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ABSTRACT

An intermediate-complexity, quasi–physically based, meteorological model (MicroMet) has been devel-

oped to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings re-

quired to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight

variables, required to run most terrestrial models, are distributed: air temperature, relative humidity, wind

speed, wind direction, incoming solar radiation, incoming longwave radiation, surface pressure, and pre-

cipitation. To produce these distributions, MicroMet assumes that at least one value of each of the following

meteorological variables are available for each time step, somewhere within, or near, the simulation do-

main: air temperature, relative humidity, wind speed, wind direction, and precipitation. These variables are

collected at most meteorological stations. For the incoming solar and longwave radiation, and surface

pressure, either MicroMet can use its submodels to generate these fields, or it can create the distributions

from observations as part of a data assimilation procedure. MicroMet includes a preprocessor component

that analyzes meteorological data, then identifies and corrects potential deficiencies. Since providing tem-

porally and spatially continuous atmospheric forcing data for terrestrial models is a core objective of

MicroMet, the preprocessor also fills in any missing data segments with realistic values. Data filling is

achieved by employing a variety of procedures, including an autoregressive integrated moving average

calculation for diurnally varying variables (e.g., air temperature). To create the distributed atmospheric

fields, spatial interpolations are performed using the Barnes objective analysis scheme, and subsequent

corrections are made to the interpolated fields using known temperature–elevation, wind–topography,

humidity–cloudiness, and radiation–cloud–topography relationships.

1. Introduction

For decades, earth-system scientists have been devel-

oping physically based mathematical models describing

interactions between the atmosphere and terrestrial

surface. These models represent important climate sys-

tem components and have improved our understanding

of climate-related processes and feedbacks. The latest

generations of distributed terrestrial models are being

designed for high spatial resolutions (e.g., 30-m to 1-km

horizontal grid increments) and require scale-appro-

priate atmospheric forcings. For example, models re-

quire spatially relevant driving data to simulate river

discharge and floods (e.g., Jasper et al. 2002; Westrick

et al. 2002), ecosystem processes (e.g., Le Dizès et al.

2003; Vourlitis et al. 2003), snow distributions (e.g., Lis-

ton and Sturm 2002; Winstral et al. 2002), soil tempera-

tures and active layers (e.g., Shiklomanov and Nelson

2002; Taras et al. 2002), and water cycles using soil–

vegetation–atmosphere interaction models (e.g., Lud-

wig and Mauser 2000; Whitaker et al. 2003).

In addition to providing high-resolution information

on terrestrial features and fluxes, high-resolution mod-

els can be used to develop parameterizations of subgrid

features found within low-resolution atmospheric and

terrestrial models (e.g., Randall et al. 2003; Liston

2004). This is accomplished by running the models as

explicit subgrid-process-resolving models, and using the

resulting information to understand the interrelation-

ships among the relatively small and large scales.
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Many spatially distributed terrestrial models require

atmospheric forcings on surface grids having higher

spatial resolution than the available meteorological

data. In the absence of appropriate gridded atmo-

spheric data, these models are forced to employ point

data to represent meteorological conditions across their

simulation domains. In our search for methods to gen-

erate the required distributed atmospheric forcing, we

find that it is computationally prohibitive to run fully

dynamic, regional atmospheric models (e.g., Liston et

al. 1999; Liston and Pielke 2001) over full annual cycles

at subkilometer grid increments, and that simple inter-

polation schemes may not account for naturally occur-

ring meteorological gradients. Thus, computationally

efficient and physically realistic methods must be de-

veloped to take available meteorological datasets (e.g.,

meteorological station observations, and/or regional at-

mospheric model or analyses datasets on, say, 10-km

grids) and generate required high-resolution atmo-

spheric-forcing distributions.

This paper describes MicroMet, an intermediate-

complexity meteorological model designed to produce

high-resolution (e.g., 30-m to 1-km horizontal grid in-

crements) meteorological data distributions required to

run spatially distributed terrestrial models over a wide

variety of landscapes. The following eight variables are

distributed: air temperature, relative humidity, wind

speed, wind direction, incoming solar radiation, incom-

ing longwave radiation, surface pressure, and precipi-

tation. Preliminary, largely undocumented and incom-

plete versions of MicroMet have been used to success-

ful ly distr ibute both observed and modeled

meteorological variables over complex terrain in Colo-

rado, Wyoming, Idaho, Arctic Alaska, Svalbard, central

Norway, Greenland, and Antarctica as part of a wide

variety of terrestrial modeling studies (e.g., Liston and

Sturm 1998, 2002; Greene et al. 1999; Liston et al. 1999,

2000, 2002; Prasad et al. 2001; Hiemstra et al. 2002;

2005, manuscript submitted to Wea. Forecasting; 2006;

Taras et al. 2002; Hasholt et al. 2003; Bruland et al.

2004; Liston and Elder 2005, manuscript submitted to

J. Hydrometeor.; Liston and Winther 2005).

2. MicroMet data preprocessor

MicroMet includes a three-step preprocessor that

analyzes meteorological station data (or model grid-

point data) and identifies and/or corrects deficiencies.

While MicroMet can be run using any time step from 1

min to 1 day, the following preprocessor discussion as-

sumes the raw station data are provided on an hourly

time increment. In addition, as part of the preprocess-

ing steps, each meteorological variable for all stations

must be converted to a common height (e.g., 2.0 or 10.0

m) using appropriate transfer functions, such as the

logarithmic wind profile equation for wind speed. This

decision then defines the height(s) of the MicroMet-

simulated meteorological distributions.

First, the preprocessor fills the variables for missing

dates/times with an “undefined” value (e.g., �9999.0).

This filling is done before any data quality assurance/

quality control (QA/QC) tests because it would be use-

less to compare two adjacent values that are separated

by missing data.

Second, the preprocessor performs a series of QA/

QC data tests following Meek and Hatfield (1994). The

tests consider three conditions/cases: case 1 checks for

values outside acceptable ranges, high/low range limits

(LIM); case 2 seeks consecutive values that exceed ac-

ceptable increments, rate-of-change limits (ROC); case

3 finds constant consecutive values with no-observed-

change within time limits (4 h) (NOC). For example,

unchanging wind directions or repeating zero wind

speeds might indicate an iced or otherwise defective

instrument.

Third, the preprocessor fills in missing time series

data with calculated values. The implemented data-fill

procedures assume that as long as the data of interest

are within a given synoptic cycle, persistence is a rea-

sonable approximation. In general, at a given point, the

weather today is frequently similar to what it was yes-

terday and what it will be tomorrow (Jolliffe and

Stephenson 2003). This assumption is dependent on

time of year and geographic location; it becomes less

tenable as the length of missing data becomes larger, as

we discuss later.

MicroMet fills missing data segments in a variety of

ways. Air temperature, relative humidity, wind speed

and direction, and precipitation, are all assumed to

have diurnal cycles, and the data-fill procedure is dif-

ferent for each of the following three conditions (Fig.

1): Condition 1 contains a single missing data value (i.e.,

one missing hour) where the datum for that hour is

defined to be the average of the values an hour before

and after the missing hour (Fig. 1a). Condition 2 has

missing data segments ranging from 2 to 24 h and miss-

ing values are determined as an average of the values

from 24 h before and after each of the missing hours in

that period (Fig. 1b). This solution has the attractive

feature of preserving the variables’ diurnal cycle. Last,

condition 3 includes missing data segments larger than

24 h (Fig. 1c). For this condition, the time series pre-

diction is made using an autoregressive integrated mov-

ing average (ARIMA) model (Box and Jenkins 1976).

The implemented formulation closely follows the ideas
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presented in Walton (1996). In the MicroMet prepro-

cessor, we use an ARIMA model to forecast into the

missing segment using data preceding the missing seg-

ment and backcast into the missing segment using data

following the missing segment (both using data spans

equal in length to the missing-data span). The two re-

sults are then linearly interpolated across the data gap

(Fig. 1d).

