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Among scientific fields of study, mathematical programming has high status and its importance has led researchers to develop
accurate models and effective solving approaches to addressing optimization problems. In particular, metaheuristic algorithms are
approximate methods for solving optimization problems whereby good (not necessarily optimum) solutions can be generated via
their implementation. In this study, we propose a population-based metaheuristic algorithm according to chemotherapy method
to cure cancers that mainly search the infeasible region. As in chemotherapy, Chemotherapy Science Algorithm (CSA) tries to kill
inappropriate solutions (cancers and bad cells of the human body); however, this would inevitably risk incidentally destroying some
acceptable solutions (healthy cells). In addition, as the cycle of cancer treatment repeats over and over, the algorithm is iterated.
To align chemotherapy process with the proposed algorithm, different basic terms and definitions including Infeasibility Function
(IF), objective function (OF), Cell Area (CA), and Random Cells (RCs) are presented in this study. In the terminology of algorithms
and optimization, IF and OF are mainly applicable as criteria to compare every pair of generated solutions. Finally, we test CSA and
its structure using the benchmark Traveling Salesman Problem (TSP).

1. Introduction

In the past few decades, various approaches have been
proposed to solve optimization problems in two parts of exact
and approximate methods. The exact ones such as dynamic
programming and branch and bound algorithms are only
applicable to small-scale hard problems while for solving
large-scale models and highly nonlinear optimization heuris-
tic approaches should be applied [1]. Therefore, the need
to provide effective approximate solving procedures named
metaheuristic algorithms is known to every researcher. It
is claimed that a metaheuristic algorithm far surpasses the
heuristic one as the latter is just applicable for solving a special
class of problems while one can implement the former for a
wide range of mathematical models and optimization prob-
lems. The majority of the proposed metaheuristic algorithms
in the literature are nature-inspired with stochastic behavior
which can be categorized into two groups of population-
based and single point search ones. Nature is of course a
great and immense source of inspiration for solving hard

and complex problems in computer science since it exhibits
extremely diverse, dynamic, robust, complex, and fascinating
phenomena [2]. It always finds the optimal solution to
solve its problem, maintaining a perfect balance among its
components.

As a matter of fact, nature provides some efficient ways
for solving problems via offering efficient methods to address
mathematical models. Ant Colony Optimization (ACO),
Simulated Annealing (SA), Genetic Algorithm (GA), and
Particle Swarm Optimization (PSO) are the most well-known
nature-inspired ones for solving optimization problems. Like
these methods, this study also attempts to propose a natured-
based metaheuristic algorithm whose origin is in chemother-
apy cancer treatment.

Chemotherapy (sometimes called “chemo”) uses more
than 100 strong chemical drugs to treat cancer in a cycle and
repetitive procedure, which is often used as the last resort to
prevent the cancer from spreading, slow the cancer’s growth,
kill cancer cells that may have spread to other parts of the
body, relieve symptoms such as pain or blockages caused by
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the cancer, and cure the cancer [3]. It also has some side effects
such as nausea and vomiting, hair loss, bone marrow changes,
mouth and skin changes, memory loss, fertility problems, and
mood swings. In chemo, the destruction of cancer cells that
divide rapidly is targeted. In most cases, chemo drugs are put
right into the bloodstream or taken as pills. They then travel
throughout the body to kill cancer cells. Sometimes there is a
need to get high doses of chemo to a specific area of the body.
Regional chemotherapy directs the anticancer drugs into the
part of the body where the cancer exists. The purpose is to get
more of the drug to the cancer, while trying to limit effects on
the whole body. Side effects will often still happen because the
drugs can be partly absorbed into the bloodstream and travel
throughout the body.

Our algorithm has the same structure as chemotherapy
cancer treatment. In fact, we search the infeasible region
where infeasible and feasible solutions are the same as cancer
and healthy cells, respectively. Furthermore, while some
healthy cells are killed during the treatment and their num-
ber decreases, chemo decreases the number of appropriate
feasible solutions that may be loosened during the algorithm
run. Moreover, each iteration of the algorithm is the same as
each cycle of treatment and while the patient rests (between
each two successive cycles) to recover the killed healthy cells,
whereby increasing the number of cancer cells, the algorithm
generates some other feasible and infeasible solutions to
start the next iteration. Also, the assessment process in the
algorithm is the same as the one used for studying the size of
tumor and cancer cells. During these two producers, while
we try to locate the exact location of the tumor, we must
generate suitable initial infeasible solutions. On the other
hand, determining the exact size and position of the cancer
tumor is similar to calculating the value of objective function
generated solution and its infeasibility value, respectively.

This study is structured as follows. To begin with, a
concise and comprehensive review of literature is given
on some important relative researches. Afterward, some
important definitions are presented, followed by the body of
CS algorithm. Next, a general discussion is given to clarify
the structure of the presented algorithm. Then, the results
of the study are discussed and a benchmark TSP instance is
considered. Finally, the main points of the study are summed

up.
2. Literature Review

As mentioned before, various nominal algorithms have been
proposed in the literature, the most important of which are
shown in Table L.

Among the above-mentioned algorithms, GA, TS, SA,
ACO, and PSO are the most common ones, widely used to
solve optimization problems.

GA is a general metaheuristic algorithm based on genet-
ics and human nature, which generally solves a range of
optimization problems using different operators such as
mutation and crossover [4]. Tabu Search (TS) algorithm
is another typically used algorithm based on three short,
medium, and long term memories, preventing the algorithm
from generating repetitive solutions, getting stuck in local

Journal of Optimization

optimum solutions, and searching the regions which are not
entirely investigated [5, 6].

SA tries to generate appropriate solutions for uncon-
strained and bound constrained optimization problems
which act as the process of annealing metals [7]. ACO is
a common algorithm proposed by Dorigo [8]. This nature-
inspired algorithm based on the life of ant colonies is used
to solve mathematical models, in particular the integer
ones. Overall, ACO generates better qualified solutions in
comparison to SA but the latter needs less time for finding the
final solution. Particle Swarm Optimization (PSO) is another
population-based algorithm for generating acceptable solu-
tions (considered as particles), where position and velocity of
the particles form the main structure of this algorithm [9].

3. The Main Body CSA

In this section, the general structure of CS algorithm is
clarified and the main philosophy of algorithm and its
adaptation to the process of chemotherapy treatment method
for curing cancers is elaborated on. Generally speaking, we
consider the standard canonical form of a mathematical
model in which all types of variables can be embedded and
as model (1)-(3), the objective function is in minimization
form.

