation test has

shown that the relative proportion of SEED level 2 char-

acteristics as a whole within the SEED level 1 virulence

category (Figure 3) differed between BF and FF infants

(P-value = 0.014). Four SEED level 2 virulence cate-

gories comprised the overwhelming majority of

sequence reads, with an average number of sequence

reads of 245 for each category for each infant. The four

virulence characteristics included ‘iron scavenging

mechanisms’, ‘resistance to antibiotics and toxic com-

pounds’, ‘Type III, Type IV, early secreted antigenic tar-

get (ESAT) secretion systems’, and ‘virulence’. The first

three were noted as being associated with invasiveness.

The virulence characteristics of the microbiota were

the only functional characteristics that appeared to differ

between the BF and FF infants. However, we tested the

remaining 36 of 149 non-virulence SEED level 2 cate-

gories in which all the FF or BF samples had at least

100 reads comprising a minimum of 0.5% of the total

number of reads. All P-values were greater than 0.05,

and we did not, therefore, calculate q-values or examine

the non-virulence SEED level 2 classifications. For the

84 of 584 SEED level 3 categories (consisting of sub-

classifications of ‘accessory colonization factor’, ‘Ton

and Tol transport systems’, ‘type 1 pili (mannose-sensi-

tive fimbriae)’, ‘the Streptococcus pyogenes Virulom’,

‘bacterial cyanide production’ and ‘tolerance mechan-

isms’) for which all the FF or BF samples had at least 50

reads comprising at least 0.1% of the total number of

reads, a permutation test was used to examine if the

relative abundance of the functional category varied

between BF and FF infants. Some P-values were <0.05,

but no q-values were <0.10 upon FDR correction and so

SEED level 3 classifications were not examined.

Interactions between the gut microbiome and the host

transcriptome

For the purpose of uncovering potential symbiotic gut

microbial-host metabolic interactions, a variation of

CCA was used to examine the multivariate structure

between the most promising virulence characteristics of

the microbiota (resistance to antibiotics and toxic com-

pounds, Type III, Type IV, ESAT secretion systems, and

iron scavenging mechanisms) and host transcriptome

data sets. For each gene triple selected from a transcrip-

tome set and analyzed with the metagenomic virulence

variables (as described in Materials and methods) there

were three canonical correlations. Canonical correlations

represent the strongest (ordered) correlations created

between linear composites (called canonical variates) of

the gene triples with the metagenomic variables (subject

to some optimization constraints involving the indepen-

dence and variation of canonical variates). Hence, they
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Figure 3 Functional analysis of metagenomic data. Top panel: SEED level 1 categories for which all BF or all FF samples had at least 200
reads mapped. At least 2% of the total number of mapped reads were tested for differences between BF (breast-fed) infants (green) and FF

(formula-fed) infants (blue). A permutation test on the test statistic ∑iεBF pi/6 - ∑iεFF pi/6, where iεBF and iεFF denote that sample i is BF or FF

infant, respectively, and p denotes the associated taxon proportion, was performed. The FDR corrected q-value for the virulence category was

0.058. Bottom panel: differences between BF and FF infants in the SEED level 2 virulence assignment (within the SEED level 1 virulence category)
was assessed using a permutation test on the test statistic ∑s |∑iεBF pis/6 - ∑iεFF pis/6|, where s indexes the SEED level 2 virulence categories, and P

= 0.0140.
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represent the strength of the linear multivariate relation-

ship between the particular host gene triple being ana-

lyzed and the microbiome virulence variables [21-23].

Figure 4 shows the distribution of first and second

canonical correlations for triples of 100 of 459 intestinal

biology genes with the smallest P-values for differential

expression between BF and FF and triples of the 100 of

660 immunity and defense genes with the smallest P-

values for differential expression between BF and FF. In

addition, the same distribution is shown for an example

set of 100 of 660 random genes that have the smallest

P-values for differential expression between BF and FF

infants (additional example and representative plots of

random gene sets are described in Additional file 6).

Finally, based on 1,000 random gene sets analyzed in an

analogous manner to the example random gene set, the

distribution of the proportion of the random gene set

triples that have a canonical correlation >0.85 and a sec-

ond canonical correlation >0.5 is shown (Figure 4). The

100 genes with the best P-values in the random gene set

were used so the number of triples for each gene

assigned was the same across data sets, and the results

could be compared to the a priori knowledge gene sets.

