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Among scienti�c �elds of study, mathematical programming has high status and its importance has led researchers to develop
accurate models and e�ective solving approaches to addressing optimization problems. In particular, metaheuristic algorithms are
approximate methods for solving optimization problems whereby good (not necessarily optimum) solutions can be generated via
their implementation. In this study, we propose a population-based metaheuristic algorithm according to chemotherapy method
to cure cancers that mainly search the infeasible region. As in chemotherapy, Chemotherapy Science Algorithm (CSA) tries to kill
inappropriate solutions (cancers and bad cells of the human body); however, this would inevitably risk incidentally destroying some
acceptable solutions (healthy cells). In addition, as the cycle of cancer treatment repeats over and over, the algorithm is iterated.
To align chemotherapy process with the proposed algorithm, di�erent basic terms and de�nitions including Infeasibility Function
(IF), objective function (OF), Cell Area (CA), and RandomCells (RCs) are presented in this study. In the terminology of algorithms
and optimization, IF and OF are mainly applicable as criteria to compare every pair of generated solutions. Finally, we test CSA and
its structure using the benchmark Traveling Salesman Problem (TSP).

1. Introduction

In the past few decades, various approaches have been
proposed to solve optimization problems in two parts of exact
and approximate methods. 
e exact ones such as dynamic
programming and branch and bound algorithms are only
applicable to small-scale hard problems while for solving
large-scale models and highly nonlinear optimization heuris-
tic approaches should be applied [1]. 
erefore, the need
to provide e�ective approximate solving procedures named
metaheuristic algorithms is known to every researcher. It
is claimed that a metaheuristic algorithm far surpasses the
heuristic one as the latter is just applicable for solving a special
class of problems while one can implement the former for a
wide range of mathematical models and optimization prob-
lems. 
e majority of the proposed metaheuristic algorithms
in the literature are nature-inspired with stochastic behavior
which can be categorized into two groups of population-
based and single point search ones. Nature is of course a
great and immense source of inspiration for solving hard

and complex problems in computer science since it exhibits
extremely diverse, dynamic, robust, complex, and fascinating
phenomena [2]. It always �nds the optimal solution to
solve its problem, maintaining a perfect balance among its
components.

As a matter of fact, nature provides some ecient ways
for solving problems via o�ering ecient methods to address
mathematical models. Ant Colony Optimization (ACO),
Simulated Annealing (SA), Genetic Algorithm (GA), and
Particle SwarmOptimization (PSO) are themost well-known
nature-inspired ones for solving optimization problems. Like
these methods, this study also attempts to propose a natured-
basedmetaheuristic algorithmwhose origin is in chemother-
apy cancer treatment.

Chemotherapy (sometimes called “chemo”) uses more
than 100 strong chemical drugs to treat cancer in a cycle and
repetitive procedure, which is o�en used as the last resort to
prevent the cancer from spreading, slow the cancer’s growth,
kill cancer cells that may have spread to other parts of the
body, relieve symptoms such as pain or blockages caused by
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the cancer, and cure the cancer [3]. It also has some side e�ects
such as nausea and vomiting, hair loss, bonemarrow changes,
mouth and skin changes,memory loss, fertility problems, and
mood swings. In chemo, the destruction of cancer cells that
divide rapidly is targeted. In most cases, chemo drugs are put
right into the bloodstream or taken as pills. 
ey then travel
throughout the body to kill cancer cells. Sometimes there is a
need to get high doses of chemo to a speci�c area of the body.
Regional chemotherapy directs the anticancer drugs into the
part of the body where the cancer exists.
e purpose is to get
more of the drug to the cancer, while trying to limit e�ects on
the whole body. Side e�ects will o�en still happen because the
drugs can be partly absorbed into the bloodstream and travel
throughout the body.

Our algorithm has the same structure as chemotherapy
cancer treatment. In fact, we search the infeasible region
where infeasible and feasible solutions are the same as cancer
and healthy cells, respectively. Furthermore, while some
healthy cells are killed during the treatment and their num-
ber decreases, chemo decreases the number of appropriate
feasible solutions that may be loosened during the algorithm
run. Moreover, each iteration of the algorithm is the same as
each cycle of treatment and while the patient rests (between
each two successive cycles) to recover the killed healthy cells,
whereby increasing the number of cancer cells, the algorithm
generates some other feasible and infeasible solutions to
start the next iteration. Also, the assessment process in the
algorithm is the same as the one used for studying the size of
tumor and cancer cells. During these two producers, while
we try to locate the exact location of the tumor, we must
generate suitable initial infeasible solutions. On the other
hand, determining the exact size and position of the cancer
tumor is similar to calculating the value of objective function
generated solution and its infeasibility value, respectively.


is study is structured as follows. To begin with, a
concise and comprehensive review of literature is given
on some important relative researches. A�erward, some
important de�nitions are presented, followed by the body of
CS algorithm. Next, a general discussion is given to clarify
the structure of the presented algorithm. 
en, the results
of the study are discussed and a benchmark TSP instance is
considered. Finally, the main points of the study are summed
up.

2. Literature Review

As mentioned before, various nominal algorithms have been
proposed in the literature, the most important of which are
shown in Table 1.

Among the above-mentioned algorithms, GA, TS, SA,
ACO, and PSO are the most common ones, widely used to
solve optimization problems.