For more diversity and flexibility, a dynamic and stochas-
tic structure, based on random approach, is proposed whose
ignorance will raise a static algorithm that generates the same
solutions in different runs.

i€l
st Y agX;<b Viel D)
i€l
X;20, Int
(3)

or X;20 j=12,...,].

Table 2 explains different terms based on algorithm structure
and chemotherapy science.

3.1. Limiting Cell Position Element (CPE) Bounds. In this
phase of algorithm we limit the search space or determine the
exact dimension of tumor by applying a developed method
such as Constrained Programming (CP) to increase the
effectiveness of our algorithm. This phase of algorithm is
highly similar to the process of determining the exact position
of cancer cells and tumor (infeasible solutions), the accuracy
of which can go a long way towards curing the cancer (solving
the problem).

Therefore, in an iterative approach the upper and lower
bounds are calculated and tuned. In fact we can take the
following steps to determine narrow bounds for CPEs:

(1) Calculating the initial CPE limits based on the ratio
of b;/aj;, where the positive and negative ones help us
to determine upper and lower bounds, respectively:
obviously, we must select the minimum upper bound



Journal of Optimization

TaBLE 1: List of some metaheuristic algorithms (1975-2015) [10].

Number Year Algorithm

1 1975 Holland introduced the Genetic Algorithm (GA) [4].

2 1977 Glover proposed Scatter Search (SS) [11].

3 1980  Smith elucidated genetic programming [12].

4 1983 Kirkpatrick et al. proposed Simulated Annealing (SA) [7].

5 1986 Glover offered Tabu Search (TS) [5].

6 1986 Farmer et al. suggested the Artificial Inmune System (AIS) [13].

7 1988  Koza registered his first patent on genetic programming [14].

8 1989 Evolver provided the first optimization software using the GA [15].

9 1989 Moscato presented Memetic Algorithm [16].

10 1992 Dorigo proposed the Ant Colony Algorithm (ACO) [8].

11 1993 Fonseca and Fleming provided Multiobjective GA (MOGA) [17].

n 1994 Battiti and Tecchiolli introduced Reactive Search Optimization (RSO) principles for the online self-tuning of
heuristics [18].

13 1995 Kennedy and Eberhart proposed Particle Swarm Optimization (PSO) [9].

14 1997 Storn and Price suggested Differential Evolution (DE) [19].

15 1997 Rubinstein presented the Cross Entropy Method (CEM) [20].

16 1999 Taillard and Voss proposed POPMUSIC [21].

17 2001 Geem et al. provided Harmony Search (HS) [22].

18 2001 Hanseth and Aanestad offered Bootstrap Algorithm (BA) [23].

19 2004  Nakrani and Tovey presented Bees Optimization (BO) [24].

20 2005 Krishnanand and Ghose introduced Glowworm Swarm Optimization (GSO) [25].

21 2005  Karaboga proposed Artificial Bee Colony (ABC) Algorithm [26].

22 2006  Haddad et al. suggested Honeybee Mating Optimization (HMO) [27].

23 2007 Shah-Hosseini offered Intelligent Water Drops (IWD) [28].

24 2007  Atashpaz-Gargari and Lucas introduced Imperialist Competitive Algorithm (ICA) [29].

25 2007 Mucherino and Seref suggested Monkey Search (MS) [30].

26 2008  Yang presented Firefly Algorithm (FA) [31].

27 2009 Husseinzadeh Kashan provided League Championship Algorithm (LCA) [32].

28 2009  Rashedi et al. introduced Gravitational Search Algorithm (GSA) [33].

29 2009 Yang and Deb offered Cuckoo Search (CS) [34].

30 2010 Yang developed Bat Algorithm (BA) [35].

31 2011 Shah-Hosseini introduced the Galaxy-based Search Algorithm (GbSA) [36].

32 2011 Tamura and Yasuda designed Spiral Optimization (SO) [37].

33 2011 Rao et al. presented Teaching-Learning-Based Optimization (TLBO) algorithm [38].

34 2012 Gandomi and Alavi proposed the Krill Herd (KH) Algorithm [39].

35 2012 Civicioglu introduced Differential Search Algorithm (DSA) [40].

36 2013 Gandomi et al. introduced Cuckoo Search Algorithm (CSA): a metaheuristic approach to solving structural
optimization problems [41].

37 2013 Gandomi et al. introduced Firefly Algorithm (FA) with chaos [42].

38 2014 Kaveh and Mahdavi developed Colliding Bodies Optimization (CBO) Algorithm [43].

39 2014 Beheshti and Shamsuddin presented CAPSO: centripetal accelerated Particle Swarm Optimization [44].

40 2014 Meng et al. designed Crisscross Optimization Algorithm (COA) [45].

41 2015 Javidy et al. proposed Lons Motion Algorithm (LMA) [46].

42 2015 Yu and Li developed a Social Spider Algorithm (SSA) [47].

43 2016 Rao proposed Jaya algorithm as a simple algorithm [48].

44 2017 Salmani and Eshghi introduced a Smart Structured Algorithm (SSA) to solve Mixed Integer Problem (MIP) [49].
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TABLE 2: Terms and definitions.
Number Chemotherapy term Algorithm term Definition
. . A set of all possible points of a predetermined space called a feasible
1 Out of tumor (OUT) Feasible region region which satisfies the mathematical model’s constraints.
. . A set of points which are located out of the feasible set and cannot
2 Tumor (TU) Infeasible region satisfy at least one of the constraints of our optimization model.
TP indicates an approximate measure to calculate the infeasibility of
3 Tumor Position (TP) Infeasibility Function a point from the border of a predetermined constraint. Also, Total TP
(TTP) is an aggregation of TPs for calculating the total infeasibility.
TS is a function that we want to optimize subject to different
4 Tumor size (TS) Objective function constraints by using mathematical programming techniques. In fact,
it is going to minimize the tumor size.
5 Healthy cell Feasible solution Indicating a solution which is located in the feasible region.
6 Cancer and bad cell Infeasible solution Indicating a solution which is located in the infeasible region.
7 Initial cancer cell Initial infeasible solution Indicating the input solution of algorithm.
8 Cell Position Element (CPE) Variable Indicating element X jinX = (X1, X55..., X)) as a solution.
9 Cell Solution Indicating set of variables X = (X, X,,..., X;) as a solution.

and maximum lower bound among all the bounds in
different constraints.