The preprocessor was tested to evaluate the data-

filling procedure. For this task, the National Aeronau-

tics and Space Administration (NASA) Cold Land Pro-

cesses Field Experiment’s (CLPX; Cline et al. 2005,

manuscript submitted to J. Hydrometeor.; Goodbody et

al. 2005, manuscript submitted to J. Hydrometeor.)

Walton Creek meteorological station air temperature

record for 23 September 2002 through 27 September

2003 was selected because it contained no missing data.

This tower is located in a treeless meadow in the Park

Range, Colorado, at 40°24.0�N, 106°38.7�W, and

2950-m elevation. To create missing data for the Wal-

ton Creek data, a random sampling scheme was used to

define 50 different initial start times (date and hour of

day). For each start time, data for 1 through 14, 21, 28,

and 35 days were removed from the dataset (50 � 17 �

850 individual tests). The missing data segments were

then filled using the MicroMet preprocessor.

The filled data periods were compared to the original

measured data and evaluated for goodness of fit using

the Nash–Sutcliffe coefficient (NSC) (Nash and Sut-

cliffe 1970). The Nash–Sutcliffe analysis of generated

(predicted) versus measured (observed) data is pro-

vided in Fig. 2. If NSC is 1, then the model is a perfect

FIG. 2. Results of goodness-of-fit tests for missing data periods

using NSC for different missing data durations. The lines in the

middle of the boxes show the median NSC values for each data-

filling period. The upper and lower bounds of the boxes show the

inner quartile ranges. The whiskers show the ranges of the highest

values that lie within twice the inner quartile ranges. Open circles

show data values that lie outside twice the inner quartile ranges.

The top horizontal dotted line (NSC � 1) represents a perfect fit.

Values falling below the lower dotted line (NSC � 0) indicate

major deviations between modeled and observed data. The inset

shows details of the first 6 days.

FIG. 1. Example MicroMet preprocessor data-filling procedure

for air temperature. (a) Condition 1: 1 h of missing data (data at

the crosses are averaged to fill the missing hour). (b) Condition 2:

greater than one, but less than 25 h of missing data (data at the

crosses, located 24 h before and after each missing hour, are av-

eraged to fill each missing hour). (c) Condition 3: illustrating more

than 24 h of missing data, where the missing time period is filled

(d) by extrapolating forward and backward (in the missing data

section), using an ARIMA model, and linearly weighting the two

results (shown by the open markers).
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fit to the observations. If NSC is between 1 and 0, de-

creasing values represent a decline in goodness of fit,

where 0 represents major deviations between modeled

and observed data. Negative NSC values represent re-

sults where the fit is poor and the average value of the

missing segment represents observations more closely

than modeled values. Each box-and-whisker plot in Fig.

2 represents the results of all 50 trials for each missing

data span except for the few instances where the ran-

domly selected data period fell too close to the dataset

start or finish to perform the ARIMA forecast or back-

cast.

Figure 2 suggests that the preprocessor does well

over short durations of 1–3 days. Many results are sat-

isfactory over longer periods (e.g., up to 6 days), but

problems begin to arise as the length of the prediction

period increases beyond this value, similar to problems

of weather forecasting in general (AMS 1998). Looking

at individual cases, periods of weather where there are

strong diurnal cycles with relatively stable behavior (in

terms of trend, amplitude, etc.) tend to be predictable

for extended durations. The preprocessor typically pro-

duces a poor fit for periods of highly stochastic behav-

ior or for periods that span different synoptic regimes.

Figure 3 shows a series of predictions from a randomly

selected start date with durations ranging from 1

through 6 days. The model clearly performs well at

short durations (less than 7 days), although problems

arise when general model assumptions are not met by

the observations (e.g., when no definite diurnal tem-

perature cycle, such as might occur when a cold front

passes in midmorning). Even at longer durations, for

example, 10 to 21 days (Fig. 4), it can be argued that for

some modeling applications, the modeled data with a

diurnal cycle would be preferable to a continuous mean

value applied across the missing data period. For situ-

ations where more than one meteorological station ex-

ists within the simulation domain, the MicroMet spatial

interpolation scheme (see below) assists in filling large

missing data segments.

As highlighted by Fig. 4c, for the case of large missing

data segments (e.g., between 7 and 35 days) that are

bounded by significantly different trends before and

after the missing segment, the ARIMA procedure can

lead to a significant misrepresentation within the miss-

ing portion (e.g., the model simulation in Fig. 4c is as

much as 10°C greater than the observations). Because

there is still a need to fill these relatively large missing

segments, the MicroMet preprocessor defines two miss-

ing-data-span parameters: the first is the maximum

span that the ARIMA submodel is to be applied, and

the second is the maximum span that is to be filled by

the MicroMet preprocessor. Any missing air tempera-

ture span falling between these two parameters is filled

by calculating the average amplitude of the diurnal

cycle before and after the missing period using a data

span equal to the missing segment span, and then these

two amplitudes are used to create a forecast and back-

cast that are linearly interpolated across the data gap

(Fig. 4d). Our analyses suggest that a value of 3 to 6 is

appropriate for the first parameter, and a value of 14 to

28 is appropriate for the second parameter. If these

parameters are exceeded, MicroMet leaves the values

as missing. Users of the MicroMet preprocessor are

FIG. 3. (a)–(f) Example MicroMet preprocessor air temperature

ARIMA data-filling procedure, for the cases of 1–6 days of miss-

ing data. Also shown are the NSC values. The relatively poor

model performance for the 5-day span in (e) reflects the changing

influence period used as part of the ARIMA forecast and back-

cast.
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encouraged to closely examine their data time series

and the resulting filled data segments to assess the va-

lidity of the generated data relative to their specific

applications.

3. MicroMet model

What follows is a general description of MicroMet

(version 1.0), a quasi–physically based, high-resolution

(e.g., 30-m to 1-km horizontal grid increment) meteo-

rological distribution model. It is designed specifically

to produce high-resolution meteorological forcing dis-

tributions required to run spatially distributed terres-

trial models over a wide variety of landscapes. The

model uses known relationships between meteorologi-

cal variables and the surrounding landscape (primarily

topography) to distribute those variables over any

given landscape in computationally efficient and physi-

cally plausible ways. MicroMet performs two kinds of

adjustments to the available meteorological data: 1) all

available data, at a given time, are spatially interpolated

over the domain, and 2) physical submodels are applied

to each MicroMet variable to improve parameter real-

ism at a given point in space and time. The model dis-

tributes fundamental atmospheric forcing variables re-

quired to run most terrestrial models: 1) air tempera-

ture, 2) relative humidity, 3) wind speed, 4) wind

direction, 5) incoming solar radiation, 6) incoming long-

wave radiation, 7) surface pressure, and 8) precipita-

tion. To calculate these distributions, MicroMet as-

sumes at least one value of each of the following me-

teorological variables are available at each time step of

interest, somewhere within (or near) the simulation do-

main: air temperature, relative humidity, wind speed,

wind direction, and precipitation. For surface pressure

and incoming solar and longwave radiation, MicroMet

has two options: 1) let the MicroMet submodels create

the distributions (in the absence of observations), or 2)

merge available observations with the submodel-gen-

erated distributions, as part of a data assimilation pro-

cedure. This second option produces distributions that

match the observations when and where they exist,

while accounting for higher-resolution information

such as topographic slope and aspect.

a. Spatial interpolation

The model does station (horizontal) interpolations

using a Barnes objective analysis scheme (Barnes 1964,

1973; Koch et al. 1983). Objective analysis is the process

of interpolating data from irregularly spaced stations to

a regular grid. The Barnes scheme applies a Gaussian

distance-dependent weighting function, in which the

weight that a station contributes to the overall value of

the grid point decreases with increasing distance from

the point. The interpolation weights, w, are given by

w � exp��
r2

f�dn�
�, �1�

where r is the distance between the observation and a

grid point, and f(dn) defines a filter parameter whose

value ultimately defines how smooth the interpolated

field will be. The data spacing and distribution objec-

tively determine the filter parameter value (see Koch et

al. 1983).

