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A Metamaterial Surface for
Compact Cavity Resonators

Marco Caiazzo, Student Member, IEEE, Stefano Maci, Fellow, IEEE, and Nader Engheta, Fellow, IEEE

Abstract—We suggest an idea for miniaturization of cavities by
utilizing a properly designed metamaterial thin surface inserted
inside the cavities. This metamaterial surface is constituted by a
thin dielectric slab on both sides of which “gangbuster” dipoles
are printed. Inserting the thin slab inside a parallel-plate one-di-
mensional (1-D) cavity resonator has the effect of decreasing the
resonant frequency. Placing the metamaterial slab at the center of
a rectangular waveguide also lowers the cut-off frequency of the
dominant mode of the waveguide. The corresponding dispersion
curve exhibits a smooth transition from a fast-wave to a slow-wave
regime and then asymptotically tends to the dispersion curve of
the first TE surface-wave mode of the metamaterial slab. This sug-
gests a natural way to conceive a 3-D compact cavity resonator by
placing two perfectly electric conducting walls, a half of the wave-
length of the slow-wave mode apart, inside the above rectangular
waveguide. The analysis, performed by a circuit network theory
and validated by a full-wave numerical analysis, provides simple
formulas to predict the resonant frequency and the dispersion di-
agrams of these structures.

Index Terms—Electromagnetic bandgap structures, frequency
selective surfaces, metamaterials, periodic surfaces, resonators,
transmission line networks, waveguides.

I. INTRODUCTION

METAMATERIAL media and surfaces with unconven-
tional electromagnetic properties have attracted a great

deal of attention and interest in recent years. Various ideas in-
volving double-negative (DNG) media, single-negative (SNG)
materials, electromagnetic band gap (EBG) structures, and arti-
ficial magnetic conductors (AMC) have been explored by many
researchers over the past few years (see, e.g., [1], [2]). One such
idea was the concept of compact, subwavelength waveguides
and cavity resonators containing DNG or SNG materials, which
were analyzed in detail in [3], [4]. Obviously, compactness
of waveguides and cavities will offer advantages in design of
miniaturized systems and subsystems. In the present letter, we
explore a different approach to miniaturization of cavities and
waveguides, namely, the use of frequency selective metamate-
rial surfaces inserted inside waveguides and cavities. As will
be shown here, our numerical analysis demonstrates that such
loading of waveguides and cavities with metamaterial surfaces
may result in a significant reduction in cut-off and resonant
frequencies, as compared with the corresponding unloaded
elements.
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Fig. 1. Geometry of a gangbuster-FSS printed on a dielectric slab. h = 0:508

mm, w = 0:25 mm, d = 10 mm, � = 0:2 mm, d = 0:5 mm, relative
permittivity of the slab " = 4:5. Dipoles are printed on both sides of the
dielectric slab. Inset at the left: transverse cross section showing the offset of
dipoles placed at the same z-level. (b) Equivalent x-transmission line circuit
network.

II. METAMATERIAL SLAB

The basic geometry of the metamaterial thin slab we are
dealing with is shown in Fig. 1. This surface consists of a
frequency selective surfaces (FSS) formed by “gangbuster”
dipoles [5] printed on both sides of a very thin dielectric slab.
The dipoles are directed along the axis of a reference system
with its axis along the normal to the surface, and its origin
at the dielectric-air interface. The gangbuster surface is formed
by the periodic repetition, with periods and along the
and directions, of the basic periodic cell as shown by dashed
lines in Fig. 1(a).

The reflection coefficient of the metamaterial slab for an inci-
dent plane wave with E-field polarized along the dipoles, can be
described by the equivalent circuit network shown in Fig. 1(b)
For the selected dimensions (with respect to the wavelength) all
the Floquet waves (FWs) of the field expansion are evanescent
along , except for the dominant term. At a certain distance from
the surface, where the evanescent FWs are significantly attenu-
ated, we can assume that the field in the - plane is uniform
in amplitude. Thus, the total field may be rigorously described
by a transmission line along direction network with -com-
ponent of propagation constant and transverse impedance of the
free space [5] [Fig. 1(b)]. The effect of the FSS (i.e., the meta-
material thin slab) is accounted for by a shunt impedance placed
at .

The extraction of the shunt reactance parameters from the in-
finite surface is performed by the pole-zero network synthesis
suggested in [6]. For the geometrical parameters in Fig. 1(a),
we have pF and nH, corresponding to
an equivalent impedance of the metamaterial slab as

where the resonant angular frequency of
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Fig. 2. (a) Geometry of 1-D cavity resonator (a = 15 mm) and schematic
profile of the dominant electric field along the y axis. At the right hand side,
an analogy with a short dipole loaded with lumped inductances at the delta gap
is shown. (b) Equivalent x-transmission line network (left-hand side) and its
corresponding impedances as observed at the midpoint section (right-hand side).

FSS is GHz. The L and C pa-
rameters in general depend on the permittivity of the dielectric
slab; however since the slab is assumed to be very thin, its per-
mittivity does not play a major role in our analysis here.

