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Abstract. In this paper we develop a new method for 2-tuple linguistic multiple attribute decision
making, namely the 2-tuple linguistic generalized ordered weighted averaging distance (2LGO-
WAD) operator. This operator is an extension of the OWA operator that utilizes generalized means,
distance measures and uncertain information represented as 2-tuple linguistic variables. By using
2LGOWAD, it is possible to obtain a wide range of 2-tuple linguistic aggregation distance oper-
ators such as the 2-tuple linguistic maximum distance, the 2-tuple linguistic minimum distance,
the 2-tuple linguistic normalized Hamming distance (2LNHD), the 2-tuple linguistic weighted
Hamming distance (2LWHD), the 2-tuple linguistic normalized Euclidean distance (2LNED), the
2-tuple linguistic weighted Euclidean distance (2LWED), the 2-tuple linguistic ordered weighted
averaging distance (2LOWAD) operator and the 2-tuple linguistic Euclidean ordered weighted av-
eraging distance (2LEOWAD) operator. We study some of its main properties, and we further gen-
eralize the 2LGOWAD operator using quasi-arithmetic means. The result is the Quasi-2LOWAD
operator. Finally we present an application of the developed operators to decision-making regarding
the selection of investment strategies.

Keywords: distance measure, OWA operator, GOWA operator, 2-tuple linguistic variables, multi-
criteria decision making.

1. Introduction

The ordered weighted averaging (OWA) operator (Yager, 1988) is a well-known aggre-
gation operator that provides a parameterized family of aggregation operators, including
the maximum, the minimum, and the average. Since its appearance, the OWA opera-
tor has received increasing attention from many authors, and it has been applied across
many fields (Ahn, 2009; Baležentis and Baležentis, 2011; Beliakov, 2005; Bordogna and
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Fedrizzi, 1997; Calvo et al., 2002; Fodor et al., 1995; Karayiannis, 2000; Liu et al., 2010;
Liu and Zhang, 2011; Liu, 2008; Merigó, 2010; Merigó and Casanovas, 2010a, 2010b,
2010c, 2011a, 2011b; Merigó et al., 2010, 2011; Merigó and Gil-Lafuente, 2010, 2011a,
2011b; Merigó and Wei, 2011; Xu, 2005a; Yager, 1993, 2004, 2010; Zeng and Su, 2011;
Zeng, 2011; Zhou and Chen, 2010, 2011). In particular, the OWA operator is very useful
for aggregating information in decision making problems.

An interesting extension of the OWA operator is the generalized OWA (GOWA) op-
erator (Yager, 2004) that uses generalized means (Dyckhoff and Pedrycz, 1984) in the
OWA operator. The GOWA operator in fact generalizes many situations, including OWA
and its particular cases, the ordered weighted geometric (OWG) operator (Xu and Da,
2002), the ordered weighted quadratic averaging (OWQA) operator, and the generalized
mean. The GOWA operator can be further generalized by using quasi-arithmetic means
(Beliakov, 2005), resulting in the Quasi-OWA operator (Fodor et al., 1995; Karayiannis,
2000) that includes the GOWA operator. Further research on GOWA and Quasi-OWA op-
erators can be found in Beliakov (2005), Calvo et al. (2002), Fodor et al. (1995), Merigó
and Casanovas (2010a), Merigó and Gil-Lafuente (2009), Wang and Hao (2006), Zeng
and Su (2012), Zhou and Chen (2010, 2011).