The Barnes technique employs the method of suc-

cessive corrections, applying two passes through the

station data. Using the weighting function [Eq. (1)] to

assign a value to each grid point creates a first-pass

analysis field. During the second pass, a difference field

is calculated that determines residuals, then, after de-

creasing the influence radius, a difference correction is

applied to the first-pass field. This second pass through

the data restores the amplitude of small wavelength

FIG. 4. Example MicroMet preprocessor air temperature

ARIMA data-filling procedure, for the cases of (a) 7, (b) 10, and

(c) 21 days of missing data. These figures highlight the decreasing

skill (decreasing NSC values) in the ARIMA procedure for rela-

tively long missing-data spans. (d) The results of the alternate

data-filling procedure suggested for missing-data spans greater

than 6 days (see text for details).
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components larger than twice the average observation

spacing (2�n) suppressed in the first pass. Random er-

rors in the station observations can generate spurious

2�n waves (Barnes 1964), so it is important that the

scheme filters these from the analysis. Barnes (1973)

showed that two passes through the data achieve the

desired rapid convergence of the gridded values to the

station observations, while providing scale-appropriate

resolution.

Since the gridpoint values are weighted averages of

the surrounding stations, the gridded values are always

less than the maximum and greater than the minimum

values surrounding the point, resulting in smoothed sta-

tion data. When interpolating precipitation, some

schemes impose budget-conserving constraints on the

applied procedures. While this is appropriate for gen-

eral interpolation, it is not appropriate for extrapola-

tion into data-poor regions not represented by the

available observing stations. MicroMet is designed to

perform extrapolation into, for example, mountainous

regions where data do not exist, and where the precipi-

tation can be much greater than that measured at the

(typically valley) observing sites. For all of the vari-

ables, when only one observation exists at a given time

step, the Barnes interpolation step is omitted, and Mi-

croMet uniformly distributes the observed value over

the domain before performing the MicroMet physically

based adjustments, as described below.

b. Meteorological variables

The following descriptions summarize MicroMet

procedures implemented to adjust each meteorological

variable beyond its initial spatial interpolation. The

wind speed and incoming solar and longwave radiation

descriptions assume top-of-canopy conditions; adjust-

ments to account for the presence of forest canopies

follow Liston and Elder (2005, manuscript submitted to

J. Hydrometeor.).

1) AIR TEMPERATURE

Historically, simple interpolation routines (e.g., Bur-

rough and McDonnell 2000) have been used to spatially

distribute point air temperature data. While these

methods work in flat terrain, they often misrepresent

temperature distributions in areas having significant to-

pographic variability. Recent studies have tried to im-

prove the simulated temperature distributions by tak-

ing advantage of the strong temperature–elevation re-

lationships that are known to exist. Dodson and Marks

(1997) summarize two of the most realistic and general

methods used to distribute point air temperature data

over mountainous terrain: assuming 1) neutral atmo-

spheric stability, and 2) a constant linear lapse rate.

They conclude that the constant linear lapse rate

method most successfully reproduces the natural envi-

ronment, but also note that lapse rates can vary widely

over space and time. In MicroMet, this deficiency is

constrained by defining air temperature lapse rates that

vary monthly throughout the year. Alternatively, the

MicroMet can utilize user-defined lapse rate data.

First, the station air temperatures are adjusted to a

common level, using the formula

T0 � Tstn � ��z0 � zstn�, �2�

where Tstn (°C) is the observed station air temperature

at the station elevation, zstn (m); T0 (°C) is the air tem-

perature at the reference elevation, z0 (m) (sea level,

or z0 � 0.0, is used in MicroMet); and the lapse rate,

� (°C m�1), is given in Table 1 and varies depending on

the month of the year (Kunkel 1989) or calculated

based on adjacent station data.

The reference-level station temperatures are then in-

terpolated to the model grid using the Barnes objective

analysis scheme (Koch et al. 1983). The gridded topog-

raphy data and Table 1 (or observed) lapse rate are

then used to adjust the reference-level gridded tem-

peratures to the elevations provided by the topography

dataset, using

T � T0 � ��z � z0�, �3�

where T0 is now the gridded air temperature at the

reference elevation, z0, and T (°C) is the gridded air

temperature at the elevation of the topographic data-

set, z (m).

2) RELATIVE HUMIDITY

Since relative humidity is a nonlinear function of el-

evation, the relatively linear dewpoint temperature is

TABLE 1. Air temperature lapse rate variations, for each month

of the year, in the Northern Hemisphere (Kunkel 1989), and pre-

cipitation–elevation adjustment factors (Thornton et al. 1997).

Month

Air temperature

lapse rate

(°C km�1)

Vapor pressure

coefficient

(km�1)

Precipitation

adjustment

factor (km�1)

Jan 4.4 0.41 0.35

Feb 5.9 0.42 0.35

Mar 7.1 0.40 0.35

Apr 7.8 0.39 0.30

May 8.1 0.38 0.25

Jun 8.2 0.36 0.20

Jul 8.1 0.33 0.20

Aug 8.1 0.33 0.20

Sep 7.7 0.36 0.20

Oct 6.8 0.37 0.25

Nov 5.5 0.40 0.30

Dec 4.7 0.40 0.35
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used for the elevation adjustments. First, we convert

the station relative humidity, RH (%), to dewpoint

temperature, Td (°C), using the air temperature, T (°C).

The saturation vapor pressure, es (Pa), at temperature

T is

es � a exp� bT

c 	 T
�, �4�

where for water a � 611.21 Pa, b � 17.502, and c �

240.97°C, and for ice a � 611.15 Pa, b � 22.452, and

c � 272.55°C (Buck 1981). Using Eq. (4), the RH equa-

tion

RH � 100
e

es

�5�

can be solved for the actual vapor pressure, e (Pa). The

dewpoint temperature can then be calculated from

Td �
c ln�e�a�

b � ln�e�a�
. �6�

Now the dewpoint temperatures at the stations can

be adjusted to a common reference level using Eq. (2),

where the temperatures are now dewpoint tempera-

tures and the lapse rate is the dewpoint temperature

lapse rate, �d (°C m�1) (Kunkel 1989),

�d � �
c

b
, �7�

where 
 (m�1) is a vapor pressure coefficient (Table 1)

that varies during each month of the year (Kunkel

1989).

The reference-level station dewpoint temperatures

are then interpolated to the model grid using the Barnes

objective analysis scheme (Koch et al. 1983). The Td

lapse rate is used to take the reference-level gridded

values to the actual topographic elevations using an

equation similar to Eq. (3), where now the tempera-

tures are dewpoint temperatures, and the lapse rate is

the dewpoint temperature lapse rate. These gridded

dewpoint temperature values are then converted to RH

using Eqs. (4) and (5), where e is calculated by substi-

tuting Td for T in Eq. (4).

3) WIND SPEED AND DIRECTION

Because of the problems with interpolating over the

360°/0° direction line, station wind speed, W (m s�1),

and direction, �, values are first converted to zonal, u

(m s�1), and meridional, � (m s�1), components using

u � �W sin���, �8�

� � �W cos���. �9�

The u and � components are then independently in-

terpolated to the model grid using the Barnes objective

analysis scheme (Koch et al. 1983). The resulting values

are converted back to speed and direction using

W � �u2 	 �2��1�2�, �10�

� �
3�

2
� tan�1��

u
�, �11�

where north has a direction of zero.