The analyses indicate that the large majority of gene tri-

ples scored comparably weakly in terms of canonical

correlations with virulence characteristics. However, the

SEED-categorized immunity and defense gene triples

(Figure 4a), and to a lesser extent the intestinal biology

Figure 4 First and second canonical correlations between host gene sets and microbial virulence characteristics. Horizontal lines in the
density plots are at 0.5, and the vertical lines are at 0.85. These cutoffs were chosen arbitrarily to emphasize enrichment in the upper-right

quadrant of the plot that is suggestive of increased multivariate structure as identified by CCA. (a) First and second canonical correlations

between triples of immunity and defense genes and virulence variables are shown. There are increased canonical correlations in the upper-right

corner of the plot, suggesting an enriched multivariate relationship between the immunity and defense genes and microbiome virulence
characteristics as compared to, for example, the set of random genes shown in (d). (b) Intestinal biology genes did not show the same level of

enrichment of canonical correlations as the immunity and defense genes. (c) We analyzed 1,000 random sets each containing 660 genes in an

analogous manner to the immunity and defense gene analysis (a). Of these, 969 random sets resulted in less than 12% of analyzed gene triples
having first canonical correlation >0.85 and second canonical correlation >0.5. (d) An example random gene CCA plot. Additional examples are

given in Additional file 6.
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gene triples (Figure 4b), exhibited an enrichment of gene

triples indicating a correlation and probable empirical

relationship with the microbiota virulence characteris-

tics. The enrichment of immunity and defense gene

multivariate relationships relative to the random gene

sets is shown in Figure 4c,d. Specifically, 12% of immu-

nity and defense gene triples with a first canonical cor-

relation >0.85 and second canonical correlation >0.5

were associated with the 96.9th percentile of the 1,000

random gene set comparable percentages. This enrich-

ment suggests that there are indeed relationships

between immunity and defense genes of the host and

the virulence characteristics of the microbiome, as

might be expected since these are the genes considered

most likely to respond to microbiota virulence

characteristics.

On the basis of the canonical correlations from the

gene triple CCA analyses, individual expressed host

genes were ranked relative to their empirical multivari-

ate relationship with the frequency of genes in the meta-

genome. To construct a list of the most promising host

genes, we examined the proportion of gene triples

whose first canonical correlation coefficient was at least

0.85 and whose second canonical correlation was at

least 0.5. These were chosen to highlight the enrichment

of first and second canonical correlation scores observed

in the northeast quadrant for the immunity and defense

gene set (Figure 4a). The resulting counts for the immu-

nity and defense genes, the intestinal biology genes, and

the example random gene set are shown in Figure 5

(additional example and representative plots of random

gene sets are available in Additional file 7). The genes

showing the strongest empirical multivariate relationship

with the metagenomic-derived virulence variables were

from the immunity and defense gene set.

The 11 most promising identified host genes are listed

along with their functional annotation and related biolo-

gical response; VAV2 (angiogenesis), ALOX5 (inflamma-

tory response), SP2 (transcription factor), BPIL1

(bacteriocidal), DUOX2 (peroxidase generation), KLRF1

(cytotoxicity), IL1A (inflammatory response); AOC3

(vascular adhesion), NDST1 (inflammation and mucosal

defense), REL (intestine proliferation and apoptotic

homeostasis) and TACR1 (gut motility). As can be seen,

most of these genes are associated with immune

response. The relative gene expression levels in BF ver-

sus FF infants following a 3-month feeding period are

shown in Table 2. Since canonical correlations are

assigned to triples rather than single genes, we also

examined which genes together exhibited the most pro-

mising multivariate relationship to the microbiome vari-

ables. Figure 6 shows which genes most frequently had

the best canonical correlations (size of node) and which

gene pairs together in the same triple most frequently

had the best canonical correlations (size of edge). This

visualization provides a view of the synergistic strength

between genes with respect to improving the multivari-

ate microbiome relationship characteristics.