(2) For each CPE (index k), we fix the previously cal-
culated upper and lower bounds of the other CPEs
(indexes j = 1,...,] & j # k) and then determine
the new upper and lower bounds for the selected
Cell Position Element (index k). For calculating upper
(lower) bound of CPEk, if a;/a; > 0 the lower
(upper) bound of CPEj or else its upper (lower)
bound will be considered.

(3) Repeat phase (2) while for each successive repetition
all the upper and lower bounds get into a confidence
interval with a predetermined percentage of error
(such as a value around 5%).

At the end of this step IL = (IL(1), IL(2),...,IL(J)) and IU =
(IU(1),1U(2),...,IU(J)) result as initial lower (IL) and initial
upper (IU) bounds, respectively.

3.2. Generating Initial Cancer Cells in CSA. Various
approaches are available in this algorithm to determine the
position of initial cancer cells and tumor or initial infeasible
solution. There is a similarity between this phase and the
process of chemotherapy. While we want to select the method
of generating initial solutions, we may also want to determine
which drugs and injection methods should be used. Also,
calculating initial solutions in the proposed algorithm is the
same as determining the initial position of cancer tumor and
bad cells in the process of chemotherapy treatment.

Based on our problem, we may use completely random or
exact methods or a trade-oft method between these two. The
following are four possible and proposed approaches which
can be implemented in this phase to determine the initial
position of tumor cells using:

(1) Relaxation methods including linear programming
(LP) and Lagrangian.

(2) CPE-limited bounds which are calculated in the
previous phase where we can use one of lower and
upper bounds in order to improve the TS.

(3) Composition of random search, relaxation, variable
bounds, and other possible approaches.

(4) Problem-based approaches such as greedy methods.

After this phase, the algorithm proposes a population (p =
1,2,...,P) of X*° = (x*°, Xfo, c Xfo) named initial cells.

3.3. Evaluating the Health Status and Position of the Tumor and
Cells. CS algorithm searches the tumor to find a new healthy
cell which means generating a new solution in the infeasible
space. Therefore, for each pair of found cells (cancerous or
healthy cells), two important factors must be considered for
comparing them, which are the total value of Tumor Position
(TP) and the value of tumor size (TS) in relation (1).

Simply put, it is possible to calculate TP? " for constraint
i based on inequality (2), in which xXPt = (xF, th, N Xft)
that is the pth solution vector of the population generated at
iterationt = 1,2,...,T.

In fact, by applying (4) and the aggregation in a theoreti-
cal and logical way using relation (5), the values of TP/ “and
TTP? (Total TP based on all of the constraints), will result.

t t
2 a; X[ =b ) a; X[ = b,

TP = {je j€l Viel, (4)
0 oW,
TTP? = ) TPV, (5)

iel
In this equation, V; indicates the constraint weights while we
can assume the same values for all model constraints.
Also, the value of TS is calculated based on the relation
pt_ pt
TS = ) C; X1
jeJ

(6)
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To analyze each pair of solutions or cells, the designer should
create a tradeoff between the values of TTP? and TS?. We
categorize all cells into four different groups to determine
the best and worst ones. This type of classification is done
according to Table 3. As it can be seen, it is an iterative
and interactive approach between current cells and the ones
which have been generated previously.

ATTP"! and ATS'™! indicate the arithmetic mean of
TTP? and TS? of the sets of the best solutions of the previous
solution into average TTP and TS, respectively.

t 1 Z pt
=— TS vt=1,2,...,T,
IE®] &0
(7)
TP = 1 TTP" vt=1,2,...,T,
IFO1 &

where |F(t)| is the cardinality of the set of the cells with the
first rank at the end of iteration .

In this ranking, the first group will be considered as the
set of best generated cells and its combination with the second
group constitutes the next input cells meaning (X/*u X*") —
XP*. The best cells of the third group based on TS are reserved
for special use and finally the fourth group are thrown away.
It should also be noted that when the first group is empty, the
first group of previous iteration will be replaced.

3.4. Search Neighborhood Cells. In this phase, we want to
extend our investigation where celerity and intelligently are
its most important features. This phase is also flexible enough
to be applied for developing a single point population-based
algorithm.

3.4.1. Determining Cell Area (CA) in Tumor. CS algorithm
proposes an innovative approach to solving mathematical
models in which a distinct attitude towards investigating the
tumor and search space is introduced. This method uses
Cell Area (CA), which is a limited space around each cell
(solution) and where easy generation of CAs increases its

efficiency. To begin with, by using two different levels (rl?t and
rfj; in relations (9)), CPE (Cell Position Element) lower (L?t)

and upper (Uf ") bounds are calculated via (8), and by their
combination a subspace around each cell is created.

pt _ ~xopt _ Pt
Ly =% =n>
(8)

pt _ yept Pt
U]. —X]. 1y

where two values of rl};t and rfjt are determined using the
following relations:

x*c,
= e Ve ()
o Zje](N)Cij +Zje](Z)Cj((IL(J)+IU(]))/2)
[/ . .
C. ((IL 1U
L(LG) +1U () /2) o, o)

Zje](N) Cijt + Zje](Z) C; ((IL () +TU(5)) /2)

t
7P

_ bt
wi =1 x Const.

In these relations, J(N) and J(Z) are the set of CPEs with
nonzero (Xi.J "+ 0) and zero ones (Xf f = 0), respectively. Also,
we mostly propose linear-based relations for more simplicity
and decreasing complexity of CSA. Furthermore, we can
calculate upper level (rfjt) based on the lower one (rll;t) by just
an easy approach where the lower value is multiplied with a
constant number to calculate the upper limit.

Also, if we want to determine these values for the CPEs
without any coeflicients in tumor size (C ;= 0), it should
consider an equivalent weight (Cf ) in relations (9). We can

calculate this weight using an arithmetic mean of the CPEs
(in which positive or negative sign is embedded) that are in
the same constraints with CPE index j with C; = 0, as the
equation

E 1 1 )
& &, O
leL meM (10)

C;=0, j¢L&j¢M,

where |L| and M are the cardinality of the sets of CPEs which
are in the same constraints with CPEj, with different and
same signs, respectively.

To clarify it, we can refer to Figure 1, which shows a CA
for a sample instance with just two CPEs X, and X,.

Once again, it is possible to round the value of integer
CPE:s to the nearest integer number. However, if L‘?t (Uf ") gets
less (greater) than the lower (upper) bound, the lower (upper)
bound will be replaced.