These gridded speed and direction values are modi-

fied using a simple, topographically driven wind model,

following Liston and Sturm (1998) that adjusts the

speeds and directions according to topographic slope

and curvature relationships. To perform the wind modi-

fication calculations, the topographic slope, topo-

graphic slope azimuth, and topographic curvature must

be computed. The terrain slope, , is given by

� � tan�1���z

�x
�

2

	 ��z

�y
�

2

�
�1�2�

, �12�

where z (m) is the topographic height, and x (m) and y

(m) are the horizontal coordinates. The terrain slope

azimuth, �, with north having zero azimuth, is

	 �
3�

2
� tan�1��z��y

�z��x
�. �13�

The curvature, �c, is computed at each model grid

cell by first defining a curvature length scale or radius,

� (m), that defines the topographic length scale to be

used in the curvature calculation. This length scale is

equal to approximately half the wavelength of the to-

pographic features within the domain (e.g., the distance

from a typical ridge to the nearest valley).

For each model grid cell, the curvature is calculated

by taking the difference between that grid cell eleva-

tion, and the average elevations of the two opposite

grid cells a length scale distance from that grid cell. This

difference is calculated for each of the opposite direc-

tions S–N, W–E, SW–NE, and NW–SE from the main

grid cell (effectively obtaining a curvature for each of

the four direction lines), and the resulting four values

are averaged to obtain the curvature. Thus,


c �
1

4 �
z � 1�2�zW 	 zE�

2�
	

z � 1�2�zS 	 zN�

2�

	
z � 1�2�zSW 	 zNE�

2�2�
	

z � 1�2�zNW 	 zSE�

2�2�
�,

�14�

where zW, zSE, etc. are the elevation values for the grid

cell at approximately curvature length scale distance, �,
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in the corresponding direction from the main grid cell.

To simplify applying this distribution in the topographic

weighting function described below, the curvature is

then scaled such that –0.5 � �c � 0.5 over the simula-

tion domain.

The slope in the direction of the wind, �s, is


s � � cos�� � 	�. �15�

This �s is also scaled such that –0.5 � �s � 0.5 over the

simulation domain.

The wind weighting factor, Ww, used to modify the

wind speed is given by (Liston and Sturm 1998)

Ww � 1 	 s
s 	 c
c, �16�

where �s and �c are the slope weight and curvature

weight, respectively. The �s and �c values range be-

tween �0.5 and 	0.5. Valid �s and �c values are be-

tween 0 and 1, with values of 0.5 giving approximately

equal weight to slope and curvature. It is suggested that

�s and �c be set such that �s 	 �c � 1.0. This con-

straint will limit the total wind weight to between 0.5

and 1.5, but this is not actually required by the model

implementation.

Finally, the terrain-modified wind speed, Wt (m s�1),

is calculated from

Wt � Ww W. �17�

The wind directions are modified by a diverting factor,

�d, according to Ryan (1977),

�d � �0.5
s sin�2�	 � ���. �18�

This diverting factor is added to the wind direction to

yield the terrain-modified wind direction, �t,

�t � � 	 �d. �19�

The resulting speeds, Wt, and directions, �t, are con-

verted to u and � components using Eqs. (8) and (9).

The wind model was tested against an observational

dataset (Pohl et al. 2005, manuscript submitted to Arct.

Antarct. Alp. Res., hereafter PML) from Trail Valley

Creek, a research basin located in the Northwest Ter-

ritories, Canada, at 68°45�N, 133°30�W. The observa-

tions include wind speed and direction data (15-min

averages) from six towers located on and around a low

hill (approximately 50-m high) in the northwestern part

of the basin (Fig. 5a).

The following approach was used to define reason-

able values of �s and �c. First, the wind data were

binned into the eight principal wind directions (N, NE,

E, etc.), and W in Eq. (17) was defined to be the aver-

age wind speed of the six stations, for each directional

bin, at each observation time. Second, we reasoned

that, for northerly and southerly winds, the topographic

slope at stations 1 and 3 were zero (Fig. 1a). For this

case, the second term on the right-hand side of Eq. (16)

is zero. Using this, and by defining Wt to be equal to the

station observations, Eqs. (16) and (17) were combined

to yield �c as the only unknown. The resulting equation

was solved for stations 1 and 3, using both northerly and

southerly winds (n � 919), and an average �c was cal-

culated. This �c value was then applied to Eq. (16) and

FIG. 5. (a) Simulation domain topography (contour interval 10

m), wind weighting factor (color shades), and meteorological sta-

tion locations (adapted following PML). (b) Comparison of mod-

eled and observed wind speed for stations 1 and 5, for both north-

erly and southerly winds; included are the square of the linear

correlation coefficient, r2, and rmse (n � 919).
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the process was repeated to calculate the �s for stations

2 and 5 (which have both slope and curvature). The

resulting values (n � 919) were combined to yield an

average �s. The ratio of calculated �c to �s equaled 0.72,

which, under the assumption that �s and �c sum to

unity, yielded �s � 0.58 and a �c � 0.42.

These values were implemented in the wind model

and used to simulate the wind flow over the hill (Fig.

5a). Comparison of the simulated wind speeds and the

observations at stations 1 and 5, for both northerly and

southerly winds, is presented in Fig. 5b. Figure 5a also

displays the Ww distribution for the case of southerly

winds. Shown are the relatively higher weighting values

on ridge tops and windward slopes, and lower values on

lee slopes and in valley bottoms. PML provided a more

complete comparison of the model and wind observa-

tions.

4) SOLAR RADIATION

The following equations use the model time to cal-

culate the solar radiation for that specific time. In ad-

dition, they consider the influence of cloud cover, direct

and diffuse solar radiation, and topographic slope and

aspect on incoming solar radiation.

Cloud cover is estimated by first taking the surface

gridded T and Td fields described in sections 3b(1) and

3b(2) and the associated lapse rates to calculate T and

Td for the 700-mb level of the atmosphere. These T and

Td surfaces are then used to calculate the relative hu-

midity at 700 mb, RH700, using Eqs. (4) and (5).

Following Walcek (1994), and assuming a minimum

averaging dimension, this RH700 distribution is used to

define the cloud fraction, �c,

�c � 0.832 exp�RH700 � 100

41.6 � �0 � �c � 1�.

�20�

An illustration of this relationship is given in Fig. 6.

Solar radiation striking earth’s surface, Qsi (W m�2),

including the influence of sloping terrain, is given by

Qsi � S*��dir cosi 	 �dif cosZ�, �21�

where the angle between direct solar radiation and a

sloping surface is given by i, and assuming that diffuse

radiation impinges upon an area corresponding to a

horizontal surface. The solar irradiance at the top of the

atmosphere striking a surface normal to the solar beam

is given by S* (�1370 W m�2; Kyle et al. 1985), and �dir

and �dif are the direct and diffuse, respectively, net sky

transmissivities, or the fraction of solar radiation reach-

ing the surface.

The solar zenith angle, Z, is

cosZ � sin� sin� 	 cos� cos� cos�, �22�

where � is latitude, and � is the hour angle measured

from local solar noon,

� � �� h

12
� 1�, �23�

where h is the hour of the day. The solar declination

angle, �, is approximated by

� � �T cos�2��d � dr

dy
��, �24�

where �T is the latitude of the tropic of Cancer, d is the

day of the year, dr is the day of the summer solstice, and

dy is the average number of days in a year.

The angle i is given by

cosi � cos� cosZ 	 sin� sinZ cos�� � 	s�, �25�

and the terrain slope, , is given by Eq. (12). The ter-

rain slope azimuth now requires south to have zero

azimuth, �s, so Eq. (13) is used where the first term on

the right-hand-side is now �/2. The solar azimuth, �,

with south having zero azimuth, is given by

� � sin�1�cos� sin�

sinZ
�. �26�

To account for scattering, absorption, and reflection

of solar radiation by clouds, the solar radiation is scaled

according to (Burridge and Gadd 1974)

�dir � �0.6 � 0.2 cosZ��1.0 � �c� �27�

for direct solar radiation and

�dif � �0.3 � 0.1 cosZ��c �28�

for diffuse solar radiation, where �c represents the

cloud-cover fraction given by Eq. (20).