GA is a general metaheuristic algorithm based on genet-
ics and human nature, which generally solves a range of
optimization problems using di�erent operators such as
mutation and crossover [4]. Tabu Search (TS) algorithm
is another typically used algorithm based on three short,
medium, and long term memories, preventing the algorithm
from generating repetitive solutions, getting stuck in local

optimum solutions, and searching the regions which are not
entirely investigated [5, 6].

SA tries to generate appropriate solutions for uncon-
strained and bound constrained optimization problems
which act as the process of annealing metals [7]. ACO is
a common algorithm proposed by Dorigo [8]. 
is nature-
inspired algorithm based on the life of ant colonies is used
to solve mathematical models, in particular the integer
ones. Overall, ACO generates better quali�ed solutions in
comparison to SA but the latter needs less time for �nding the
�nal solution. Particle SwarmOptimization (PSO) is another
population-based algorithm for generating acceptable solu-
tions (considered as particles), where position and velocity of
the particles form the main structure of this algorithm [9].

3. The Main Body CSA

In this section, the general structure of CS algorithm is
clari�ed and the main philosophy of algorithm and its
adaptation to the process of chemotherapy treatmentmethod
for curing cancers is elaborated on. Generally speaking, we
consider the standard canonical form of a mathematical
model in which all types of variables can be embedded and
as model (1)–(3), the objective function is in minimization
form.

For more diversity and �exibility, a dynamic and stochas-
tic structure, based on random approach, is proposed whose
ignorance will raise a static algorithm that generates the same
solutions in di�erent runs.

min � = ∑
�∈�
���� (1)

s.t: ∑
�∈�
����� ≤ �� ∀
 ∈ � (2)

�� ≥ 0, Int

or �� ≥ 0 � = 1, 2, . . . , �.
(3)

Table 2 explains di�erent terms based on algorithm structure
and chemotherapy science.

3.1. Limiting Cell Position Element (CPE) Bounds. In this
phase of algorithmwe limit the search space or determine the
exact dimension of tumor by applying a developed method
such as Constrained Programming (CP) to increase the
e�ectiveness of our algorithm. 
is phase of algorithm is
highly similar to the process of determining the exact position
of cancer cells and tumor (infeasible solutions), the accuracy
of which can go a longway towards curing the cancer (solving
the problem).


erefore, in an iterative approach the upper and lower
bounds are calculated and tuned. In fact we can take the
following steps to determine narrow bounds for CPEs:

(1) Calculating the initial CPE limits based on the ratio
of ��/���, where the positive and negative ones help us
to determine upper and lower bounds, respectively:
obviously, we must select the minimum upper bound
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Table 1: List of some metaheuristic algorithms (1975–2015) [10].

Number Year Algorithm

1 1975 Holland introduced the Genetic Algorithm (GA) [4].

2 1977 Glover proposed Scatter Search (SS) [11].

3 1980 Smith elucidated genetic programming [12].

4 1983 Kirkpatrick et al. proposed Simulated Annealing (SA) [7].

5 1986 Glover o�ered Tabu Search (TS) [5].

6 1986 Farmer et al. suggested the Arti�cial Immune System (AIS) [13].

7 1988 Koza registered his �rst patent on genetic programming [14].

8 1989 Evolver provided the �rst optimization so�ware using the GA [15].

9 1989 Moscato presented Memetic Algorithm [16].

10 1992 Dorigo proposed the Ant Colony Algorithm (ACO) [8].

11 1993 Fonseca and Fleming provided Multiobjective GA (MOGA) [17].

12 1994
Battiti and Tecchiolli introduced Reactive Search Optimization (RSO) principles for the online self-tuning of
heuristics [18].

13 1995 Kennedy and Eberhart proposed Particle Swarm Optimization (PSO) [9].

14 1997 Storn and Price suggested Di�erential Evolution (DE) [19].

15 1997 Rubinstein presented the Cross Entropy Method (CEM) [20].

16 1999 Taillard and Voss proposed POPMUSIC [21].

17 2001 Geem et al. provided Harmony Search (HS) [22].

18 2001 Hanseth and Aanestad o�ered Bootstrap Algorithm (BA) [23].

19 2004 Nakrani and Tovey presented Bees Optimization (BO) [24].

20 2005 Krishnanand and Ghose introduced Glowworm Swarm Optimization (GSO) [25].

21 2005 Karaboga proposed Arti�cial Bee Colony (ABC) Algorithm [26].

22 2006 Haddad et al. suggested Honeybee Mating Optimization (HMO) [27].

23 2007 Shah-Hosseini o�ered Intelligent Water Drops (IWD) [28].

24 2007 Atashpaz-Gargari and Lucas introduced Imperialist Competitive Algorithm (ICA) [29].

25 2007 Mucherino and Seref suggested Monkey Search (MS) [30].

26 2008 Yang presented Fire�y Algorithm (FA) [31].

27 2009 Husseinzadeh Kashan provided League Championship Algorithm (LCA) [32].

28 2009 Rashedi et al. introduced Gravitational Search Algorithm (GSA) [33].

29 2009 Yang and Deb o�ered Cuckoo Search (CS) [34].

30 2010 Yang developed Bat Algorithm (BA) [35].

31 2011 Shah-Hosseini introduced the Galaxy-based Search Algorithm (GbSA) [36].

32 2011 Tamura and Yasuda designed Spiral Optimization (SO) [37].

33 2011 Rao et al. presented Teaching-Learning-Based Optimization (TLBO) algorithm [38].