Discussion
Our ongoing efforts are directed at understanding the

regulation of neonatal gastrointestinal development by

components present in human milk. The neonatal gas-

trointestinal tract undergoes pronounced structural and

functional changes [24], which are influenced by diet

[25,26]. For example, there is a stronger trophic

response to human milk than formula, suggesting that

the bioactive components in human milk are important

for gastrointestinal development [27,28]. Furthermore,

the composition of the neonatal microbiota undergoes

successional changes, which is profoundly influenced by

diet [8-10]. Given the need to better understand neona-

tal gastrointestinal health and development, we recently

demonstrated that host gene set combinations provide

discriminative molecular signatures for distinguishing

BF versus FF infants [12]. However, no studies to date

have attempted to systematically integrate genomic data

from both the infant (host mucosa) and gut micro-

biome. Therefore, the goal of this study was to assess

host gene-diet interactions within the context of the

structure and operations of gut microbial communities.

As part of this effort, we examined multivariate correla-

tion structures between host intestinal mRNA gene sig-

natures and biological processes/metabolic pathways in

the gut metagenome of exclusively BF and FF infants at

3 months of age. Microbial composition of the same

stool samples was assessed by metagenomic pyrosequen-

cing, thereby providing a picture of the integrated gut/

microbial ecosystem. Consistent with previous reports

[8-10], the bacterial microbiome phylogenetic profiles

strongly characterized the two groups of infants (FF and

BF).

There are at least two viable approaches for uncover-

ing the interdependencies between the intestinal tran-

scriptome and the microbiome of the developing infant

gut with respect to diet (BF versus FF). The first

approach is to evaluate each data set independently on a

variable-by-variable basis, and then produce one feature

list for each data set in order to explore possible qualita-

tive relationships between the feature lists. For example,

Mulder and colleagues [29] performed traditional meta-

genomic and differential expression analyses and high-

lighted plausible relationships between the prominent

results from each of the two analyses. The second

approach is to analyze the two data sets simultaneously

under an analytical framework designed to assess the

‘many to many’ multivariate relationship between the

two variable sets. This provides a quantifiable and
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Figure 5 Frequency of host genes appearing in triples. Sets of gene triples were included when the first canonical correlation was at least

0.85 and the second canonical correlation was at least 0.65. These levels were chosen arbitrarily to represent strong multivariate structure as

identified by CCA. Genes were ranked by their prevalence of top performing triples. This provided a qualitative profile to select genes that
empirically show the strongest potential for being related to the virulence characteristics of the microbiome. (a,b) Genes related to immunity

and defense far outperformed the other functional categories. For example, the best two performing intestinal biology genes were in fact also

co-listed as immunity and defense genes. (c) In contrast, randomly selected genes did not display any strong multivariate structure with respect

to the virulence characteristics of the microbiome.
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objective way to discover and evaluate multivariate rela-

tionships between data sets. For example, CCA has been

used to evaluate the multivariate relationships between

salt-water microbiomes and environmental variables,

such as salinity, sample depth, water column depth,

temperature and chlorophyll content [30]. We used ele-

ments of both approaches to examine potential relation-

ships underlying interactions between the microbiota

and the host transcriptome in the developing infant gut.

First, an independent analysis of each data set was used

to reduce the number of variables under consideration

to a computationally tractable number that could be

readily assessed by the methods we present. Secondly,

based on the previous findings, an analytical multivariate

assessment of the microbiome/transcriptome structure

was used to inform our qualitative interpretation of the

connections between the two.

By initially examining the metagenomic data, we noted

that the ‘resistance to antibiotics and toxic compounds’,

‘Type III, Type IV, ESAT secretion systems’, ‘iron

scavenging mechanisms’ and ‘virulence’ characteristics

of the microbiome exhibited evidence of differential sen-

sitivity to breast milk as compared to formula. Specifi-

cally, while other microbiome characteristics did not

provide strong evidence of differentiation between BF

and FF infants upon adjustment for multiple testing,

virulence-related microbial genes remained strong.

Therefore, we focused our transcriptomic analyses on

host immunity and defense-associated genes. Addition-

ally, since we were studying the developing human gut,

genes known to be involved in intestinal biology were

also examined. Our initial differential expression analysis

suggested that our prior knowledge gene sets were tar-

geting relevant gene sets.

Next, the metagenomic and transcriptomic data sets

were analytically combined in a multivariate analysis

that allowed us to assess the strength of the multivariate

relationship between the virulence variables of the

microbiome and the gut transcriptome genes under

examination. Ranking of the best performing genes

under consideration indicated that the strongest multi-

variate relationship with the virulence characteristics

were immunity and defense genes. The credibility of

this finding was supported by the a priori expectation

that the strongest relationships with the virulence char-

acteristics of the microbiome would be the immunity

and defense genes, and the comparison to 1,000 random

gene sets to which the immunity and defense gene set

ranked in the 96.9th percentile with respect to the mea-

sure of transcriptome/microbiome multivariate strength.