If incoming solar radiation observations are avail-

able, they can be combined with the solar radiation

FIG. 6. Cloud-cover fraction as a function of MicroMet-calcu-

lated 700-mb relative humidity.
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model as part of a data assimilation procedure. Here

the point observations are compared with the model-

distributed field at the corresponding model grid cells.

The differences between the observations and modeled

values are computed, and a gridded surface is gener-

ated through those differences using the Barnes analy-

sis scheme. The difference field is then added to the

model-distributed field. This produces distributions

that match the observations when and where they exist,

while including the higher-resolution information pro-

vided by the modeled distributions.

The solar radiation model was compared against ob-

servations provided by the CLPX. Figure 7a provides

an analysis of modeled and observed hourly incoming

solar radiation data from the CLPX Walton Creek me-

teorological station, spanning the time 23 September

2002 through 27 September 2003. The model yielded an

r2 value of 0.87 for the hourly data, and captured the

observed seasonal variations (Fig. 7b).

5) LONGWAVE RADIATION

Incoming longwave radiation is calculated while tak-

ing into account cloud cover and elevation-related

variations following Iziomon et al. (2003). Incoming

longwave radiation reaching earth’s surface, Qli (W

m�2), is given by

Qli � ��T4, �29�

where � is the Stefan–Boltzmann constant, and T (K;

note the change in units) is the air temperature. The

atmospheric emissivity, �, is

� � ��1 	 Zs�c
2��1 � Xs exp��Yse�T��, �30�

where e (Pa) is the atmospheric vapor pressure, and the

coefficients Xs, Ys, and Zs depend on elevation accord-

ing to

Cs � C1 z � 200

Cs � C1 	 �z � z1��C2 � C1

z2 � z1
� 200 � z � 3000

Cs � C2 3000 � z

,

�31�

where z (m) is the elevation of the land surface, and X,

Y, and Z can be substituted for C, with X1 � 0.35, X2 �

0.51, Y1 � 0.100 K Pa�1, Y2 � 0.130 K Pa�1, Z1 � 0.224,

Z2 � 1.100, z1 � 200 m, and z2 � 3000 m. These coef-

ficients represent a combination of those defined by

Iziomon et al. (2003) for elevations below 1500 m; X2

and Y2 were determined by increasing the Iziomon et

al. (2003) coefficients linearly to 3000 m; and Z2 and

� � 1.083 were adjusted to create a best fit to CLPX

observational datasets.

Comparison of longwave radiation simulations with

CLPX Walton Creek observations (Fig. 8) yielded re-

sults similar in quality to those in the solar radiation

comparison. If incoming longwave radiation observa-

tions are available, they can be combined with the long-

FIG. 7. Incoming solar radiation data from the NASA CLPX

Walton Creek meteorological station, 23 Sep 2002–27 Sep 2003

(n � 8880). (a) Comparison of hourly modeled and observed data;

the thin scattering of high-solar-radiation values compared to the

observations is the result of frost and snow on the sensor, etc., that

are not accounted for in the model. (b) Time evolution of daily

average modeled and observed solar radiation. To improve visu-

alization, a 7-day running mean was applied to the daily data.
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wave radiation model as part of the data assimilation

procedure described in section 3b(4).

6) SURFACE PRESSURE

In the absence of surface pressure observations, a

time-independent atmospheric pressure, p, distribution

is given by

p � p0 exp��
z

H
�, �32�

where p0 is a reference sea level pressure (101 300 Pa),

and H is the scale height of the atmosphere (�8000 m)

(Wallace and Hobbs 1977). If surface pressure obser-

vations are available, they can be combined with the

surface pressure model as part of the data assimilation

procedure described in section 3b(4).

7) PRECIPITATION

To distribute precipitation over the domain, ob-

served precipitation values are first interpolated to the

model grid using the Barnes objective analysis scheme.

To generate a topographic reference surface, the sta-

tion elevations are also interpolated to the model grid.

The reason interpolated station elevations are used as

the topographic reference surface, as opposed to a ref-

erence like sea level, is that the precipitation adjust-

ment function is a nonlinear function of elevation dif-

ference. The modeled liquid-water precipitation rate, P

(mm h�1), is computed from

P � P0�1 	 ��z � z0�

1 � ��z � z0�
�, �33�

where P0 is the interpolated station precipitation, z0 is

the interpolated station elevation surface, and � (km�1)

is a factor (Table 1) defined to vary seasonally (monthly

values) (Thornton et al. 1997). Figure 9 illustrates how

the precipitation adjustment function [the term in

brackets to the right of P0 in Eq. (33)] varies with el-

evation difference for � � 0.35 km�1 (a winter value).

Since � is expected to vary geographically, MicroMet

allows the user to modify its monthly values from those

listed in Table 1.

4. Example MicroMet simulations

To test the overall MicroMet implementation, the

model was run for one year starting on 1 September

FIG. 9. Dependence of the precipitation-adjustment factor on

the elevation difference between the precipitation observing sta-

tions and a specific grid cell, for � � 0.35 km�1 (a winter value).

FIG. 8. Incoming longwave radiation data from the NASA

CLPX Walton Creek meteorological station, 23 Sep 2002–27 Sep

2003 (n � 8880). (a) Comparison of hourly modeled and observed

data. (b) Time evolution of daily average modeled and observed

longwave radiation. To improve visualization, a 7-day running

mean was applied to the daily data.

APRIL 2006 L I S T O N A N D E L D E R 227



2002, over a 30 km by 30 km area, using an hourly time

step and 200-m grid increment (Fig. 10a). The simula-

tion domain covered the CLPX Rabbit Ears mesocell

study area located at 40°27�N, 106°22�W in north-

central Colorado (Cline et al. 2005, manuscript submit-

ted to J. Hydrometeor.), and is characterized by mod-

erate topographic relief. Meteorological data for the

simulations included a collection of gridded atmo-

spheric analyses data (nine grid points) from the Na-

tional Oceanic and Atmospheric Administration’s

(NOAA) Local Analysis and Prediction System

(LAPS) (Liston et al. 2005, manuscript submitted to J.

Hydrometeor.) and eight independent meteorological

station datasets provided from a variety of sources

(Table 2; Fig. 10a).

Four simulations were performed: case 1 used all of

the available meteorological data, data from 17 sites;

case 2 used 12 sites; case 3 used 7 sites; and case 4 used

2 sites. The site elimination order was determined ran-

domly, and the resulting distributions are shown in Fig.

10b.

An initial requirement of the model is that it closely

reproduces the observations at the observation point.

Figure 11a compares the hourly station 9 temperature

observations (n � 8760) with the model simulation at

the coincident model grid point. Also shown is a com-

parison of the observations with the case 4 simulation at

that grid point. Figure 11b displays the daily average

temperature evolution of the observations, case 1, and

case 4. The model behaves as expected.

A second requirement is that the model produces

reasonable spatial distributions of the modeled vari-

ables, and that these distributions maintain their viabil-

ity as the number of meteorological observations is re-

duced. Figure 12a shows the simulated January-average

air temperature, and Fig. 12b shows case 4 minus case 1

for this field. The reduction of observing sites from 17

to 2 yields January-average temperature differences of

1°C or less. Looking at the hourly data that make up

this figure shows that the individual fields have similar

differences (the Fig. 12b difference field is not the result

of larger positive and negative hourly values canceling

each other). The Fig. 12b spatial pattern is the result of

two factors. First, the differences are greatest along the

eastern and western areas of the domain. These are

areas of greatest elevation change between the two re-

maining case 4 data locations (A and 8, in Fig. 10a) and

the simulation domain topography (Fig. 10a). There-

fore, the simulated distributions in these areas are

strongly dependent upon model factors such as the as-

sumed lapse rate. Second, since the case 4 data loca-

tions are relatively near to each other, there is little

regional information contained in the case 4 simulation.