3.4.2. Generating Random Cells in CA. To calculate the values
of Random Cells (RCs), being cancerous or healthy, based on
CA, we can multiply (Uf - Lgt) with a random number and
add it to its lower bound. Under this condition and because of
using problem data and random number, RC will be a smart
random number.

XF = 17 + rand x (UY - LF)

(1)
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FIGURE 1: Sample Cell Area (CA).
TaBLE 3: Cells ranking based on TS and TTP.
Rank Optimality Infeasibility Healthy/cancer
criterion criterion cells
1 ATS™' > TSP ATTP"™' > TTP* X7" and X**
2 ATS"™' > TSP ATTP"! < TTP” x*
3 ATS™' <TSP  ATTP"' > TTP¥ —
4 ATS"' < TSP ATTP"' < TTP” —

As in the case of upper and lower bounds of integer CPEs,
again Xf; should be rounded in special cases.

3.4.3. Rest Period Phase. In CS algorithm, we get near to the
border of tumor from a determined cell out of the tumor
using CA, RCs, and, of course, smart vectors. In fact, false
direction and any inaccuracy or incorrectness in it can result
in inappropriate cells. In the relevant literature, differen-
tiation is the most common way among all the proposed
effective ones. However, this approach is not applicable to
different classifications of models and problems including
LP, IP, and MIP. Therefore, a positive, negative, or zero
direction for each CPE based on model coefficients and cells
is determined, and then we take one step in this vector to find
another cell nearer to the tumor and cancer cells and their
border, with more qualified TS.

This phase is similar to the new cycle for drug injection
to the body and tumor for killing the cancer cells. While we
try to convert some of the cancer cells (infeasible solutions) to
their corresponding healthy (feasible) ones in CS algorithm,
doctors let the patient rest and refresh their healthy cells. As
mentioned in Section 3.6, we are able to convert some of
the bad cells to the healthy ones using a linear programming
model or applying problem-related approaches such as a
Greedy approach to TSP.

In two consecutive comparative steps we can determine
the mentioned direction.

At first, we determine the direction type based on
CPE values. If we consider that C,,, = max;,;(C;) and

C minjel(Cj) and also Xﬁtax = maij](Xft) and

min

Journal of Optimization

Xﬁfin = min ](X]‘l.’ "), it is possible to determine C - x" using
the following relations:
E — Cmax + Cmin
2 b
t
Pt Cmax ) X;’;ltax + Cmin i Xﬁlin
X = > (12)
Cmax + Cmin
t
C. yl’t _ Cmax ) Xﬁltax + Cmin i Xﬁlin
5 .

Now, we should compare C IR Xft to C - b

the direction type where using R; = C;/(C.x + Cyyy) as
the adjustment coeflicient helps us modify our comparison.
In fact, we can use Rj . Cj . Xft instead of Cj . Xft in
our comparison whenever it is necessary. It means that this
evaluation will be adjusted between (C, - X2+ Coyn -
Xﬁfin)/Z and (C? . Xjr.’t)/(Cmax + Ciin) to determine the CPE
direction type.

Relation (13) helps us to clarify this statement in which

Df " is the direction of CPE i

t .
to determine

pt pt — =Pt
Dj +d1Rj-Cj-Xj <C-X
pt pt pt _ A Pt
DI = IDI'R;-C;- X' =C-X (13)
pt l pt = Pt
D - d\R;-C;- X' >T- X"
In relation (13), parameters d; and d; should be one or can
be determined using a parameter tuning approach. In fact,
we want to increase (decrease) the value of CPEj when its
adjusted value (R; - C; - Xft) in the tumor size (TS) is
less (greater) than our criterion (C - Xpt) and let it remain
unchanged for the case of equality.

Secondly, we must determine the direction based on the
position (infeasibility) of the cell (solution) using relation
(14); afterwards, we update D‘;’ * according to DTP? " by using
relation (15).

pt Pt _
DTPY +d,TP!" = 0

DTPﬁ.” = o o (14)
DTPY - d,TP!" > 0,

pt pt
D +d;DTP; <0
D¥ = 1 DI'DTPY =0 (15)
Pt ot
D! - d,DTP > 0.
To take small steps and, of course, adjust the directions, the
values of Df * can be normalized using the equation

pt
DF = bi

, (16)

maXyjes {th}'

In relations (14)-(15), parameters d,, d;, d,, and d; should
be valued in accordance with each other. Obviously, the
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TABLE 4: Stopping conditions.

# Stopping condition Explanation

Reaching the border

of tumor where it is

cured approximately
(feasible region).

Algorithm stops when TTP becomes
zero or less for the best generated cell
and an approximate acceptable
solution is generated.

Reaching a fixed Algorithm stops after a
) number of predetermined number of runs and
chemotherapy converting the cancer cells to their
repetitions. corresponding healthy ones.
Reaching a fixed value Algorithm stops when it is in a
3 for TTP and getting ~ predetermined special distance of

near to the border of  feasible region and a predetermined
tumor. TTP and TS result.

Algorithm stops when TS has a
predetermined percentage of
improvement in comparison to its
initial value.

Reaching a percentage
4  of improvement in TS
or tumor size.

importance of criterion TPIP " increases as the number of
constraints increases, resulting in bigger ratios. The number
of CPEs and constraints increases, so do d,/d, and d} /d;.

Finally, we can reach a new cell (solution) based on
vectors D” and X** using the equation

XP = x# + D¥,
ro r (17)
p=12...,Pt=12..T r=12...,R 0=12,...,0,

where O indicates the number of directions, and based on
XP, we can determine the values of the other vectors such
as X” and X/

It should be mentioned that it is possible to calculate all
these values based on matrix forms where using a powerful
software program such as MATLAB can ease the implemen-
tation of this approach.

3.5. Stopping Conditions. CS algorithm has a completely
different structure compared to the other proposed ones in
the literature; therefore, the stopping conditions are distinct
while different factors such as the structure of our problem
(TSP, LP, MIP, etc.), improvement rate in TTP and TS, and
also input data may bear on our selection. Table 4 indicates
some suggested appropriate criteria.

3.6. Converting Cancerous Cells to Healthy Ones. In CSA we
need a general approach to converting each cancerous cell
to its equivalent healthy one. This method may be applied
in different parts of the algorithm. Assume that we stop the
algorithm and the final generated cells are not healthy where
based on our mathematical model with hard constraints it
is not an appropriate cell; therefore, a conversion method is
required to generate the final applicable cell. Moreover, as in
the process of cancer treatment using chemotherapy, here we
need a fast conversion method to convert appropriate bad
cells to healthy ones and maintain the best ones until stopping
CSA repeating.