Table 2 Relative gene expression levels in breast-fed (BF)

versus formula-fed (FF) infants following a 3-month

feeding period

Gene BF/FF P-value q-value

TACR1 1.80 0.0189 0.1670

REL 1.62 0.0047 0.1026

DUOX2 1.45 0.0215 0.1670

VAV2 1.36 0.0088 0.1404

NDST1 0.79 0.0103 0.1477

AOC3 0.78 0.0202 0.1670

SP2 0.76 0.0030 0.0860

IL1A 0.71 0.0089 0.1389

ALOX5 0.69 1.40E-05 0.0008

BPIL1 0.37 1.43E-05 0.0008

KLRF1 0.35 3.16E-05 0.0015

Fold change represents relative expression level in BF divided by FF infants

for the 11 genes exhibiting the strongest multivariate relationships to

microbiota virulence characteristics.

Figure 6 Relative performance of the top 11 immunity and

defense host genes and virulence characteristics. Data were

assessed by the ranking described in Figure 5 with respect to
multivariate association between annotated genes and the virulence

characteristics of the microbiome. The size of the nodes reflects the

number of triples of genes whose first canonical correlation was at

least 0.85 and whose second canonical correlation was at least 0.5.
The thickness of the edges connecting the nodes reflects the

number of triples whose first canonical correlation was at least 0.85

and whose second canonical correlation was at least 0.5. This plot
summarizes the potential relationships between genes with respect

to the virulence characteristics of the microbiome. ALOX5,

arachidonate 5-lipoxygenase; AOC3, amine oxidase, copper

containing 3 (vascular adhesion protein); BPIL1, bactericidal/
permeability-increasing protein-like 1; DUOX2, dual oxidase 2; IL1A,

interleukin 1 alpha; KLRF1, killer cell lectin-like receptor subfamily F,

member 1; NDST1, N-deacetylase/N-sulfotransferase (heparan

glucosaminyl) 1; REL, v-rel reticuloendotheliosis viral oncogene
homolog; SP2, Sp2 transcription factor; TACR1, tachykinin receptor 1;

VAV2, vav 2 guanine nucleotide exchange factor.
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While the intestinal biology showed some strong multi-

variate relationships to the microbiome virulence char-

acteristics, they were not unusual compared to the

random gene sets, and certainly not as strong as those

of the immunity and defense genes (Figure 4).

By adapting CCA outcomes, we identified a subset of

11 immunity and mucosal defense-related genes (REL,

NDST1, AOC3, VAV2, ALOX5, SP2, BPIL1, DUOX2,

KLRF1, IL1A, and TACR1) that exhibited evidence of a

multivariate relationship with microbiome virulence

characteristics (Figure 6). Although it is premature to

assign cause and effect, we conjecture these genes are

reacting concordantly in response to microbial condi-

tions. It is interesting to note that genes that modulate

gut motility (tachykinin receptor 1, TACR1) [31] and

bacterial-mediated reactive oxygen species signaling/

epithelial homeostasis (dual oxidase 2, DUOX2; Vav 2

guanine nucleotide exchange factor, VAV2; v-rel reticu-

loendotheliosis viral oncogene homologue, REL) [32-36],

were up-regulated in BF versus FF infants (Table 2). In

contrast, genes that prime mucosal inflammatory

responses (killer cell lectin-like receptor subfamily F-

member 1, KLRF1; bactericidal/permeability-increasing

protein-like 1, BPIL1; arachidonate 5-lipoxygenase,

ALOX5; interleukin 1 alpha, IL1A; vascular adhesion

protein 1, AOC3) [37-39], were down-regulated in BF

versus FF infants. Collectively, these data are consistent

with previous findings that breastfeeding facilitates the

adaptive, functional changes required for optimal transi-

tion from intrauterine to extrauterine life [27]. Our sys-

tems-level analyses support previous studies showing

that human milk optimally promotes the mutualistic

crosstalk been the mucosal immune system and the

microbiome in the maintenance of intestinal homeosta-

sis [8,9,25,27,28].