34 2012 Gandomi and Alavi proposed the Krill Herd (KH) Algorithm [39].

35 2012 Civicioglu introduced Di�erential Search Algorithm (DSA) [40].

36 2013
Gandomi et al. introduced Cuckoo Search Algorithm (CSA): a metaheuristic approach to solving structural
optimization problems [41].

37 2013 Gandomi et al. introduced Fire�y Algorithm (FA) with chaos [42].

38 2014 Kaveh and Mahdavi developed Colliding Bodies Optimization (CBO) Algorithm [43].

39 2014 Beheshti and Shamsuddin presented CAPSO: centripetal accelerated Particle Swarm Optimization [44].

40 2014 Meng et al. designed Crisscross Optimization Algorithm (COA) [45].

41 2015 Javidy et al. proposed Lons Motion Algorithm (LMA) [46].

42 2015 Yu and Li developed a Social Spider Algorithm (SSA) [47].

43 2016 Rao proposed Jaya algorithm as a simple algorithm [48].

44 2017 Salmani and Eshghi introduced a Smart Structured Algorithm (SSA) to solve Mixed Integer Problem (MIP) [49].
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Table 2: Terms and de�nitions.

Number Chemotherapy term Algorithm term De�nition

1 Out of tumor (OUT) Feasible region
A set of all possible points of a predetermined space called a feasible
region which satis�es the mathematical model’s constraints.

2 Tumor (TU) Infeasible region
A set of points which are located out of the feasible set and cannot
satisfy at least one of the constraints of our optimization model.

3 Tumor Position (TP) Infeasibility Function
TP indicates an approximate measure to calculate the infeasibility of
a point from the border of a predetermined constraint. Also, Total TP
(TTP) is an aggregation of TPs for calculating the total infeasibility.

4 Tumor size (TS) Objective function
TS is a function that we want to optimize subject to di�erent
constraints by using mathematical programming techniques. In fact,
it is going to minimize the tumor size.

5 Healthy cell Feasible solution Indicating a solution which is located in the feasible region.

6 Cancer and bad cell Infeasible solution Indicating a solution which is located in the infeasible region.

7 Initial cancer cell Initial infeasible solution Indicating the input solution of algorithm.

8 Cell Position Element (CPE) Variable Indicating element�� in� = (�1, �2, . . . , ��) as a solution.
9 Cell Solution Indicating set of variables� = (�1, �2, . . . , ��) as a solution.

and maximum lower bound among all the bounds in
di�erent constraints.

(2) For each CPE (index �), we �x the previously cal-
culated upper and lower bounds of the other CPEs
(indexes � = 1, . . . , � & � ̸= �) and then determine
the new upper and lower bounds for the selected
Cell Position Element (index �). For calculating upper
(lower) bound of CPE�, if ���/��� > 0 the lower
(upper) bound of CPE� or else its upper (lower)
bound will be considered.

(3) Repeat phase (2) while for each successive repetition
all the upper and lower bounds get into a con�dence
interval with a predetermined percentage of error
(such as a value around 5%).

At the end of this step IL = (IL(1), IL(2), . . . , IL(�)) and IU =
(IU(1), IU(2), . . . , IU(�)) result as initial lower (IL) and initial
upper (IU) bounds, respectively.

3.2. Generating Initial Cancer Cells in CSA. Various
approaches are available in this algorithm to determine the
position of initial cancer cells and tumor or initial infeasible
solution. 
ere is a similarity between this phase and the
process of chemotherapy.While wewant to select themethod
of generating initial solutions, wemay also want to determine
which drugs and injection methods should be used. Also,
calculating initial solutions in the proposed algorithm is the
same as determining the initial position of cancer tumor and
bad cells in the process of chemotherapy treatment.

Based on our problem, wemay use completely random or
exact methods or a trade-o� method between these two. 
e
following are four possible and proposed approaches which
can be implemented in this phase to determine the initial
position of tumor cells using:

(1) Relaxation methods including linear programming
(LP) and Lagrangian.

(2) CPE-limited bounds which are calculated in the
previous phase where we can use one of lower and
upper bounds in order to improve the TS.

(3) Composition of random search, relaxation, variable
bounds, and other possible approaches.

(4) Problem-based approaches such as greedy methods.

A�er this phase, the algorithm proposes a population (� =
1, 2, . . . , �) of��0 = (��01 , �

�0
2 , . . . , �

�0
� ) named initial cells.

3.3. Evaluating theHealth Status andPosition of the Tumor and
Cells. CS algorithm searches the tumor to �nd a new healthy
cell which means generating a new solution in the infeasible
space. 
erefore, for each pair of found cells (cancerous or
healthy cells), two important factors must be considered for
comparing them, which are the total value of Tumor Position
(TP) and the value of tumor size (TS) in relation (1).

Simply put, it is possible to calculate TP
��
� for constraint


 based on inequality (2), in which ��� = (���1 , �
��
2 , . . . , �

��
� )

that is the �th solution vector of the population generated at
iteration � = 1, 2, . . . , �.

In fact, by applying (4) and the aggregation in a theoreti-

cal and logical way using relation (5), the values of TP
��
� and

TTP�� (Total TP based on all of the constraints), will result.

TP
��
� =

{
{
{

∑
�∈�
������� − ��∑

�∈�
������� ≥ ��

0 O.W,
∀
 ∈ �, (4)

TTP�� = ∑
�∈	

TP
��
� ��. (5)

In this equation, �� indicates the constraint weights while we
can assume the same values for all model constraints.