This leads to a difference field with a change of sign

from the east to the west part of the domain (to repro-

duce the case 1 simulation using only case 4 data, dif-

ferent lapse rates would have to be applied to the east

and west parts of the domain).

Figures 13a and 13b provide the same information

as Fig. 12, but for relative humidity. In addition to

the reasons for the Fig. 12b spatial pattern, the depen-

dence of relative humidity on temperature leads to

a similar relative humidity difference field (Fig. 13b).

FIG. 10. (a) Colorado simulation domain and topography (m),

and meteorological data sites comprised of LAPS atmospheric

analysis data (black dots) and meteorological stations (white

dots). Table 2 provides site descriptions. (b) Data sites used in the

four model simulations: cases 1, 2, 3, and 4 included 17, 12, 7, and

2 sites, respectively.
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The r2 and root-mean-square-error (rmse) calculations

displayed in Figs. 12 and 13 were also performed for

cases 2 and 3, and for July; the results are presented in

Table 3.

An analysis of the time evolution of domain-average

air temperature (Fig. 14) and relative humidity (Fig. 15)

was also performed. Table 4 presents the statistical in-

formation from these simulations. The figures and table

highlight the general decrease in simulation quality as

the number of data sites is reduced. The reduction from

17 to 2 stations produced a change in rmse values from

0.1° to 0.8°C and 0.6% to 5.5%, for air temperature and

relative humidity, respectively.

5. Discussion

a. Applications

MicroMet’s development was necessary to define

physically appropriate atmospheric forcings to drive a

wide variety of terrestrial (e.g., hydrology and ecosys-

tem) models. Historically, this merging of atmospheric

and hydrologic sciences has been hampered by the in-

herent mismatch in spatial scales between the two dis-

ciplines. Atmospheric scientists have studied the atmo-

sphere at global, synoptic, and regional scales. Their

models typically have a strong focus on the atmospheric

dynamics occurring over these scales and, as such, the

models have been formulated to operate on grid incre-

ments spanning from roughly 100-km (global) to 1-km

(regional) grid increments.

In contrast, hydrologic models have generally oper-

ated over well-defined watersheds using grid incre-

ments ranging from 30 m to 1 km. Models used to simu-

late hydrologic processes usually include moisture flow

dynamics and descriptions of physical and vegetation-

related processes that influence moisture transport

within the basin and associated interactions with the

atmosphere. To realistically (physically) represent

these basin moisture-transport processes, terrestrial

models are required to run at grid increments as small

as 30 m. Thus, there is a significant mismatch in scales

between atmospheric and terrestrial approaches.

MicroMet was developed to serve as an interface be-

tween the relatively coarse-resolution atmospheric data

(available as either station observations and/or gridded

atmospheric data, e.g., 1–100-km grid increment) and

fine-resolution (e.g., 30-m to 1-km grid increment) hy-

drological and ecological models. This lack of available

high-resolution atmospheric forcing data has hindered

the development of spatially and physically realistic

hydrologic and ecologic models. Evidence of this can

be found by looking at the growth of intermediate-

scale (e.g., 10–15-km grid increment) land surface hy-

drology models over the last 10–15 yr (Wood et al.

1997; Mitchell et al. 2004). These models have com-

monly had to adopt the atmospheric modeling ap-

proach of “parameterizing” the subgrid-scale physics

within the terrestrial system they are attempting to

model. MicroMet converts available atmospheric forc-

ing data to the sufficiently high spatial resolution re-

TABLE 2. Meteorological data sites used in the spatially distributed model simulations (Fig. 10).

Station ID Site description Easting (m) Northing (m) Elevation (m) Variablesa

A Buffalo Pass-CLPX 351 126 487 974 2804 T, R, W, D

B Spring Creek-CLPX 357 887 488 407 3233 T, R, W, D

C Walton Creek-CLPX 360 335 473 447 2950 T, R, W, D

D Columbine-SNOTELb 362 779 473 410 2794 T

E Rabbit Ears-SNOTEL 352 863 469 933 2911 T

F Tower-SNOTEL 358 815 488 253 3219 T

G Dry Lake-RAWSc 348 990 488 445 2515 T, R

H Storm Peak Laboratory-DRId 352 450 479 159 3210 T, R, W, D

1 LAPS 346 979 468 801 2477 T, R, W, D, P

2 LAPS 357 033 468 819 2837 T, R, W, D, P

3 LAPS 367 086 468 831 2714 T, R, W, D, P

4 LAPS 346 955 478 818 2430 T, R, W, D, P

5 LAPS 357 017 478 837 2852 T, R, W, D, P

6 LAPS 367 075 478 848 2782 T, R, W, D, P

7 LAPS 346 933 488 842 2573 T, R, W, D, P

8 LAPS 356 999 488 861 2913 T, R, W, D, P

9 LAPS 367 067 488 873 2704 T, R, W, D, P

a Meteorological variables available at each site: T � air temperature, R � relative humidity, W � wind speed, D � wind direction, and

P � precipitation.
b SNOTEL � snow telemetry.
c RAWS � Remote Automated Weather Station.
d DRI � Desert Research Institute.
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quired to drive terrestrial process models operating at

realistic spatial scales.

b. Limitations

As part of our MicroMet development, we recog-

nized many limitations in the model formulation. Two

things are clear from the preceding MicroMet descrip-

tion: 1) the finescale adjustments to the observed or

analyzed meteorological fields are largely driven by

simple topographic relationships, and 2) the adjust-

ments are completely one-way. This one-way coupling

means there are no feedbacks between the land and

atmosphere in the calculations of the near-surface at-

mospheric conditions. We also understand that land

surface conditions can have a substantial impact on

near-surface atmospheric properties (Pielke 2001).

Thus, there is an opportunity for additional improved

physical realism in the MicroMet spatial interpolations

FIG. 11. (a) Comparison of station 9 (see arrow in Fig. 10b)

hourly air temperature observations with case 1 and case 4 model

simulations at the corresponding grid point (n � 8760). Case 1 has

been offset by 5°C to help distinguish those data from the case 4

data. (b) Comparison of station 9 daily average observations with

case 1 and case 4 model simulations.

FIG. 12. (a) Case 1 simulated January-average air temperature

(°C), and (b) case 4 minus case 1 for this field.
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and distributions. We use three examples to illustrate

why the MicroMet approaches are an oversimplifica-

tion of the natural system, and suggest how later ver-

sions of MicroMet might be modified to correct those

limitations.

1) WET VERSUS DRY SOIL

Consider a flat domain with one meteorological

tower observation. MicroMet will distribute the tower

temperature observation to be constant over the do-

main. This distribution is probably appropriate under

conditions of constant soil moisture and uniform veg-

etation type, but, to consider a more realistic example,

let us assume that part of the domain is dry and another

part is wet. In this case, we expect the underlying sur-

face will influence the resulting air temperature (the air

above the drier surface will be warmer, while that

above the wetter surface will be cooler). To account for

this variability, MicroMet could calculate a surface en-

ergy budget under the assumption that the air tempera-

tures above the two surfaces are initially the same (but

the soil moistures are different), and then use the re-

sulting sensible and latent heat fluxes to adjust the as-

sumed air temperatures. Note that implementing these

enhancements requires coupling MicroMet to an en-

ergy-balance/land surface hydrology model, thus sig-

nificantly increasing the complexity, and potentially in-

creasing the biases, of the current modeling system.