In the final stage of curing the cancer in which the surgeon
removes the weakened tumor, we want to convert inapplica-
ble infeasible solutions (cancer cells or tumor) to acceptable
feasible ones (healthy cells). In fact, it is the final stage which
can be implemented for stopping the algorithm. Generally,
as doctors weaken the tumor during radiation therapy, we
can convert the bad and cancerous cells (infeasible solutions)
to healthy (feasible) ones during algorithm run. Apparently,
this methodology increases flexibility and results in better-off
cells.

We know that converting a cancerous cell to its corre-
sponding healthy one decreases the quality of TS due to
narrowing the space, and at the best situation with a small
probability, a healthy cell with the same TS will result at best.
Therefore, we should apply an approach to maintaining the
TS in its maximum possible value. In this special case, the
following model can help us to solve this issue. However,
adapting it to our mathematical model is suggested. For
instance, the combination of this model with a greedy
approach seems more effective when we solve a TSP or
Knapsack Problem (KP).

XI

max W = Z C j (18)

j where X;>0

j

Y a; X = TP,
! (19)
Vi=1,2,...,|I| where TP; >0

X;<X; Vj=12,...,n where X; >0 (20)

X;>0, IntVj=12,...,nwhere X;>0, (21)

where X; is the amount of CPE index j which should be
decreased from its original value (X) to reach a new set of
CPE vector (X") as a healthy cell (relation (22)).

n !
Xi=X;-X. (22)
In this model, we try to decrease the value of CPEs by
considering the constraints with TP; > 0. We can say that
relation sets (19) attempt to omit any occurring infeasibility
while maximizing the total decrease of object function using
relation (18).

Feasibility Theorem. Model (18)-(21) has at least one feasible
solution.

Proof. Suppose a solution in which X;. = X (relation (20))
which means that X? = 0, where the generated solution with
X = 0 would be a feasible solution for model (1)-(3).

On the other hand, we know that the values TP; > 0
are created due to the positive values of variables (X;-l > 0).
Therefore, when X; = Xj Vj € ], summation Zj ain; will
cover all the infeasibility of constraint i (TP; > 0), meaning
that relation (19) is satisfied. O



4. Discussion about the Structure of CSA

The general structure of CSA, including the necessary steps
and strategies in our algorithm, is graphically displayed in
Figure 2. The rotating movements of CS algorithm between
the inside and outside of the tumor in two general phases
increase its flexibility by deeply exploring the space and
subspaces of solutions.

As it can be seen, we map different parts of CS algorithm
on the process of chemotherapy cancer treatment. Therefore,
this algorithm is developed based on a firm background
of treatment process whose efficiency has been proved in
medicine in the past few decades. As a matter of fact, nature-
inspired algorithms such as GA, ACO, and SA are signif-
icantly efficient for solving optimization problems. These
types of algorithms such as CSA have a reliable background
which theoretically build a logical structure.

The cyclic part of this algorithm is similar to the rev-
olutionary part of chemotherapy process in which, after a
drug injection phase, a resting phase follows while in the
proposed algorithm we try to get close to the border tumor
and the healthy space around it (as in drug injection phase).
Finally, we may convert cancerous cells (killing cancer cells)
to healthy ones (as resting phase).

Moreover, while developing CS algorithm, we try to con-
sider mathematical exact solving methods, techniques, and
formulas to improve its performance. In fact, by combining
nature processes and mathematical relations, an effective
algorithm is introduced where some parts of the main
structure are based on nature and the other parts are based
on mathematics, statistics, and science.

In CS algorithm, generating initial cancerous cells is
critically important. In fact, based on the directing concept,
the algorithm explores different parts of the space starting
from the initial cells. However, the quality of initial cells
depends on the first step in which algorithm determines the
limits of CPEs to narrow the search space such as constraint
programming.

On the other hand, generating cells using fundamen-
tal concepts such as CA and RCs as mathematical rules
combined by the chemotherapy process provides a set of
theoretical and practical tools for user of CSA to solve
optimization problems. The importance of these techniques
becomes clearer when considerable cells are generated par-
ticularly for solving hard problems such as TSP.

Likewise, it should be noted that converting strategy
is another considerable part of this algorithm which lets
us generate healthy cells during the algorithm and reserve
them till the final stage. This approach helps users to modify
directions (based on CA, RCs, and smart vectors) towards
those parts of healthy space out of the tumor to reach
healthy cells. This special feature creates a smart algorithm
in searching the space discontinuously and widely. It means
that CS algorithm tries to search different parts of the space
which may include the optimum cell with more probability.

Finally, in special cases when the algorithm stops while
it is still inside the tumor, a procedure for generating healthy
cells is proposed. This phase lets algorithm stop before getting
out of the tumor for saving time and prohibiting unnecessary
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runs of the algorithm. Moreover, for hard problems such
as TSP, to use this methodology is strongly suggested for
generating an acceptable cell in the healthy part of the body
near the tumor with an efficient objective function.

As a matter of fact, as the degree of the hardness of
prototype optimization problems increases, the deterioration
of the cancer and its seriousness increases accordingly. As it is
well known, TSP is one of the hardest problems in combina-
torial optimization fields; therefore, its corresponding cancer
prototype is more serious and dangerous.

5. Computational Results

To solve a sample problem using CSA, a benchmark example
for TSP is solved (adopted from [50] named TSPTW). Our
general approach is appraising the algorithm by comparing
the generated cells of each problem with their optimum
one. The results indicate an effective performance for this
algorithm in solving NP-complete problems such as TSP.

We ran CSA on a Core i5 2.4 GHz computer with 4 GB
RAM using MATLAB R2012a and GAMS 24.1.2.