Also, the value of TS�� is calculated based on the relation

TS�� = ∑
�∈�
������ . (6)
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To analyze each pair of solutions or cells, the designer should
create a tradeo� between the values of TTP�� and TS��. We
categorize all cells into four di�erent groups to determine
the best and worst ones. 
is type of classi�cation is done
according to Table 3. As it can be seen, it is an iterative
and interactive approach between current cells and the ones
which have been generated previously.

ATTP�−1 and ATS�−1 indicate the arithmetic mean of
TTP�� andTS�� of the sets of the best solutions of the previous
solution into average TTP and TS, respectively.

ATS� = 1
|� (�)| ∑�∈
(�)

TS�� ∀� = 1, 2, . . . , �,

ATTP� = 1
|� (�)| ∑�∈
(�)

TTP�� ∀� = 1, 2, . . . , �,
(7)

where |�(�)| is the cardinality of the set of the cells with the
�rst rank at the end of iteration �.

In this ranking, the �rst group will be considered as the
set of best generated cells and its combinationwith the second

group constitutes the next input cells meaning (���∪���) →
���.
e best cells of the third group based on TS are reserved
for special use and �nally the fourth group are thrown away.
It should also be noted that when the �rst group is empty, the
�rst group of previous iteration will be replaced.

3.4. Search Neighborhood Cells. In this phase, we want to
extend our investigation where celerity and intelligently are
its most important features.
is phase is also �exible enough
to be applied for developing a single point population-based
algorithm.

3.4.1. Determining Cell Area (CA) in Tumor. CS algorithm
proposes an innovative approach to solving mathematical
models in which a distinct attitude towards investigating the
tumor and search space is introduced. 
is method uses
Cell Area (CA), which is a limited space around each cell
(solution) and where easy generation of CAs increases its

eciency. To begin with, by using two di�erent levels (����� and
���� in relations (9)), CPE (Cell Position Element) lower (���� )
and upper (���� ) bounds are calculated via (8), and by their

combination a subspace around each cell is created.

���� = �
��
� − �
��
�� ,

���� = �
��
� + �
��
� ,

(8)

where two values of ����� and ���� are determined using the

following relations:

����� =

{{{{{{
{{{{{{
{

���� ��
∑�∈�(�) ������ + ∑�∈�(�) �� ((IL (�) + IU (�)) /2)

∀� ∈ � ($)

�� ((IL (�) + IU (�)) /2)
∑�∈�(�) ������ + ∑�∈�(�) �� ((IL (�) + IU (�)) /2)

∀� ∈ � (%) ,

���� = �
��
�� × Const.

(9)

In these relations, �($) and �(%) are the set of CPEs with
nonzero (���� ̸= 0) and zero ones (���� = 0), respectively. Also,
we mostly propose linear-based relations for more simplicity
and decreasing complexity of CSA. Furthermore, we can

calculate upper level (���� ) based on the lower one (�
��
�� ) by just

an easy approach where the lower value is multiplied with a
constant number to calculate the upper limit.

Also, if we want to determine these values for the CPEs
without any coecients in tumor size (�� = 0), it should
consider an equivalent weight (��� ) in relations (9). We can

calculate this weight using an arithmetic mean of the CPEs
(in which positive or negative sign is embedded) that are in
the same constraints with CPE index � with �� = 0, as the
equation

��� =
1
|�| ∑�∈�

�� −
1
|&| ∑�∈�

��;

�� = 0, � ∉ � & � ∉ &,
(10)

where |�| and& are the cardinality of the sets of CPEs which
are in the same constraints with CPE�, with di�erent and
same signs, respectively.

To clarify it, we can refer to Figure 1, which shows a CA
for a sample instance with just two CPEs�1 and�2.

Once again, it is possible to round the value of integer

CPEs to the nearest integer number.However, if���� (�
��
� ) gets

less (greater) than the lower (upper) bound, the lower (upper)
bound will be replaced.

3.4.2. Generating RandomCells in CA. To calculate the values
of Random Cells (RCs), being cancerous or healthy, based on

CA, we can multiply (���� − �
��
� ) with a random number and

add it to its lower bound. Under this condition and because of
using problem data and random number, RC will be a smart
random number.

����� = �
��
� + rand × (�

��
� − �

��
� )

∀� = 1, 2, . . . , 3, � = 1, 2, . . . , 4.
(11)
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Figure 1: Sample Cell Area (CA).

Table 3: Cells ranking based on TS and TTP.

Rank
Optimality
criterion

Infeasibility
criterion

Healthy/cancer
cells

1 ATS�−1 > TS�� ATTP�−1 ≥ TTP�� ��� and���
2 ATS�−1 > TS�� ATTP�−1 < TTP�� ���
3 ATS�−1 ≤ TS�� ATTP�−1 ≥ TTP�� —

4 ATS�−1 ≤ TS�� ATTP�−1 < TTP�� —

As in the case of upper and lower bounds of integer CPEs,

again����� should be rounded in special cases.