2) NORTH VERSUS SOUTH SLOPES

Consider a topographically variable domain with

only one meteorological station. MicroMet will distrib-

ute the station temperature observation over that do-

main under an assumed lapse rate. A contour plot of

the resulting temperature field will look like a topo-

graphic map of the area, but with units of temperature

instead of elevation. In the natural system, we expect

the temperature to vary as a function of slope and as-

pect, and their relationship to the incoming solar radia-

tion. For example, in the Northern Hemisphere we ex-

pect that reduced solar radiation on north-facing slopes

will have lower air temperatures, and south-facing

slopes will experience greater temperatures. To com-

pensate for this oversimplification, MicroMet could

perform a surface energy budget calculation, under the

assumption that the air temperatures above the two

surfaces are initially the same (but incoming solar ra-

diation levels are different), and the resulting combina-

FIG. 13. (a) Case 1 simulated January-average relative humidity

(%), and (b) case 4 minus case 1 for this field.

TABLE 3. Statistical information (square of the linear correla-

tion coefficient, r2, and rmse) corresponding to the simulations

represented by Figs. 12 and 13 and the cases identified in Fig. 10

(n � 151 � 151 � 22 801). Shown are comparisons of cases 2, 3,

and 4 with case 1, for hourly simulation data averaged over Janu-

ary and July. Highlighted is the degradation in model solution

with a reduced number of meteorological stations in the domain.

Case 2 Case 3 Case 4

r2 Rmse r2 Rmse r2 Rmse

Tair (°C): Jan 0.96 0.2 0.91 0.4 0.87 0.6

Tair (°C): Jul 0.94 0.5 0.93 0.9 0.88 1.5

RH (%): Jan 0.93 1.6 0.85 2.8 0.84 4.1

RH (%): Jul 0.55 3.2 0.74 3.6 0.47 7.3
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tion of surface net radiation and sensible and latent

heat fluxes could be used to modify initial air tempera-

tures. This accounting also requires implementation of

a coincident energy-balance/land surface hydrology

model.

3) PRECIPITATION

Consider a simulation domain within the topographi-

cally complex western United States. With one meteo-

rological tower, MicroMet will distribute the tower pre-

cipitation observation over the domain under an as-

sumed precipitation adjustment factor (a precipitation

lapse rate, of sorts). In contrast to the current model,

the natural system includes significant orographically

induced precipitation variability from western to east-

ern mountain slopes. MicroMet could resolve this by

implementing a high-resolution orographic precipita-

tion submodel (Hay and McCabe 1998; Pandey et al.

2000; Smith and Barstad 2004). In addition to oro-

graphic precipitation, other precipitation mechanisms

and structures are not currently accounted for within

MicroMet. For example, this version of MicroMet will

not simulate the magnitudes and distributions of pre-

cipitation associated with convective storms that are

FIG. 14. (a) The time evolution of daily average case 1 domain-

average air temperature. (b) Domain-average air temperature,

case 2 minus case 1, case 3 minus case 1, etc.

FIG. 15. (a) The time evolution of daily average case 1 domain-

average relative humidity. (b) Domain-average relative humidity,

case 2 minus case 1, case 3 minus case 1, etc.
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not captured by the station-observing network. It is

clear that MicroMet’s precipitation representation is its

greatest weakness. Unfortunately, a viable solution

(high resolution, computationally efficient, accurate,

and valid for both large-scale, orographic, and convec-

tive precipitation systems) has not been found. As part

of future MicroMet development efforts, improve-

ments to its precipitation representation will be a top

priority.

6. Conclusions

MicroMet interpolates irregularly distributed station

observations to a regularly spaced grid using the Barnes

objective analysis scheme. In addition to the station

interpolations, MicroMet employs corrections based on

known temperature–elevation, wind–topography, and

solar radiation–topography relationships. The resulting

procedures produce much-improved temperature, hu-

midity, wind, and incoming solar and longwave radia-

tion distributions when the spatial scale of topographic

variability is smaller than the distance between stations

or analyses-model grid points. In natural systems, this is

nearly always the case.

The development of a model designed to take avail-

able, relatively coarse-resolution atmospheric datasets

(e.g., meteorological station observations and/or atmo-

spheric analyses) and convert them, in physically real-

istic ways, to high-resolution forcing data, is expected to

lay the groundwork for substantial improvements to

existing hydrologic and ecologic models. This need is

particularly acute in regions where topographic varia-

tions lead to substantial variations in winter snow pre-

cipitation, snow-depth distribution, spring snowmelt,

spring and summer runoff rates, evaporation, transpi-

ration, and the wide range of associated energy and

moisture fluxes.

Acknowledgments. The authors thank Christopher

A. Hiemstra for his work and comments regarding an

early version of this model, Angus Goodbody and Nick

Rutter for their assistance with the meteorological sta-

tion datasets, Daniel L. Birkenheuer for providing the

LAPS data, and Christopher A. Hiemstra, Rudy King,

Lixin Lu, Francisco Munoz, Laurie Porth, and three

anonymous reviewers for their insightful comments on

early versions of this paper. This work was supported

by NASA Grants NAG5-11710, NNG04GP59G, and

NNG04HK191, NOAA Grant NA17RJ1228, and Na-

tional Science Foundation Grant 0229973.

REFERENCES

AMS, 1998: Weather analysis and forecasting: AMS Council

Policy Statement adopted on 17 August 1998. Bull. Amer.

Meteor. Soc., 79, 2161–2163.

Barnes, S. L., 1964: A technique for maximizing details in numeri-

cal weather map analysis. J. Appl. Meteor., 3, 396–409.

——, 1973: Mesoscale objective analysis using weighted time-

series observations. NOAA Tech. Memo. ERL NSSL-62, Na-

tional Severe Storms Laboratory, Norman, OK, 60 pp.

Box, G. E. P., and G. M. Jenkins, 1976: Time Series Analysis,

Forecasting, and Control. Holden-Day, 575 pp.

Bruland, O., G. E. Liston, J. Vonk, and A. Killingtveit, 2004:

Modelling the snow distribution at two high-Arctic sites at

Svalbard, Norway, and at a sub-Arctic site in central Norway.

Nordic Hydrol., 35, 191–208.

Buck, A. L., 1981: New equations for computing vapor pressure

and enhancement factor. J. Appl. Meteor., 20, 1527–1532.

Burridge, D. M., and A. J. Gadd, 1974: The Meteorological Office

operational 10 level numerical weather prediction model

(December 1974). U.K. Met. Office Tech. Notes 12 and 48, 57

pp.

Burrough, P. A., and R. A. McDonnell, 2000: Principles of Geo-

graphical Information Systems. Oxford University Press, 333 pp.

Dodson, R., and D. Marks, 1997: Daily air temperature interpo-

lation at high spatial resolution over a large mountainous

region. Climate Res., 8, 1–20.

Greene, E. M., G. E. Liston, and R. A. Pielke Sr., 1999: Simula-

tion of above treeline snowdrift formation using a numerical

snow-transport model. Cold Reg. Sci. Technol., 30, 135–144.

Hasholt, B., G. E. Liston, and N. T. Knudsen, 2003: Snow distri-

bution modelling in the Ammassalik region, South East

Greenland. Nordic Hydrol., 34 (1-2), 1–16.

Hay, L. E., and G. J. McCabe, 1998: Verification of the Rhea-

orographic-precipitation model. J. Amer. Water Res. Assoc.,

34, 103–112.

Hiemstra, C. A., G. E. Liston, and W. A. Reiners, 2002: Snow

redistribution by wind and interactions with vegetation at

upper treeline in the Medicine Bow Mountains, Wyoming,

USA. Arct. Antarct. Alp. Res., 34, 262–273.

——, ——, and W. A. Reiners, 2006: Observing, modelling, and

validating snow redistribution by wind in a Wyoming upper

treeline landscape. Ecol. Modell., in press.

Iziomon, M. G., H. Mayer, and A. Matzarakis, 2003: Downward

atmospheric longwave irradiance under clear and cloudy

skies: Measurement and parameterization. J. Atmos. Sol.-

Terr. Phys., 65, 1107–1116.