A further interesting extension is the one that uses the OWA operator in distance mea-
sures. Recently, motivated by the idea of the OWA operator, Merigó and Gil-Lafuente
(2010) introduced a new decision making technique called the ordered weighted aver-
aging distance (OWAD) operator. It is an aggregation operator that uses OWA operator
and Hamming distance in the same formulation. The main advantage of this operator
is that we are able to underestimate or overestimate the selection process according to
the desired degree of optimism (i.e., the degree of orness). Therefore, we are able to
provide decision maker with an approach to the optimal choice according to his or her
interests. Another advantage of the OWAD is that it provides a parameterized family of
distance aggregation operators that ranges from the minimum to the maximum distance.
Therefore, they are able to provide a wide range of situations depending on the particular
attitude taken by the decision maker in the specific problem considered. Moreover, with
the OWAD, it is possible to establish an ideal, though hypothetic, alternative in order to
compare it with available options in the decision-making problem. As such, the optimal
choice is the alternative closest to the ideal one. Since its introduction, the OWAD opera-
tor has been receiving increasing attention. For example, Merigó and Casanovas (2010b)
extended this approach by using linguistic variables. Merigó and Casanovas (2010c) also
developed a generalization by using induced aggregation operators. Furthermore, they
also extended this approach by using the Euclidean distance (2011a) and the Minkowski
distance (2011b). Zeng and Su (2011) and Zeng (2011) studied the use of intuitionistic
fuzzy sets in the OWAD operator. Merigó and Gil-Lafuente (2011a) developed an applica-
tion in human resource management and in sport management (Merigó and Gil-Lafuente,
2011b). Yager (2010) generalized it by using norms. Merigó et al. (2011) presented an
extension by using similarity measures where the Hamming distance was included as a
particular case. Xu and Xia (2011) analyzed the use of hesitant fuzzy sets in the OWAD
operator.
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Usually, when using the OWAD operator, it is assumed that the available informa-
tion is clearly known and can be assessed with exact numbers. However, in the real life,
there are many decision situations wherein the information cannot be assessed precisely
in a quantitative form but may be in a qualitative one, for example, when evaluating the
“comfort” or “design” of a car, terms like “good”, “medium”, “bad” are usually used,
and evaluating a car’s speed, terms like “very fast”, “fast”, “slow” can be used instead
of numeric values (Bordogna and Fedrizzi, 1997). Thus, in such situations, the use of
linguistic approach is necessary. The use of the fuzzy linguistic approach (Zadeh, 1975)
provides a direct way to manage the uncertainty and model the linguistic assessments
by means of linguistic variables. In the literature, many aggregation operators and ap-
proaches have been developed to solve group decision-making problems with linguistic
information. In order to effectively avoid the loss and distortion of information in lin-
guistic information processing process, Herrera and Herrera-Viedma (2000) developed
2-tuple arithmetic average (2TAA) operator, 2-tuple weighted average (2TWA) operator,
2-tuple ordered weighted average (2TOWA) operator and extended 2-tuple weighted av-
erage (ET-WA) operator. Herrera et al. (2005) presented a group decision-making process
for managing non-homogeneous information. Herrera-Viedma et al. (2005) presented a
model of consensus support system to assist the experts in all phases of the consen-
sus reaching process of group decision-making problems with multi-granular linguistic
preference relations. Herrera et al. (2008) proposed a fuzzy linguistic methodology to
deal with unbalanced linguistic term sets. Wang (2009) presented a 2-tuple fuzzy linguis-
tic evaluation model for selecting appropriate agile manufacturing system in relation to
MC production. Wei (2010a) proposed a method for multiple attribute group decision-
making based on the ET-WG and ET-OWG operators with 2-tuple linguistic information.
Wei (2011a) proposed the GRA-based linear-programming methodology for multiple at-
tribute group decision making with 2-tuple linguistic assessment information. Merigó
et al. (2010) developed the belief structure-linguistic ordered weighted averaging (BS-
LOWA), the BS-linguistic hybrid averaging (BS-LHA) and a wide range of particular
cases. Liu (2009) presented an approach based on 2-tuple is to solve the hybrid multiple
attribute decision making problem with weight information unknown. Wei (2010b) ex-
tended the TOPSIS method for 2-tuple linguistic multiple attribute group decision making
with incomplete weight information. Wei et al. (2010) developed some models for multi-
ple attribute group decision-making with 2-tuple linguistic assessment information. Wei
(2011b) utilized the gray relational analysis method for 2-tuple linguistic multiple at-
tribute group decision-making with incomplete weight information. Xu and Wang (2011)
developed some 2-tuple linguistic power aggregation operators. Wang et al. (2009) em-
ployed GOWA for intuitionistic fuzzy sets.