3.4.3. Rest Period Phase. In CS algorithm, we get near to the
border of tumor from a determined cell out of the tumor
using CA, RCs, and, of course, smart vectors. In fact, false
direction and any inaccuracy or incorrectness in it can result
in inappropriate cells. In the relevant literature, di�eren-
tiation is the most common way among all the proposed
e�ective ones. However, this approach is not applicable to
di�erent classi�cations of models and problems including
LP, IP, and MIP. 
erefore, a positive, negative, or zero
direction for each CPE based on model coecients and cells
is determined, and then we take one step in this vector to �nd
another cell nearer to the tumor and cancer cells and their
border, with more quali�ed TS.


is phase is similar to the new cycle for drug injection
to the body and tumor for killing the cancer cells. While we
try to convert some of the cancer cells (infeasible solutions) to
their corresponding healthy (feasible) ones in CS algorithm,
doctors let the patient rest and refresh their healthy cells. As
mentioned in Section 3.6, we are able to convert some of
the bad cells to the healthy ones using a linear programming
model or applying problem-related approaches such as a
Greedy approach to TSP.

In two consecutive comparative steps we can determine
the mentioned direction.

At �rst, we determine the direction type based on
CPE values. If we consider that �max = max�∈�(��) and
�min = min�∈�(��) and also ���max = max�∈�(���� ) and

���min = min�∈�(���� ), it is possible to determine � ⋅ ��� using
the following relations:

� = �max + �min

2 ,

��� = �max ⋅ ���max + �min ⋅ ���min

�max + �min

,

� ⋅ ��� = �max ⋅ ���max + �min ⋅ ���min

2 .

(12)

Now, we should compare �� ⋅ ���� to � ⋅ ��� to determine

the direction type where using 4� = ��/(�max + �min) as
the adjustment coecient helps us modify our comparison.

In fact, we can use 4� ⋅ �� ⋅ ���� instead of �� ⋅ ���� in

our comparison whenever it is necessary. It means that this
evaluation will be adjusted between (�max ⋅ ���max + �min ⋅
���min)/2 and (�2� ⋅ �

��
� )/(�max + �min) to determine the CPE

direction type.
Relation (13) helps us to clarify this statement in which

6��� is the direction of CPE�.

6��� =
{{{{
{{{{
{

6��� + 714� ⋅ �� ⋅ �
��
� < � ⋅ �

��

6��� 4� ⋅ �� ⋅ �
��
� = � ⋅ �

��

6��� − 7�14� ⋅ �� ⋅ �
��
� > � ⋅ �

��.
(13)

In relation (13), parameters 71 and 7�1 should be one or can
be determined using a parameter tuning approach. In fact,
we want to increase (decrease) the value of CPE� when its

adjusted value (4� ⋅ �� ⋅ ���� ) in the tumor size (TS) is

less (greater) than our criterion (� ⋅ ���) and let it remain
unchanged for the case of equality.

Secondly, we must determine the direction based on the
position (infeasibility) of the cell (solution) using relation

(14); a�erwards, we update 6��� according to DTP
��
� by using

relation (15).

DTP
��
� =

{
{
{

DTP
��
� + 72TP

��
� = 0

DTP
��
� − 7�2TP

��
� > 0,

(14)

6��� =
{{{{
{{{{
{

6��� + 73DTP
��
� < 0

6��� DTP
��
� = 0

6��� − 7�3DTP
��
� > 0.

(15)

To take small steps and, of course, adjust the directions, the

values of6��� can be normalized using the equation

6��� =
6���

max∀�∈� {6��� }
. (16)

In relations (14)-(15), parameters 72, 7�2, 73, and 7�3 should
be valued in accordance with each other. Obviously, the
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Table 4: Stopping conditions.

# Stopping condition Explanation

1

Reaching the border
of tumor where it is
cured approximately
(feasible region).

Algorithm stops when TTP becomes
zero or less for the best generated cell

and an approximate acceptable
solution is generated.

2

Reaching a �xed
number of

chemotherapy
repetitions.

Algorithm stops a�er a
predetermined number of runs and
converting the cancer cells to their

corresponding healthy ones.

3

Reaching a �xed value
for TTP and getting
near to the border of

tumor.

Algorithm stops when it is in a
predetermined special distance of
feasible region and a predetermined

TTP and TS result.

4
Reaching a percentage
of improvement in TS

or tumor size.

Algorithm stops when TS has a
predetermined percentage of

improvement in comparison to its
initial value.

importance of criterion TP
��
� increases as the number of

constraints increases, resulting in bigger ratios. 
e number
of CPEs and constraints increases, so do 7�2/72 and 7�3/73.

Finally, we can reach a new cell (solution) based on
vectors6�� and���� using the equation

����� = ���� + 6��,
� = 1, 2, . . . , �; � = 1, 2, . . . , �, � = 1, 2, . . . , 4; : = 1, 2, . . . , ?,

(17)

where ? indicates the number of directions, and based on
����� , we can determine the values of the other vectors such

as��� and���.
It should be mentioned that it is possible to calculate all

these values based on matrix forms where using a powerful
so�ware program such as MATLAB can ease the implemen-
tation of this approach.

3.5. Stopping Conditions. CS algorithm has a completely
di�erent structure compared to the other proposed ones in
the literature; therefore, the stopping conditions are distinct
while di�erent factors such as the structure of our problem
(TSP, LP, MIP, etc.), improvement rate in TTP and TS, and
also input data may bear on our selection. Table 4 indicates
some suggested appropriate criteria.