Conclusion

We have identified a subset of 11 immunity/defense-

related genes that exhibited evidence of a multivariate

relationship with microbiome virulence and invasiveness

characteristics. To our knowledge, this is the first time

an assessment of the multivariate relationship between

the microbiome and the host transcriptome has been

used to identify intestinal genes potentially important in

microbiome regulatory pathways and the integrative gut

development process. Arguably, by examining the multi-

variate structure underlying the microbiome and gut

transcriptome, our approach leverages richer and fuller

information content compared to analyses focusing on

single data sets (for example, only host transcriptome

data, or only microbiome data) and only single variables

(for example, gene by gene differential expression test-

ing). Our study provides a systematic and statistically

rigorous analytical framework for the examination of

both host and microbial responses to dietary/environ-

mental components in the early neonatal period. Finally,

the novel methodology described here for multivariate

correlation analysis of host transcriptome and micro-

biome can be successfully applied to a large variety of

host/microbial commensal studies. The use of CCA can

support the formulation of hypothesis-based studies by

accurately identifying those genes active in commensal

microbiome and host activities.

Materials and methods

Ethics statement and subject recruitment

The experimental human protocol was approved by the

University of Illinois and Texas A&M University Institu-

tional Review Boards and informed consent was

obtained from parents prior to participation in the

study. Details of the study admission criteria and proto-

cols have been previously described [12]. Healthy, full-

term infants who were exclusively breast-fed or fed

commercially available infant formula (Enfamil LIPIL,

Mead Johnson Nutrition, Evansville, IN, USA) and

medically certified as healthy were eligible for enroll-

ment into the study. For each infant in the study, stool

samples were collected at three months after birth.

Isolation of stool DNA

Genomic DNA was extracted using a modification of

the method of Yu and Morrison [40]. Deviation from

the protocol included the use of glass beater steps.

Briefly, 250 mg (wet weight) of feces was weighed into a

2.0 ml tube containing glass matrix E (MP Biomedicals,

Solon, OH, USA). Lysis buffer (1 ml; 500 mM NaCl, 50

mM Tris-HCl, 50 mM EDTA, 4% sodium dodecyl sul-

fate) was added to the tube and shaken for 30 s. Sam-

ples were then incubated at 70°C for 15 minutes. After

centrifugation at 16,000 g for 5 minutes, supernatants

were collected into 2.0 ml tubes. Lysis buffer (300 µl)

was subsequently added and the above steps were

repeated. Nucleic acids in the supernatant were precipi-

tated sequentially with ammonium acetate and isopropa-

nol, and dissolved in TE buffer. The precipitated nucleic

acids were then treated with DNase-free RNase, protei-

nase K, and further purified on a QIAamp spin column

from a QIAgen DNA Mini Stool Kit (Qiagen, Valencia,

CA, USA). DNA quality was checked on 1% agarose gels

followed by ethidium bromide staining. DNA from three

to four extractions per sample was pooled and its con-

centration quantified using a NanoDrop 1000 spectro-

photometer (NanoDrop Technologies, Wilmington DE,

USA).

Sequencing of gut microbiomes

DNA from fecal samples was submitted to the high

throughput sequencing and genotyping unit at the Keck
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Center for Comparative and Functional Genomics, Uni-

versity of Illinois. Samples were sequenced using a 454

Life Sciences Genome Sequencer FLX with GS FLX

Titanium series reagents (Roche, Nutly, NJ, USA).

Briefly, DNA was fractionated (fragments of 500 to 800

bp) and polished. Subsequently, barcodes containing

adaptors A and B were ligated to the ends according to

Roche’s instructions. Adaptor B contained a 5’-biotin tag

to immobilize the DNA library on streptavidin beads.

After nick repair, the non-biotinylated strand was

released and used as a single-stranded template DNA

(sstDNA) library. Library quantity was assessed using

Qubit reagents (Invitrogen, CA, USA) and pooled to

equal molarity. The optimal level of DNA for emulsion

PCR was determined by titration. Beads were loaded

onto a PicoTiterPlate device for shotgun sequencing.

Signal processing was performed using Roche software.

Host gut mRNA transcriptome analysis

From each subject, poly A+ RNA was isolated from feces

as previously described [12,41]. Due to the high level of

bacterial RNA in fecal samples, poly A+ RNA was iso-

lated in order to obtain a highly enriched mammalian

RNA population [12]. In addition, an Agilent 2100 Bioa-

nalyzer was used to assess integrity of exfoliated cell

poly A+ RNA and quantification was performed on a

NanoDrop Spectrophotometer. Samples were processed

in strict accordance to the CodeLink™ Gene Expression

Assay manual (Applied Microarray, Tempe, AZ, USA)

and analyzed using the Human Whole Genome Expres-

sion Bioarray as we have previously described [13].