Jasper, K., J. Gurtz, and H. Lang, 2002: Advanced flood forecast-

ing in Alpine watersheds by coupling meteorological obser-

TABLE 4. Statistical information (square of the linear correla-

tion coefficient, r2, and rmse) corresponding to the simulations

represented by Figs. 14 and 15, and the cases identified in Fig. 10

(n � 365). Shown are comparisons of cases 2, 3, and 4 with case 1,

for daily averaged simulation data averaged over the Fig. 10 simu-

lation domain. Highlighted is the degradation in model solution

with a reduced number of meteorological stations in the domain.

Case 2 Case 3 Case 4

r2 Rmse r2 Rmse r2 Rmse

Tair (°C) 0.99 0.1 0.99 0.5 0.99 0.8

RH (%) 0.99 0.6 0.99 2.5 0.97 5.5

APRIL 2006 L I S T O N A N D E L D E R 233



vations and forecasts with a distributed hydrological model. J.

Hydrol., 267, 40–52.

Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A

Practitioner’s Guide in Atmospheric Science. John Wiley and

Sons, 240 pp.

Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive

Barnes objective map analysis scheme for use with satellite

and conventional data. J. Climate Appl. Meteor., 22, 1487–

1503.

Kunkel, K. E., 1989: Simple procedures for extrapolation of hu-

midity variables in the mountainous western United States. J.

Climate, 2, 656–669.

Kyle, H. L., P. E. Ardanuy, and E. J. Hurley, 1985: The status of

the Nimbus-7 Earth-Radiation-Budget data set. Bull. Amer.

Meteor. Soc., 66, 1378–1388.

Le Dizès, S., B. L. Kwiatkowski, E. B. Rastetter, A. Hope, J. E.

Hobbie, D. Stow, and S. Daescher, 2003: Modeling bio-

geochemical responses of tundra ecosystems to temporal and

spatial variations in climate in the Kuparuk River Basin

(Alaska). J. Geophys. Res., 108, 8165, doi:10.1029/

2001JD000960.

Liston, G. E., 2004: Representing subgrid snow cover heteroge-

neities in regional and global models. J. Climate, 17, 1381–1397.

——, and M. Sturm, 1998: A snow-transport model for complex

terrain. J. Glaciol., 44, 498–516.

——, and R. A. Pielke Sr., 2001: A climate version of the regional

atmospheric modeling system. Theor. Appl. Climatol., 68,

155–173.

——, and M. Sturm, 2002: Winter precipitation patterns in arctic

Alaska determined from a blowing-snow model and snow-

depth observations. J. Hydrometeor., 3, 646–659.

——, and J.-G. Winther, 2005: Antarctic surface and subsurface

snow and ice melt fluxes. J. Climate, 18, 1469–1481.

——, R. A. Pielke Sr., and E. M. Greene, 1999: Improving first-

order snow-related deficiencies in a regional climate model.

J. Geophys. Res., 104 (D16), 19 559–19 567.

——, J.-G. Winther, O. Bruland, H. Elvehøy, K. Sand, and L.

Karlöf, 2000: Snow and blue-ice distribution patterns on the

coastal Antarctic ice sheet. Antarct. Sci., 12, 69–79.

——, J. P. McFadden, M. Sturm, and R. A. Pielke Sr., 2002: Mod-

eled changes in arctic tundra snow, energy, and moisture

fluxes due to increased shrubs. Global Change Biol., 8, 17–32.

Ludwig, R., and W. Mauser, 2000: Modeling catchment hydrology

within a GIS based SVAT-model framework. Hydrol. Earth

Syst. Sci., 4, 239–249.

Meek, D. W., and J. L. Hatfield, 1994: Data quality checking for

single station meteorological variables. Agric. For. Meteor.,

69, 85–109.

Mitchell, K. E., and Coauthors, 2004: The multi-institution North

American Land Data Assimilation System (NLDAS): Utiliz-

ing multiple GCIP products and partners in a continental

distributed hydrological modeling system. J. Geophys. Res.,

109, D07S90, doi:10.1029/203JD003823.

Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting

through conceptual models. Part I—A discussion of prin-

ciples. J. Hydrol., 10, 282–290.

Pandey, G. R., D. R. Cayan, M. D. Dettinger, and K. P. Geortaka-

kos, 2000: A hybrid orographic plus statistical model for

downscaling daily precipitation in northern California. J. Hy-

drometeor., 1, 491–506.

Pielke, R. A., Sr., 2001: Influence of the spatial distribution of

vegetation and soils on the prediction of cumulus convective

rainfall. Rev. Geophys., 39, 151–177.

Pohl, S., P. Marsh, and G. E. Liston, 2006: Spatial–temporal vari-

ability in turbulent fluxes during spring snowmelt. Arct. Ant-

arct. Alp. Res., 38, in press.

Prasad, R., D. G. Tarboton, G. E. Liston, C. H. Luce, and M. S.

Seyfried, 2001: Testing a blowing snow model against distrib-

uted snow measurements at Upper Sheep Creek, Idaho,

USA. Water Resour. Res., 37, 1341–1357.

Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski,

2003: Breaking the cloud parameterization deadlock. Bull.

Amer. Meteor. Soc., 84, 1547–1564.

Ryan, B. C., 1977: A mathematical model for diagnosis and pre-

diction of surface winds in mountainous terrain. J. Appl. Me-

teor., 16, 571–584.

Shiklomanov, N. I., and F. E. Nelson, 2002: Active-layer mapping

at regional scales: A 13-year spatial time series for the Ku-

paruk region, north-central Alaska. Permafrost Periglac. Pro-

cesses, 13, 219–230.

Smith, R. B., and I. Barstad, 2004: A linear theory of orographic

precipitation. J. Atmos. Sci., 61, 1377–1391.

Taras, B., M. Sturm, and G. E. Liston, 2002: Snow–ground inter-

face temperatures in the Kuparuk River basin, arctic Alaska:

Measurements and model. J. Hydrometeor., 3, 377–394.

Thornton, P. E., S. W. Running, and M. A. White, 1997: Gener-

ating surfaces of daily meteorological variables over large

regions of complex terrain. J. Hydrol., 190, 214–251.

Vourlitis, G. L., J. Verfaillie, W. C. Oechel, A. Hope, D. Stow,

and R. Engstrom, 2003: Spatial variation in regional CO2

exchange for the Kuparuk River basin, Alaska over the sum-

mer growing season. Global Change Biol., 9, 930–941.

Walcek, C. J., 1994: Cloud cover and its relationship to relative

humidity during a spring midlatitude cyclone. Mon. Wea.

Rev., 122, 1021–1035.

Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An

Introductory Survey. Academic Press, 467 pp.

Walton, T. L., Jr., 1996: Fill-in of missing data in univariate coastal

data. J. Appl. Stat., 23, 31–39.

Westrick, K. J., P. Storck, and C. F. Mass, 2002: Description and

evaluation of a hydrometeorological forecast system for

mountainous watersheds. Wea. Forecasting, 17, 250–262.

Whitaker, A., Y. Alila, J. Beckers, and D. Toews, 2003: Applica-

tion of the Distributed Hydrological Soil Vegetation Model

to Redfish Creek, British Columbia: Model evaluation using

internal catchment data. Hydrol. Processes, 17, 199–224.

Winstral, A., K. Elder, and R. E. Davis, 2002: Spatial snow mod-

eling of wind-redistributed snow using terrain-based param-

eters. J. Hydrometeor., 3, 524–538.

Wood, E. F., D. P. Lettenmaier, X. Liang, B. Nijssen, and S. W.

Wetze, 1997: Hydrological modeling of continental-scale ba-

sins. Annu. Rev. Earth Planet. Sci., 25, 279–300.

234 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 7