3.6. Converting Cancerous Cells to Healthy Ones. In CSA we
need a general approach to converting each cancerous cell
to its equivalent healthy one. 
is method may be applied
in di�erent parts of the algorithm. Assume that we stop the
algorithm and the �nal generated cells are not healthy where
based on our mathematical model with hard constraints it
is not an appropriate cell; therefore, a conversion method is
required to generate the �nal applicable cell. Moreover, as in
the process of cancer treatment using chemotherapy, here we
need a fast conversion method to convert appropriate bad
cells to healthy ones andmaintain the best ones until stopping
CSA repeating.

In the �nal stage of curing the cancer inwhich the surgeon
removes the weakened tumor, we want to convert inapplica-
ble infeasible solutions (cancer cells or tumor) to acceptable
feasible ones (healthy cells). In fact, it is the �nal stage which
can be implemented for stopping the algorithm. Generally,
as doctors weaken the tumor during radiation therapy, we
can convert the bad and cancerous cells (infeasible solutions)
to healthy (feasible) ones during algorithm run. Apparently,
this methodology increases �exibility and results in better-o�
cells.

We know that converting a cancerous cell to its corre-
sponding healthy one decreases the quality of TS due to
narrowing the space, and at the best situation with a small
probability, a healthy cell with the same TS will result at best.

erefore, we should apply an approach to maintaining the
TS in its maximum possible value. In this special case, the
following model can help us to solve this issue. However,
adapting it to our mathematical model is suggested. For
instance, the combination of this model with a greedy
approach seems more e�ective when we solve a TSP or
Knapsack Problem (KP).

max @ = ∑
� where ��>0

����� (18)

∑
�
������ ≥ TP�

∀
 = 1, 2, . . . , |�| where TP� > 0
(19)

��� ≤ �� ∀� = 1, 2, . . . , A where �� > 0 (20)

��� ≥ 0, Int ∀� = 1, 2, . . . , A where �� > 0, (21)

where ��� is the amount of CPE index � which should be

decreased from its original value (��) to reach a new set of

CPE vector (��) as a healthy cell (relation (22)).

��� = �� − ���. (22)

In this model, we try to decrease the value of CPEs by
considering the constraints with TP� > 0. We can say that
relation sets (19) attempt to omit any occurring infeasibility
while maximizing the total decrease of object function using
relation (18).

Feasibility�eorem.Model (18)–(21) has at least one feasible
solution.

Proof. Suppose a solution in which ��� = �� (relation (20))

which means that��� = 0, where the generated solution with

� = 0 would be a feasible solution for model (1)–(3).
On the other hand, we know that the values TP� > 0

are created due to the positive values of variables (��� > 0).

erefore, when ��� = �� ∀� ∈ �, summation ∑� ������ will
cover all the infeasibility of constraint 
 (TP� > 0), meaning
that relation (19) is satis�ed.
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4. Discussion about the Structure of CSA


e general structure of CSA, including the necessary steps
and strategies in our algorithm, is graphically displayed in
Figure 2. 
e rotating movements of CS algorithm between
the inside and outside of the tumor in two general phases
increase its �exibility by deeply exploring the space and
subspaces of solutions.

As it can be seen, we map di�erent parts of CS algorithm
on the process of chemotherapy cancer treatment. 
erefore,
this algorithm is developed based on a �rm background
of treatment process whose eciency has been proved in
medicine in the past few decades. As a matter of fact, nature-
inspired algorithms such as GA, ACO, and SA are signif-
icantly ecient for solving optimization problems. 
ese
types of algorithms such as CSA have a reliable background
which theoretically build a logical structure.


e cyclic part of this algorithm is similar to the rev-
olutionary part of chemotherapy process in which, a�er a
drug injection phase, a resting phase follows while in the
proposed algorithm we try to get close to the border tumor
and the healthy space around it (as in drug injection phase).
Finally, we may convert cancerous cells (killing cancer cells)
to healthy ones (as resting phase).

Moreover, while developing CS algorithm, we try to con-
sider mathematical exact solving methods, techniques, and
formulas to improve its performance. In fact, by combining
nature processes and mathematical relations, an e�ective
algorithm is introduced where some parts of the main
structure are based on nature and the other parts are based
on mathematics, statistics, and science.

In CS algorithm, generating initial cancerous cells is
critically important. In fact, based on the directing concept,
the algorithm explores di�erent parts of the space starting
from the initial cells. However, the quality of initial cells
depends on the �rst step in which algorithm determines the
limits of CPEs to narrow the search space such as constraint
programming.

On the other hand, generating cells using fundamen-
tal concepts such as CA and RCs as mathematical rules
combined by the chemotherapy process provides a set of
theoretical and practical tools for user of CSA to solve
optimization problems. 
e importance of these techniques
becomes clearer when considerable cells are generated par-
ticularly for solving hard problems such as TSP.

Likewise, it should be noted that converting strategy
is another considerable part of this algorithm which lets
us generate healthy cells during the algorithm and reserve
them till the �nal stage. 
is approach helps users to modify
directions (based on CA, RCs, and smart vectors) towards
those parts of healthy space out of the tumor to reach
healthy cells. 
is special feature creates a smart algorithm
in searching the space discontinuously and widely. It means
that CS algorithm tries to search di�erent parts of the space
which may include the optimum cell with more probability.

Finally, in special cases when the algorithm stops while
it is still inside the tumor, a procedure for generating healthy
cells is proposed.
is phase lets algorithm stop before getting
out of the tumor for saving time and prohibiting unnecessary

runs of the algorithm. Moreover, for hard problems such
as TSP, to use this methodology is strongly suggested for
generating an acceptable cell in the healthy part of the body
near the tumor with an ecient objective function.