The microarray data have been previously processed

and analyzed [12]. Technical errors in the probes were

relatively rare, with approximately 2.5% of the probes

being flagged. Nonetheless, thorough quality control

processing resulted in 16,767 probes available for analy-

sis. The log base 2 transformed expression data were

normalized using two methods, standard loess normali-

zation [42] as shown in Additional file 2, and a weighted

median adjustment method [12]. Subsequently, and

based on our findings in the microbiome sequence data,

two data sets were constructed using curated gene lists

based on literature reviews, functional gene assignments

from PANTHER biological processes [43] and DAVID

[44,45]. Using this prior knowledge, discrete sets of bio-

markers (genes) known to be involved in intestinal biol-

ogy (459) and immunity and defense (660) (see

Additional files 8 and 9) [12,13] were generated. Focus-

ing and targeting the scope of the data under considera-

tion in a biologically meaningful way (i) reduces the

dimension of the data being analyzed and protects

against extensive multiple testing, (ii) allows for exhaus-

tive examination of all small feature subsets (all three-

gene sets) and thereby avoids feature selection, which is

known to be highly unreliable in small sample settings

[46], and (iii) allows for computational tractability and

analysis feasibility. GO enrichment analyses were per-

formed using the GO Fat gene ontology functional

annotation tool [16], available on DAVID [44,45]. The

expression values for enriched gene subsets were

assessed using a permutation test and corrected for mul-

tiple testing discovery rate correction (FDR) [15].

Metagenomic data analysis

Shotgun 454 read data were preprocessed in the follow-

ing manner: (i) low quality reads were removed if the

read mean Phred value was <20 and/or when two or

more consecutive nucleotides exhibited a Phred value

<20; (ii) reads were clustered using CD-HIT-454 [47] at

100% removing duplicates; (iii) the remaining shotgun

sequences were analyzed using the MG-RASTv2 pipe-

line and the phylogenetic distribution and metabolic

functional composition of the samples were profiled

[48]. Representative MG-RAST sample statistics are

shown in Additional file 5. Taxonomic classifications

were assessed in two ways. First, identifiable 16S frag-

ments in the shotgun sequences were used to align to

the GreenGenes small subunit rRNA database [49]. Sec-

ond, PhymmBL [17] was used as an additional metage-

nomic phylogenetic classification tool. PhymmBL uses

BLAST and interpolated Markov models to taxonomi-

cally classify DNA sequences, including reads as short as

100 bp. In addition, to filter out possible human con-

tamination from the reads, BLAST was used to compare

all reads to the human genome (Genome Reference

Consortium assembly, version 37, 2009 [50]). Any full

length reads that were 100% identical to the human

reference genome were discarded. Reads that were 100%

identical, but whose length was under 80 amino acids or

did not share a full-length alignment with the human

reference sequence were not discarded. Between 0 and

13,222 reads were discarded from each sample. The per-

centage of discarded reads did not exceed 4.3% (13,222

discarded from sample 6) and in all other samples was

lower than 0.4%.

Microbiota functional characteristics in BF and FF

infants were compared. Additional file 10 provides a

breakdown of the average number of reads across sam-

ples that were mapped to functional SEED categories.

Because of the hierarchical structure of the SEED classi-

fication system, aggregating reads into coarser classifica-

tions provided for a more informed analysis. For SEED

level 2 classifications, approximately 25% of the func-

tional classifications exhibited an average number of 200

reads across samples. At SEED level 3, approximately

6% of the functional classifications had an average num-

ber of 200 reads. Subsequently, comparisons between

functional categories were carried out subject to the
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following restrictions: SEED level 1 functional categories

were compared if all the FF or BF samples had at least

200 reads from each sample and at least 2% of the over-

all number of reads of each sample; SEED level 2 func-

tional categories were compared if all the FF or BF

samples had at least 100 reads from each sample and at

least 0.5% of the overall number of reads of each sam-

ple; SEED level 3 functional categories were compared if

all the FF or BF samples had at least 50 reads from each

sample and at least 0.1% of the overall number of reads

of each sample.