To solve TSP, we need to modify some of the proposed
relations based on the following new mathematical model
[51]:

min z=) ) C,X; (23)
i
st Y Xy=1 Vj=12,...,n (24)
i
Y Xy=1 Vi=12,...,n (25)

u—u;+nX; <n-1
(26)

Vi, j=2,3...,n&i#j

X;j € Binary & u; € URS Vi, j=1,2,...,n. (27)

Obviously, to determine the value of TP for constraints (24)-
(25), we should apply the following two equations:
TP =Y a, X" b, viel,

= ij <> (28)
TTP? = 3" |TP¥| V. (29)

i€l

In this model, the CPE limits are zero or one for the binary
variables and these bounds for the URS variables are infinite.
Also, we generate the initial solution by using a combinatorial
approach based on greedy and LP relaxation methods in
which the generated solution using LP relaxation methodol-
ogy is modified to create a new infeasible IP (binary) solution
for TSP. On the other hand, for calculating the other parts
and running the algorithm (such as the appraising phase,
killing cancer cells, etc.), the previously mentioned relations
and formulas are applied.

The benchmark data is available on its website and its
optimum solution and the best generated cell by CS algorithm
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FIGURE 2: General structure of the algorithm.

is shown in Table 5. Just a short glance on the results
indicates the optimum cell is approximately achieved using
the proposed algorithm. Here, there are just 3 units different
between TS values of the best generated cell (1457) and the
optimum one (1454) which indicates a ratio of 0.21%.

We run the algorithms 20 times to solve the benchmark
problem as is shown in Table 6. We know that in TSP all
the constraints are hard and the final generated cell should
be located outside the tumor, meaning that the value of
TTP should be zero for the final generated cell. Generally,
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TABLE 5: Optimum and algorithm best cell for sample TSP problem.

Optimum cell Algorithm best cell
Tumor size 1454 Tumor size 1457
Origin city  Destination city ~ Origin city ~ Destination city
1 23 1 7
2 3 2 23
3 25 3 17
4 5 4 16
5 6 5
6 17 6
7 18 7 18
8 14 8 10
9 2 9 20
10 10 1
11 16 11 19
12 11 12 25
13 10 13 2
14 22 14 22
15 19 15 9
16 15 16 15
17 8 17 8
18 12 18 12
19 21 19 24
20 4 20 21
21 20 21 14
22 9 22 1
23 24 23
24 8 24
25 13 25 13

it is possible to convert the cancer cell to its corresponding
healthy one by using a greedy approach.

In fact, for a counterpart problem of TSP, we need to
kill some of the cancer cells and after weakening tumor, we
must remove it completely to cure it. As we know, TSP is
an NP-complete problem; therefore its corresponding cancer
prototype is also a serious and crucial one and in addition to
chemotherapy radiation therapy is required and mandatory.

Also, we know that TSP is an NP-complete problem
and generating a healthy cell with 0.21% minimum range
of errors and an average around 1.10% is invaluable and
these results indicate the effectiveness of CS algorithm and
efficiency of its performance. It means that solving other types
of optimization problems such as MIP ones by applying CS
algorithm can result in great cells using appropriate software
and professional programming methods.

In this instance, there is a small difference between the
minimum and optimum solutions on the one hand and the
maximum and optimum solutions on the other hand, which
is 0.21% and 1.51%, respectively. Moreover, total difference
between minimum and maximum ratio of TSs is 1.30% where
the average is 1.51%. These values and of course Figure 3
again indicate a robust algorithm which effectively generates
appropriate cells, and the range of TSs is narrow.

Journal of Optimization

TABLE 6: Algorithm generated cells for sample TSP problem with 25
cities.

Iteration number TS TTP Ratio”
Average 1469.95 0.00 1.10%
Minimum 1457.00 0.00 0.21%
Maximum 1476.00 0.00 1.51%
1 1467.00 0.00 0.89%
2 1474.00 0.00 1.38%
3 1471.00 0.00 1.17%
4 1457.00 0.00 0.21%
5 1468.00 0.00 0.96%
6 1471.00 0.00 1.17%
7 1476.00 0.00 1.51%
8 1467.00 0.00 0.89%
9 1472.00 0.00 1.24%
10 1468.00 0.00 0.96%
1 1471.00 0.00 1.17%
12 1463.00 0.00 0.62%
13 1475.00 0.00 1.44%
14 1472.00 0.00 1.24%
15 1474.00 0.00 1.38%
16 1475.00 0.00 1.44%
17 1472.00 0.00 1.24%
18 1465.00 0.00 0.76%
19 1474.00 0.00 1.38%
20 1467.00 0.00 0.89%

*[(TS — Optimum TS)/(Optimum TS) * 100].

1480.00
1475.00
1470.00
1465.00
1460.00
1455.00
1450.00

1234567 8910111213141516171819202122

—— Objective function
Average OF
Minimum OF

—— Optimum OF
Maximum OF

FIGURE 3: General analysis of the generated solution of the algorithm
for the TSP problem with 25 cities.

In order to test the efficiency of proposed algorithm on
large problem, a TSP problem with 100 cities was selected
from benchmark problems [52] where its length of optimal
tour is 2772.31.

As it can be seen in Table 7 and Figure 4, CSA generates
good solutions where the average objective function of
its tours is near, 2.53%, to the optimal tour. It is worth
mentioning that this TSP sample is almost 4 times bigger
than our first problem and its results indicate that CSA has
the ability to produce good solutions for bigger and harder
problems.
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TABLE 7: Results of CSA for a large TSP problem with 100 cities.

Iteration number TS TTP Ratio”
Average 2842.39 0.00 2.53%
Minimum 2786.77 0.00 0.52%
Maximum 2890.42 0.00 4.26%
1 2847.69 0.00 2.72%
2 2821.82 0.00 1.79%
3 2890.42 0.00 4.26%
4 2875.97 0.00 3.74%
5 2813.67 0.00 1.49%
6 2801.05 0.00 1.04%
7 2791.67 0.00 0.70%
8 2869.66 0.00 3.51%
9 2826.80 0.00 1.97%
10 2861.69 0.00 3.22%
1 2869.54 0.00 3.51%
12 2828.09 0.00 2.01%
13 2820.16 0.00 1.73%
14 2889.96 0.00 4.24%
15 2828.99 0.00 2.04%
16 2853.97 0.00 2.95%
17 2853.97 0.00 2.95%
18 2878.60 0.00 3.83%
19 2837.41 0.00 2.35%
20 2786.77 0.00 0.52%

*[(TS — Optimum TS)/(Optimum TS) * 100].

2900.00
2880.00
2860.00
2840.00
2820.00
2800.00
2780.00
2760.00
2740.00
2720.00
2700.00

1234567 8 910111213141516171819 20

—— Objective function
Average OF
= = Minimum OF

—— Optimum OF
Maximum OF

FIGURE 4: Analysis of the generated solutions of CSA for the TSP
problem with 100 cities.