As a matter of fact, as the degree of the hardness of
prototype optimization problems increases, the deterioration
of the cancer and its seriousness increases accordingly. As it is
well known, TSP is one of the hardest problems in combina-
torial optimization �elds; therefore, its corresponding cancer
prototype is more serious and dangerous.

5. Computational Results

To solve a sample problem using CSA, a benchmark example
for TSP is solved (adopted from [50] named TSPTW). Our
general approach is appraising the algorithm by comparing
the generated cells of each problem with their optimum
one. 
e results indicate an e�ective performance for this
algorithm in solving NP-complete problems such as TSP.

We ran CSA on a Core i5 2.4GHz computer with 4GB
RAM using MATLAB R2012a and GAMS 24.1.2.

To solve TSP, we need to modify some of the proposed
relations based on the following new mathematical model
[51]:

min � = ∑
�
∑
�
������ (23)

s.t: ∑
�
��� = 1 ∀� = 1, 2, . . . , A (24)

∑
�
��� = 1 ∀
 = 1, 2, . . . , A (25)

B� − B� + A��� ≤ A − 1

∀
, � = 2, 3, . . . , A & 
 ̸= �
(26)

��� ∈ Binary & B� ∈ URS ∀
, � = 1, 2, . . . , A. (27)

Obviously, to determine the value of TP for constraints (24)-
(25), we should apply the following two equations:

TP
��
� = ∑
�∈�
������� − ��, ∀
 ∈ �, (28)

TTP�� = ∑
�∈	

DDDDDTP
��
�
DDDDD ��. (29)

In this model, the CPE limits are zero or one for the binary
variables and these bounds for the URS variables are in�nite.
Also, we generate the initial solution by using a combinatorial
approach based on greedy and LP relaxation methods in
which the generated solution using LP relaxation methodol-
ogy is modi�ed to create a new infeasible IP (binary) solution
for TSP. On the other hand, for calculating the other parts
and running the algorithm (such as the appraising phase,
killing cancer cells, etc.), the previously mentioned relations
and formulas are applied.


e benchmark data is available on its website and its
optimum solution and the best generated cell byCS algorithm
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Figure 2: General structure of the algorithm.

is shown in Table 5. Just a short glance on the results
indicates the optimum cell is approximately achieved using
the proposed algorithm. Here, there are just 3 units di�erent
between TS values of the best generated cell (1457) and the
optimum one (1454) which indicates a ratio of 0.21%.

We run the algorithms 20 times to solve the benchmark
problem as is shown in Table 6. We know that in TSP all
the constraints are hard and the �nal generated cell should
be located outside the tumor, meaning that the value of
TTP should be zero for the �nal generated cell. Generally,
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Table 5: Optimum and algorithm best cell for sample TSP problem.

Optimum cell Algorithm best cell

Tumor size 1454 Tumor size 1457

Origin city Destination city Origin city Destination city

1 23 1 7

2 3 2 23

3 25 3 17

4 5 4 16

5 6 5 6

6 17 6 3

7 18 7 18

8 14 8 10

9 2 9 20

10 1 10 1

11 16 11 19

12 11 12 25

13 10 13 2

14 22 14 22

15 19 15 9

16 15 16 15

17 8 17 8

18 12 18 12

19 21 19 24

20 4 20 21

21 20 21 14

22 9 22 11

23 24 23 4

24 8 24 5

25 13 25 13

it is possible to convert the cancer cell to its corresponding
healthy one by using a greedy approach.

In fact, for a counterpart problem of TSP, we need to
kill some of the cancer cells and a�er weakening tumor, we
must remove it completely to cure it. As we know, TSP is
an NP-complete problem; therefore its corresponding cancer
prototype is also a serious and crucial one and in addition to
chemotherapy radiation therapy is required and mandatory.

Also, we know that TSP is an NP-complete problem
and generating a healthy cell with 0.21% minimum range
of errors and an average around 1.10% is invaluable and
these results indicate the e�ectiveness of CS algorithm and
eciency of its performance. Itmeans that solving other types
of optimization problems such as MIP ones by applying CS
algorithm can result in great cells using appropriate so�ware
and professional programming methods.

In this instance, there is a small di�erence between the
minimum and optimum solutions on the one hand and the
maximum and optimum solutions on the other hand, which
is 0.21% and 1.51%, respectively. Moreover, total di�erence
betweenminimum andmaximum ratio of TSs is 1.30%where
the average is 1.51%. 
ese values and of course Figure 3
again indicate a robust algorithm which e�ectively generates
appropriate cells, and the range of TSs is narrow.

Table 6: Algorithm generated cells for sample TSP problem with 25
cities.

Iteration number TS TTP Ratio∗

Average 1469.95 0.00 1.10%

Minimum 1457.00 0.00 0.21%

Maximum 1476.00 0.00 1.51%

1 1467.00 0.00 0.89%

2 1474.00 0.00 1.38%

3 1471.00 0.00 1.17%

4 1457.00 0.00 0.21%

5 1468.00 0.00 0.96%

6 1471.00 0.00 1.17%

7 1476.00 0.00 1.51%

8 1467.00 0.00 0.89%

9 1472.00 0.00 1.24%

10 1468.00 0.00 0.96%

11 1471.00 0.00 1.17%

12 1463.00 0.00 0.62%

13 1475.00 0.00 1.44%

14 1472.00 0.00 1.24%

15 1474.00 0.00 1.38%

16 1475.00 0.00 1.44%

17 1472.00 0.00 1.24%

18 1465.00 0.00 0.76%

19 1474.00 0.00 1.38%

20 1467.00 0.00 0.89%
∗[(TS −Optimum TS)/(Optimum TS) ∗ 100].