III. 1-D CAVITY RESONATOR

The metamaterial slab described in the previous section is
now placed at the midpoint between two perfectly electric con-
ducting (PEC), infinitely extent parallel walls separated by a dis-
tance [Fig. 2(a)]. To illustrate the idea, we consider
mm. The structure realizes a one-dimensional (1-D) resonator
which can be modeled as an equivalent transmission line with
characteristic impedance of free-space [Fig. 2(b)]. We are inter-
ested in lowering the dominant resonant frequency of this 1-D
cavity resonator, which has its electric field along the axis, by
inserting the metamaterial thin slab.

Intuitively, we expect to achieve a lower resonant frequency
compared with that of the unloaded parallel-plate waveguide.
Indeed, at a low frequency the metamaterial slab behaves es-
sentially as a capacitive reactance, and this provides reduction
and cancellation of the inductive reactance provided by the two
walls as observed from the mid point. Thus, we expect that the

modal field distribution possesses an average triangular pro-
file, in analogy with a thin resonant electric dipole fed at the
delta gap by a lumped inductance [this latter exhibits a triangular
profile of electric currents, as shown in the inset of Fig. 2(a)].

In order to find the resonant frequency of the loaded 1-D
cavity resonator, we consider the equivalent -transmission line
circuit network in Fig. 2(b). The metamaterial slab is repre-
sented with a shunt L-C series circuit at the center [Fig. 2(b)].
The inductance and the capacitance of this shunt element can be
designed using the corresponding infinite metamaterial slab in
Fig. 1(a). Insertion of these parameters in the equivalent network

in Fig. 2(b) will be justified, if we assume that the interaction be-
tween the metamaterial slab and the side walls occurs through
only the dominant Floquet wave of the FSS-slab field expansion.
This assumption is reasonable since the surface can be treated
as being effectively “homogeneous” along the direction. In
the next section, we will check this assumption a posteriori by
comparing it with a more rigorous full-wave analysis.

On the basis of the transmission-line circuit network
in Fig. 1(b), the transverse resonance equation is ob-
tained by imposing the , where

is the short circuit impedance
as observed at the center of the structure, and is the shunt
impedance representing the FSS-slab element. This leads to the
following equation for the resonant frequency

(1)

where is the free-space speed of light (since we assume the
region between the walls and the slab is free space). Using the
small-argument approximation for the tangent function, we ob-
tain the following closed-form expression

(2)

For the dimensions shown in Fig. 1(a), the resonant frequency
from (2) is found to be GHz (while (1)
yields 1.43 GHz); for this value of frequency, the argument of
the tangent is very small, thus justifying the approximation used
to obtain (2). We note that the unloaded parallel plate empty
waveguide resonates at GHz. Thus, the slab
loading with metamaterial-FSS slab has lowered the resonance
frequency by a factor of

(3)

It is worth noting that if we had loaded the 1-D cavity with the
fin line or the ridge with the same thickness and same gap size as
the one in the gangbuster FSS here, according to our numerical
analysis the resonant frequency would have reduced by a factor
of 3.35 and 2.58, respectively, which is smaller than what we
have in (3).

IV. METAMATERIAL-THIN-SLAB LOADED WAVEGUIDE

Let us now consider the metamaterial slab placed in the center
of a rectangular waveguide with dimensions , in parallel
with its two side walls (Fig. 3). For example we assume
mm (as in the case of 1-D cavity resonator) and mm, i.e.,
with . The transverse cross section of the waveguide
obviously represents a 2-D rectangular resonator, possessing the
first resonant frequency as the first cut-off frequency of the rect-
angular waveguide.

In its dominant mode, the structure may be regarded as the
1-D resonator with an additional pair of walls orthogonal to the

axis. Since the dipoles are very thin and are tightly packed, the
electric currents on the dipoles are directed along the axis and
the electric field has a dominant -component; thus, effectively
removing the upper and lower PEC walls, yields the geometry
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Fig. 3. (a) Geometry of the waveguide loaded with the metamaterial slab (a =
15 mm, b = 5 mm). (b) Equimagnitude lines of the Ey field at the resonant
frequency f = 1:41 GHz.

of the 1-D resonator. Therefore, we expect that the model in
Fig. 2(b) and the corresponding result in (1) also applies to this
waveguide dominant cut-off frequency.

To verify, the structure has also been analyzed by using the
commercial software code CST Microwave Studio. The period-
icity condition with a zero phase shift has been set for two walls
orthogonal to the direction at a distance . A resonant mode
has been found at GHz, which agrees well with the
one predicted by the 1-D theoretical model, i.e., 1.43 GHz, from
(1). Fig. 3(b) shows the level contour lines of for the reso-
nant mode for the 2-D cavity resonator in Fig. 3(a). The reactive
field is concentrated near the interdipole gaps, and decreases to
zero at the PEC walls with a quasi-linear profile. In the two in-
sets, the schematic profile of versus is depicted for two
sections at the center and close to the upper wall at

.
As mentioned earlier, the first resonant frequency associated

with the 2-D cavity resonator, provided by (1), approximates the
dominant cut-off frequency of the waveguide. Increasing the fre-
quency beyond this resonance leads to a modal propagation with
a wavenumber along the waveguide. The dispersion equation

can be obtained, starting from the TE equivalent
network model in Fig. 4.