On the other hand, as it is shown in Figure 5, the average
rate of 2.53% with a minimum percentage of 0.70% and
maximum value of 4.26% indicates that CSA can generate
solutions which are near to optimal solutions for small
and big problems. Moreover, a narrow range in this regard
indicates the robust manner of this algorithm in generating
final solutions.

To check the process of running CSA, the total percentage
of improvement in the quality of Cell Size (objective function)
is reported. This value helps us to get a general overview
about the quality of initial and final cells and the rate of
improvement (Figure 6). However, we should note that the

1

4.50
4.00
3.50

2 \\/V\J\/\

0.50
0.00

(%)

1234567 8 910111213141516171819 20

—o— Rate of TS
Average

FIGURE 5: Analysis of the rate of TS for the generated solutions in
comparison to the optimal one.

(%)

1234567 8 91011121314151617181920

—— Percentage of improvement
-~ Average

FIGURE 6: General analysis of the percentage of improvement during
algorithm running time.

initial solution is an infeasible solution and the final solution
is a feasible one. An average improvement rate of 4.60%
indicates the robustness and effectiveness of CSA. As a matter
of fact, the average percentage of 4.60% in solving a large TSP
problem is valuable where a small amount of improvement
in this type of problems usually needs an effective and time
consuming approach.

It is worth noting that, as an effective approach, the
concept of sparse matrix is used to solve the TSP problem
where in the original form the number of CPEs and param-
eters is high and using the normal matrix may decrease
the effectiveness of the algorithm particularly for large-scale
problems.

We can see the graphical view of the best tour obtained by
the proposed algorithm for the TSP problem with 100 cities
in Figure 7.

6. Conclusion

In this study, an innovative algorithm is proposed which
focuses on tumor space (infeasible region) to investigate and
explore the cells. Intelligently, a nature-inspired algorithm
based on chemotherapy cancer treatment is developed with
a mathematical background according to the effective and
exact solving techniques for optimization problems and the
proposed approaches in the literature.
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FIGURE 7: The graphical view of the best tour obtained by CSA.

A firm background for the proposed algorithm directs
it towards generating appropriate healthy cells. This algo-
rithm consists in searching the space far from the tumor
border (convex hall) and investigating the tumor towards the
outside of the tumor using CA, RC, and rational random
directions. Theoretically, two TTP and TS criteria are applied
for assessing each pair of cells where an effective approach
is proposed to convert each cancer cell to its corresponding
healthy one which can be applied in each iteration and part
of the algorithm. However, based on the structure of our
mathematical model, it is possible to develop other strategies
in different parts of the algorithm, such as using greedy
approaches for generating initial cancer cells or converting a
bad cell to a healthy one when solving TSP.

The following can be some intriguing areas for future
research regarding the proposed algorithm:

(i) Solving other categories of optimization problems
such as nonlinear ones

(ii) Combining the algorithm with other well-known
ones to develop a hybrid algorithm

(iii) Developing a toolbox and software-based solver to
solve a wide range of parameters without having to
effect drastic changes to programming codes.

Competing Interests

The authors declare that they have no competing interests.

References

[1] R. Neapolitan and K. Naimipour, Foundations of Algorithms
Using C++ Pseudo Code, Jones & Bartlett Learning, Burlington,
Mass, USA, 3rd edition, 2004.

[2] S. Binitha and S. S. Sathya, “A survey of bio inspired optimiza-
tion algorithms,” International Journal of Soft Computing and
Engineering, vol. 2, no. 2, pp. 137-151, 2012.

[3] American Cancer Society, Chemotherapy What It Is, How It
Helps, A.C. Society, Atlanta, Ga, USA, 2013.

[4] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

Journal of Optimization

[5] E Glover, “Future paths for integer programming and links to
artificial intelligence,” Computers & Operations Research, vol. 13,
no. 5, pp. 533-549, 1986.

[6] E Glover and C. McMillan, “The general employee scheduling
problem: an integration of MS and Al Computers and Opera-
tions Research, vol. 13, pp. 563-573, 1986.

[7] S. Kirkpatrick, J. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
1983.

[8] M. Dorigo, Optimization, Learning and Natural Algorithms,
Politecnico di Milano, Milan, Italy, 1992.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948, Perth, Australia, 1995.

[10] Z.Beheshti and S. M. H. Shamsuddin, “A review of population-
based meta-heuristic algorithm,” International Journal of
Advances in Soft Computing and Its Applications, vol. 5, no. 1,
pp. 1-35, 2013.

[11] E Glover, “Heuristics for integer programming using surrogate
constraints,” Decision Sciences, vol. 8, no. 1, pp. 156-166, 1977.

[12] S. E Smith, A Learning System Based on Genetic Adaptive
Algorithms, University of Pittsburgh, 1980.

[13] J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune
system, adaptation, and machine learning,” Physica D: Nonlin-
ear Phenomena, vol. 22, no. 1-3, pp. 187-204, 1986.

[14] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection, MIT Press, Cambridge,
Mass, USA, 1988.

[15] I. Axcelis, “Evolver, the world’s first commercial GA product for
desktop computers,” The New York Times, 1989.

[9

[16] P. Moscato, “On evolution, search, optimization, genetic algo-
rithms and martial arts: towards memetic algorithms,” Caltech
Concurrent Computation Program, Technical Report C3P 826,
1989.

[17] C. M. Fonseca and P. ]. Fleming, “Genetic algorithms for
multiobjective optimization: formulation, discussion and gen-
eralization,” in Proceedings of the 5th International Conference on
Genetic Algorithms, pp. 416-423, Urbana-Champaign, IlI, USA,
1993.

[18] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA
Journal on Computing, vol. 6, no. 2, pp. 126-140, 1994.

[19] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341-
359, 1997.

[20] R.Y.Rubinstein, “Optimization of computer simulation models
with rare events,” European Journal of Operational Research, vol.
99, no. 1, pp. 89-112, 1997.

[21] E. Taillard and S. Voss, “POPMUSIC: partial optimization
metaheuristic under special intensification conditions,” Tech.
Rep., Institute for Computer Sciences, heig-vd, Yverdon-les-
Bains, Switzerland, 1999.

[22] Z. W. Geem, ]. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60-68, 2001.

[23] O. Hanseth and M. Aanestad, “Bootstrapping networks, com-
munities and infrastructures. On the evolution of ICT solutions
in heath care;” in Proceedings of the Ist International Conference
on Information Technology in Health Care (ITHC °01), Erasmus
University, Rotterdam, The Netherlands, 2001.