1450.00

1455.00

1460.00

1465.00

1470.00

1475.00

1480.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Objective function

Minimum OF

Maximum OFAverage OF

Optimum OF

Figure 3:General analysis of the generated solution of the algorithm
for the TSP problem with 25 cities.

In order to test the eciency of proposed algorithm on
large problem, a TSP problem with 100 cities was selected
from benchmark problems [52] where its length of optimal
tour is 2772.31.

As it can be seen in Table 7 and Figure 4, CSA generates
good solutions where the average objective function of
its tours is near, 2.53%, to the optimal tour. It is worth
mentioning that this TSP sample is almost 4 times bigger
than our �rst problem and its results indicate that CSA has
the ability to produce good solutions for bigger and harder
problems.
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Table 7: Results of CSA for a large TSP problem with 100 cities.

Iteration number TS TTP Ratio∗

Average 2842.39 0.00 2.53%

Minimum 2786.77 0.00 0.52%

Maximum 2890.42 0.00 4.26%

1 2847.69 0.00 2.72%

2 2821.82 0.00 1.79%

3 2890.42 0.00 4.26%

4 2875.97 0.00 3.74%

5 2813.67 0.00 1.49%

6 2801.05 0.00 1.04%

7 2791.67 0.00 0.70%

8 2869.66 0.00 3.51%

9 2826.80 0.00 1.97%

10 2861.69 0.00 3.22%

11 2869.54 0.00 3.51%

12 2828.09 0.00 2.01%

13 2820.16 0.00 1.73%

14 2889.96 0.00 4.24%

15 2828.99 0.00 2.04%

16 2853.97 0.00 2.95%

17 2853.97 0.00 2.95%

18 2878.60 0.00 3.83%

19 2837.41 0.00 2.35%

20 2786.77 0.00 0.52%
∗[(TS − Optimum TS)/(Optimum TS) ∗ 100].

2700.00
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2780.00
2800.00
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2900.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Objective function

Minimum OF

Maximum OFAverage OF

Optimum OF

Figure 4: Analysis of the generated solutions of CSA for the TSP
problem with 100 cities.

On the other hand, as it is shown in Figure 5, the average
rate of 2.53% with a minimum percentage of 0.70% and
maximum value of 4.26% indicates that CSA can generate
solutions which are near to optimal solutions for small
and big problems. Moreover, a narrow range in this regard
indicates the robust manner of this algorithm in generating
�nal solutions.

To check the process of runningCSA, the total percentage
of improvement in the quality of Cell Size (objective function)
is reported. 
is value helps us to get a general overview
about the quality of initial and �nal cells and the rate of
improvement (Figure 6). However, we should note that the
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Figure 5: Analysis of the rate of TS for the generated solutions in
comparison to the optimal one.
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Figure 6: General analysis of the percentage of improvement during
algorithm running time.

initial solution is an infeasible solution and the �nal solution
is a feasible one. An average improvement rate of 4.60%
indicates the robustness and e�ectiveness of CSA. As amatter
of fact, the average percentage of 4.60% in solving a large TSP
problem is valuable where a small amount of improvement
in this type of problems usually needs an e�ective and time
consuming approach.

It is worth noting that, as an e�ective approach, the
concept of sparse matrix is used to solve the TSP problem
where in the original form the number of CPEs and param-
eters is high and using the normal matrix may decrease
the e�ectiveness of the algorithm particularly for large-scale
problems.

We can see the graphical view of the best tour obtained by
the proposed algorithm for the TSP problem with 100 cities
in Figure 7.

6. Conclusion

In this study, an innovative algorithm is proposed which
focuses on tumor space (infeasible region) to investigate and
explore the cells. Intelligently, a nature-inspired algorithm
based on chemotherapy cancer treatment is developed with
a mathematical background according to the e�ective and
exact solving techniques for optimization problems and the
proposed approaches in the literature.
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Figure 7: 
e graphical view of the best tour obtained by CSA.

A �rm background for the proposed algorithm directs
it towards generating appropriate healthy cells. 
is algo-
rithm consists in searching the space far from the tumor
border (convex hall) and investigating the tumor towards the
outside of the tumor using CA, RC, and rational random
directions.
eoretically, two TTP and TS criteria are applied
for assessing each pair of cells where an e�ective approach
is proposed to convert each cancer cell to its corresponding
healthy one which can be applied in each iteration and part
of the algorithm. However, based on the structure of our
mathematical model, it is possible to develop other strategies
in di�erent parts of the algorithm, such as using greedy
approaches for generating initial cancer cells or converting a
bad cell to a healthy one when solving TSP.


e following can be some intriguing areas for future
research regarding the proposed algorithm:

(i) Solving other categories of optimization problems
such as nonlinear ones

(ii) Combining the algorithm with other well-known
ones to develop a hybrid algorithm

(iii) Developing a toolbox and so�ware-based solver to
solve a wide range of parameters without having to
e�ect drastic changes to programming codes.
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