The equivalent impedance representing the
metamaterial slab has been determined by the pole-zero net-
work synthesis presented in [6]. An oblique incident TE plane
wave can then be considered for the problem in Fig. 1.

The equivalent impedance of FSS is weakly dependent on ,
due to the weak dependence of the FSS resonance on the direc-

Fig. 4. Equivalent dispersive x-transmission line circuit network (left) and
corresponding impedances as observed at the mid point section (right).

Fig. 5. Dispersion curves (f�k ) of the metamaterial-slab-loaded waveguide
for different size a. Continuous line and dotted lines refer to result from CST
and from (5), respectively. Dashed line is relevant to the dispersion curve of the
first surface wave TE mode of the metamaterial thin slab. The horizontal axis
exhibits a second scale, which serves to find the resonant frequency of a 3-D
cavity with length W. The cross-sectional field distribution insets show how the
fields decreases for different point along the dispersion curve. As one gets farther
away from the light line, the field decays more rapidly.

tion of the incident wave. However, this dependence has been
found to be important for a good predictive model. A single pole
impedance is still used to describe the frequency dependence
of the equivalent impedance; i.e.,

. However, the pole is found to be linearly dependent
on as , where is the speed of light
in free space and is the resonant angular frequency of the
FSS found for normal incidence. The dimensionless constant

has been determined by matching (in the vis-
ible range ) the full-wave data with the response from the
transmission line network in Fig. 4. Analytical continuation of

results in the analytical form of
the transverse resonance equation, where is the short-cir-
cuit impedance as observed at the center of the structure; this
yields

(4)
The dispersion curves are presented in Fig. 5 for various values
of the dimension . These curves are compared with those ob-
tained by CST Microwave Studio™, used by imposing a period-
icity condition with a phase shift of . The full-wave disper-
sion curves agree well with those provided by (4), except when

is very small and the higher-order FWs associated with the
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Fig. 6. Geometry of a 3-D resonator, and modalEy-field distributions in three
cross-sectional planes, at the frequency of 1.866 GHz. Dimensions:a�b�W =

15 � 5 � 15 mm.

metamaterial FSS slab interact significantly with the side walls.
Starting from a cut-off frequency, as the frequency increases,
the dispersion curves crosses the light-line (dashed line), and
then moves toward the slow-wave region. Beyond the light line,
the dominant FW associated with the metamaterial thin slab is
evanescent, along . The dispersion equation (4) may be conve-
niently rewritten as

(5)

where is the attenuation constant of the dom-
inant FW along . As the frequency increases further, all the
curves asymptotically blend into the dispersion curve of the
metamaterial FSS slab surrounded by free space. This asymp-
totic behavior can be mathematically obtained by setting

in (5) resulting in the hyperbolic tangent being unity. This im-
plies vanishing of the dominant FW field at the side walls.

V. 3-D CAVITY RESONATOR

A corresponding 3-D compact resonator can be obtained by
inserting two additional PEC walls a distance apart and or-
thogonal to the -direction inside the loaded waveguide (Fig. 6).
The first resonance of this 3-D cavity resonator is found by im-
posing , that is by assuming the cavity length being
one half of the slow-wave mode’s wavelength. From (5), this
leads to

(6)

where is the resonant frequency of this 3-D resonator. (The
graphical interpretation may be deduced from Fig. 5 reading

the lower horizontal scale). When , (6) may be
approximated as

(7)

It is interesting to compare this resonant frequency with that
associated with the mode in the empty rectangular cavity
resonator

(8)

For an illustrative example, consider the case mm
(Fig. 6). The resonant frequency predicted by (7) is
GHz, while for the empty cavity we have, from (8),
GHz; thus, obtaining a “compression ratio” of .
Using CST, a resonance is found at GHz, which
agrees well with that predicted by (7). If instead, we had used
the fin line or the ridge, the compression ratio would have been
2.06 and 1.79, respectively. The field distributions in the
plane and in the plane are shown
in Fig. 6.

VI. CONCLUDING REMARK

In this letter, it has been shown theoretically how a metama-
terial surface (i.e., thin FSS slab) simply composed of gang-
buster dipoles printed on both sides of a thin dielectric slab
can be used to significantly lower the resonant frequency of a
cavity resonator. The parallel plate (1-D) resonator exhibits ap-
proximately a lowering of the resonant frequency by about a
factor of , where is the equivalent capaci-
tance of the metamaterial surface. For the corresponding 3-D
cavity resonators, further reduction of the resonant frequency
can be achieved by loading such metamaterial surfaces. This
technique can provide new methods for the design of compact,
ultrathin cavity resonators without using high-permittivity di-
electric fillers.
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