Gut metagenome and host transcriptome data

integration

In order to take into account multivariate structure

when assessing and ranking genes, we analytically quan-

tified the multivariate relationships between the metage-

nomic and transcriptomic data. CCA was used to

uncover the multivariate structure between the meta-

genome and host transcriptome data sets, which is dis-

cussed in more detail in Additional file 11 [51]. CCA is

a multivariate analysis method and provides measures of

the strength - that is, canonical correlations - of multi-

variate association between variable sets as well as a

means to interpret the role of the variables in terms of

the underlying multivariate relationship [21-23]. The

implicitly linear relationship embedded in CCA is tar-

geted at the simplest first-order relationships that might

be detectable between two data sets. Certainly, non-lin-

ear relationships are possible, and will not be detected

by CCA methodology. However, such relationships are

extremely difficult to estimate without large sample

sizes, which are difficult to obtain in clinical settings

involving infants, and thus we did not attempt to cap-

ture them given the small sample size of our current

cohort. Since the CCA method is based on an estimate

of the covariance matrix between the two variable sets,

it is unreliable when the number of variables is large

relative to the number of samples being used to estimate

the covariance structure. Because of the limited number

of subjects (six per treatment group), it was not possible

to exhaustively examine all the microbiome and tran-

scriptome outcomes simultaneously. Therefore, we

repeatedly applied CCA to all subsets (of size three) of

host gene expression variables combined with the meta-

genomic data (three variables). We refer to the subsets

(of size three) of the gene expression variables as gene

triples. By analyzing all gene triples in turn with the

virulence characteristics, we examined the multivariate

structure between the gut metagenome and host tran-

scriptome in a piecewise, sub-dimensional manner. CCA

results using either the loess normalization method or

the weighted median adjustment normalization method

were very similar (data not shown). Thus, only loess

normalized data are presented.

As a result of our preliminary analysis of the metage-

nomic data, we targeted the SEED level 2 virulence

characteristics for integration with the presumed rele-

vant host gut gene expression data (immunological and

defense genes as well as intestinal biology genes as

described in the ‘Host gut mRNA transcriptome analy-

sis’ section above). Four (’resistance to antibiotics and

toxic compounds’, ‘Type III, Type IV, ESAT secretion

systems’, ‘iron scavenging mechanisms’, and ‘virulence’)

out of thirteen (’invasion and intracellular resistance’,

‘prophage, transposon’, ‘toxins and superantigens’, ‘Type

VI secretion systems’, ‘detection’, ‘pathogenicity islands’,

‘regulation of virulence’, ‘adhesion’, and ‘posttransla-

tional modification’ in addition to the preceding four

categories) SEED level 2 virulence categories had more

than ten sequence reads for each sample. We subse-

quently discarded the catch all ‘virulence’ category and

used ‘resistance to antibiotics and toxic compounds’,

‘Type III, Type IV, ESAT secretion systems’, and ‘iron

scavenging mechanisms’ as our so called ‘virulence char-

acteristics’. Each sample had more than 30 sequence

reads representing each category and more than 50

sequence reads for all samples in either BF or FF

groups. The average number of sequence reads was 245

over all categories and infants. Read count proportions

were ultimately used in the CCA analysis. For integra-

tion with the virulence variables, we used the 100 of 660

immunological and defense genes and the 100 of 459

intestinal biology genes that had the smallest P-values.

This was done to avoid a computationally prohibitive

combinatorial explosion in the number of gene triples

to be analyzed. The overall result of our approach was a

list of ‘best’ host genes (out of those considered), that is,

those showing the strongest empirical evidence of a

relationship with the gut metagenome as judged by mul-

tivariate association and structure.

With regard to mathematical modeling, there is some

similarity between CCA and principal components ana-

lysis (PCA). PCA is frequently used in high dimensional

settings to uncover structure in the data, perhaps in

conjunction with clustering methodologies, and to gen-

erally reduce data dimensionality. While there are slight

differences in the mathematical optimization specifica-

tion of PCA and CCA, they perform highly related ana-

lyses. The primary advantage of CCA in the present

setting, however, is that it is specifically designed to

uncover the multivariate structure between two distinct

data sets. PCA makes no such prior distinction between

data sets and thus does not specifically target the multi-

variate structure between two distinct data sets. We

initially explored the use of PCA, but found CCA more
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adequately suited to the primary task of data integration.