Journal of Optimization

[24]

[25]

[26]

(27]

(30]

(31]

(32]

[36]

(37]

(38]

(39]

S. Nakrani and C. Tovey, “On honey bees and dynamic server
allocation in internet hosting centers,” Adaptive Behavior, vol.
12, no. 3-4, pp. 223-240, 2004.

K. N. Krishnanand and D. Ghose, “Detection of multiple source
locations using a glowworm metaphor with applications to col-
lective robotics,” in Proceedings of the IEEE Swarm Intelligence
Symposium (SIS °05), pp. 84-91, IEEE, June 2005.

D. Karaboga, “An idea based on honey bee swarm for numerical
numerical optimization,” Tech. Rep. TR06, Computer Engi-
neering Department, Engineering Faculty, Erciyes University,
2005.

O. B. Haddad, A. Afshar, and M. A. Marifio, “Honey-bees
mating optimization (HBMO) algorithm: a new heuristic
approach for water resources optimization,” Water Resources
Management, vol. 20, no. 5, pp. 661-680, 2006.

H. Shah-Hosseini, “Problem solving by intelligent water drops,”
in Proceedings of the IEEE Congress on Evolutionary Computa-
tion (CEC ’07), pp. 3226-3231, Singapore, September 2007.

E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: an algorithm for optimization inspired by impe-
rialistic competition,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC °07), pp. 4661-4667, Singapore,
September 2007.

A. Mucherino and O. Seref, “Monkey search: a novel meta-
heuristic search for global optimization,” in Proceedings of the
AIP Conference Proceedings, Data Mining, Systems Analysis and
Optimization in Biomedicine, vol. 953, pp. 162-173, Gainesville,

Fla, USA, March 2007.

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver
Press, 2008.

A. Husseinzadeh Kashan, “League Championship Algorithm:
a new algorithm for numerical function optimization,” in
Proceedings of the International Conference on Soft Computing
and Pattern Recognition (SoCPaR ’09), pp. 43-48, Malacca,
Malaysia, December 2009.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232-2248, 2009.

X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
Proceedings of the World Congress on Nature and Biologically
Inspired Computing (NABIC ’09), pp. 210-214, Coimbatore,
India, December 2009.

X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), J. R. Gonzalez, D. A. Pelta, C. Cruz, G. Terrazas,
and N. Krasnogor, Eds., vol. 284 of Studies in Computational
Intelligence, pp. 65-74, Springer, Berlin, Germany, 2010.

H. Shah-Hosseini, “Principal components analysis by the
galaxy-based search algorithm: a novel metaheuristic for con-
tinuous optimisation,” International Journal of Computational
Science and Engineering, vol. 6, no. 1-2, pp. 132-140, 2011.

K. Tamura and K. Yasuda, “Spiral dynamics inspired opti-
mization,” Journal of Advanced Computational Intelligence and
Intelligent Informatics, vol. 15, no. 8, pp. 1116-1122, 2011.

R. V. Rao, V.]. Savsani, and D. P. Vakharia, “Teaching-learning-
based optimization: a novel method for constrained mechanical
design optimization problems,” Computer-Aided Design, vol. 43,
no. 3, pp. 303-315, 2011.

A.H. Gandomi and A. H. Alavi, “Krill herd: a new bio-inspired
optimization algorithm,” Communications in Nonlinear Science
and Numerical Simulation, vol. 17, no. 12, pp. 4831-4845, 2012.

(40]

(41]

[42]

[43]

(50]

(51]

13

P. Civicioglu, “Transforming geocentric cartesian coordinates
to geodetic coordinates by using differential search algorithm,”
Computers & Geosciences, vol. 46, pp. 229-247, 2012.

A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural opti-
mization problems,;” Engineering with Computers, vol. 29, no. 1,
pp. 17-35, 2013.

A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi,
“Firefly algorithm with chaos,” Communications in Nonlinear
Science and Numerical Simulation, vol. 18, no. 1, pp. 89-98, 2013.
A. Kaveh and V. R. Mahdavi, “Colliding bodies optimization: a
novel meta-heuristic method,” Computers & Structures, vol. 139,
pp. 18-27, 2014.

Z. Beheshti and S. M. Shamsuddin, “CAPSO: centripetal accel-
erated particle swarm optimization,” Information Sciences, vol.
258, pp. 54-79, 2014.

A.-B. Meng, Y.-C. Chen, H. Yin, and S.-Z. Chen, “Crisscross
optimization algorithm and its application,” Knowledge-Based
Systems, vol. 67, pp. 218-229, 2014.

B. Javidy, A. Hatamlou, and S. Mirjalili, “Tons motion algorithm
for solving optimization problems,” Applied Soft Computing
Journal, vol. 32, pp. 72-79, 2015.

J.J. Q. Yu and V. O. K. Li, “A social spider algorithm for global
optimization,” Applied Soft Computing, vol. 30, pp. 614-627,
2015.

R. V. Rao, “Jaya: a simple and new optimization algorithm for
solving constrained and unconstrained optimization problems,”
International Journal of Industrial Engineering Computations,
vol. 7, no. 1, pp. 19-34, 2016.

M. H. Salmani and K. Eshghi, “A Smart Structural Algorithm
(SSA) based on infeasible region to solve mixed integer prob-
lems,” International Journal of Applied Metaheuristic Computing,
vol. 8, pp. 24-44, 2017.

AIULd Bruxelles, TSPTW-Benchmark Problems, Université
libre de Bruxelles, Brussels, Belgium, 2006.

G. Pataki, The Bad and the Good-and-Ugly: Formulations for
the Traveling Salesman Problem, Department of Industrial
Engineering and Operation Research, Columbia University,
2001.

L. GitHub, “ViktorCollin lagt till test cases,” in TSP Problem, San
Francisco, Millions of developers use GitHub to build personal
projects, support their businesses, and work together on open
source technologies, 2012.



Advances in Journal of Journal of

Operations Research Applied Mathematics Algebra Probability and Statistics

The Scientific
World Journal

Intfernationa\.Journa\ of )
Differential Equations

Hindawi

Submit your manuscripts at
https://www.hindawi.com

International Journal of

Combinatorics

es in

hematical Physics

Journal of

Journal of 4 Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
.

Discrete Mathemaics

Journal of International Journal of Journal of

Function Spaces Stochastic Analysis il Optimization