Additional file 12 shows the amount of variation

explained by the first and second principal components

for each gene triple/metagenome set examined. Sets

characterized by only a few principal components would

be expected to be potential candidates for strong perfor-

mance under CCA; however, since the principal compo-

nents in PCA do not necessarily target the underlying

relationship between gene triples and the metagenome,

they may instead identify factors influencing only gene

triples or only the metagenome.

Data deposition

The raw metagenome sequence data minus human-

identical sequences are available at the European Bioin-

formatics Institute’s Short Read Archive (study accession

number: ERP001038). The human microarray data dis-

cussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus [52] and are accessi-

ble through GEO Series accession number GSE31075.

Additional material

Additional file 1: Figure S1. Overview of the analysis pipeline. (a) Stool
samples were obtained from six breast-fed and six formula-fed infants.
(b) Gut microbial DNA and host gut-epithelial mRNA were isolated and
sequenced/hybridized. (c) Microbial DNA sequence was analyzed for
functional content and taxa using MG-RAST and PhymmBL; gut epithelial
mRNA was analyzed for eukaryotic gene function using microarray. (d)
Significant multivariate correlations between gut-epithelium mRNA
expression and metagenomic DNA frequency were determined using
multivariate canonical correlation analysis (CCA) repeated on subsets of
host gene expression data.

Additional file 2: Figure S2. Original log 2 transformed raw CodeLink
microarray data shown in an MA-plot. Upper panel: the x-axis shows the
average of the average gene expression of BF and FF infants for each
probe. The y-axis shows the difference between the two averages. The
color bar shows the count density of the plotted data. BF samples
exhibited a systematically higher gene expression level relative to FF
samples. Lower panel: loess normalization of the original log 2
transformed raw CodeLink microarray data. This normalization procedure
corrected for the systematic increase in BF gene expression relative to FF
gene expression seen in the upper panel. The data were adjusted by the
loess fit (blue line) shown in the upper panel.

Additional file 3: Table S1. Host GO enrichment analysis.

Additional file 4: Figure S3. Phyla distribution using 16S rRNA analysis
(top) and PhymmBL classification of all reads (bottom). X-axis: sample
numbers 1 to 6 BF, 7 to 12 FF. Y-axis: percentage of total assigned reads.
See Additional file 8 for number of assigned reads.

Additional file 5: Table S2. Counts of mapped microbiome sequences.

Additional file 6: Figure S4. Example of canonical correlations of
random gene sets. Analogous to the random gene set shown in Figure
4. Random (1,000) gene sets were sampled and analyzed. The first 5 of
1,000 are shown.

Additional file 7: Figure S5. Example of the best performing genes in
random gene sets. These data are analogous to the random gene set
shown in Figure 5. Random (1,000) gene sets were sampled and
analyzed. The first 5 of 1,000 are shown.

Additional file 8: Data set 1. Discrete sets of biomarkers (genes) known
to be involved in intestinal biology (459).

Additional file 9: Data set 2. Discrete sets of biomarkers (genes) known
to be involved in immunity and defense (660).

Additional file 10: Table S3. Breakdown of sequencing depth in terms
of average number of reads across samples mapped to SEED categories.

Additional file 11: Supplemental protocol. Canonical correlation
calculations.

Additional file 12: Figure S6. A principal components analysis (PCA) of
the virulence characteristics combined with all host gene triples. Top
panel: host intestinal biology genes. Middle panel: immunity and defense
genes. Bottom panel: random genes. The plots show the proportion of
variation explained by the first and second principal components versus
the variation explained by just the second principal component. The
analyses provide a characterization of a lower dimensional structure
underlying the data. When combined with the virulence characteristics,
the immunity and defense genes (middle panel) generally exhibit a
simpler latent structure compared to the other gene sets (top and
bottom panels), as judged by the slight northeast shift in the point
cloud. While the latent structure identified by PCA need not reflect a
relationship between the virulence characteristics and the host genes, it
may, in which case the immunity and defense genes are slightly more
promising as a set with respect to future canonical correlation analysis
(CCA) aimed at uncovering simple and strong relationships between the
metagenomic and host transcriptome data. In this way, PCA may be
used as a screening device to identify promising gene triples for CCA
analysis.

Abbreviations

BF: breast-fed; CCA: canonical correlation analysis; FDR: false discovery rate;
FF: formula-fed; GO: Gene Ontology; LDA: linear discriminant analysis; PCA:
principal components analysis.
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