The aim of this paper is to present a new method for 2-tuple linguistic multiple at-
tribute decision making based on the OWAD and the GOWA operators. For doing so, we
develop the 2-tuple linguistic generalized OWA distance (2LGOWAD) operator. It is an
aggregation operator that uses the main characteristics of the GOWA and OWAD opera-
tors. It uses generalized means, distance measures and uncertain information represented
in the form of 2-tuple linguistic assessment information in the same formulation. With
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this generalization, we obtain a wide range of 2-tuple linguistic aggregation distance
operators such as the 2-tuple linguistic maximum distance, the 2-tuple linguistic mini-
mum distance, the 2-tuple linguistic normalized Hamming distance (2LNHD), the 2-tuple
linguistic weighted Hamming distance (2LWHD), the 2-tuple linguistic normalized Eu-
clidean distance (2LNED), the 2-tuple linguistic weighted Euclidean distance (2LWED),
the 2-tuple linguistic ordered weighted averaging distance (2LOWAD) operator and the
2-tuple linguistic Euclidean ordered weighted averaging distance (2LEOWAD) opera-
tor. We study some of its main properties, as well as different families of 2LGOWAD
operators, including the median-2LGOWAD, the olympic-2LGOWAD and the centered-
2LGOWAD.

We present a further generalization of the 2LGOWAD operator by using quasi-
arithmetic means. We refer to this operator as the Quasi-2LOWAD operator. This gen-
eralization includes the 2LGOWAD operator and many other situations. We also develop
an application of the new approach in a decision making problem on selection of in-
vestments. We demonstrate that depending on the particular type of 2LGOWAD operator
used, the results may lead to different decisions.

This paper is organized as follows. In Section 2, we briefly review some basic concepts
about linguistic approach, the OWA operator, the OWAD and GOWA operators. Sec-
tion 3 presents the 2LGOWAD operator. Section 4 analyzes different families of 2LGO-
WAD operators. Section 5 introduces the Quasi-2LOWAD operator, whereas Section 6
develops a numerical example of the new approach. Finally, in Section 7 draws the main
conclusions of the paper.

2. Preliminaries

This section briefly reviews the linguistic approach, the OWA operator, the OWAD oper-
ator, and the GOWA operator.

2.1. Linguistic Approach

Let S = {s0, s1, . . . , sg } be a linguistic term set with odd cardinality. Any label, si

represents a possible value for a linguistic variable, and it should satisfy the following
characteristics:

1. A negation operator: Neg(si) = sj , such that j = g − i (g is the Cardinality).
2. The set is ordered: si � sj if and only if i � j. Therefore, there exists a mini-

mization and a maximization operator. For example, a set of nine terms S could be
given as follows (Xu and Da, 2010; Xu, 2004; Xu, 2006):

S =
{
s0 = extremely poor; s1 = very poor; s2 = poor;

s3 = slightly poor; s4 = fair; s5 = slightly good;

s6 = good; s7 = very good; s8 = extremely good
}
. (1)
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Herrera and Martínez (2000) developed the 2-tuple fuzzy linguistic representation
model based on the concept of symbolic translation. It is used for representing the lin-
guistic assessment information by means of a 2-tuple (si, αi), where si is a linguistic
label from predefined linguistic term set S and αi is the value of symbolic translation,
and αi ∈ [−0.5, 0.5).

DEFINITION 1 (Herrera and Martínez, 2000). Let β be the result of an aggregation of the
indexes of a set of labels assessed in a linguistic term set S, i.e., the result of a symbolic
aggregation operation. β ∈ [0, g], being g the cardinality of S. Let i = round(β) and
α = β − i be two values such that i ∈ [0, g] and α ∈ [−0.5, 0.5), then α is called a
symbolic translation.

DEFINITION 2 (Herrera and Martínez, 2000). Let S = {s0, s1, . . . , sg } be a linguistic
term set and β ∈ [0, g] be a value representing the result of a symbolic aggregation
operation, then the 2-tuple that expresses the equivalent information to β is obtained with
the following function:

Δ: [0, g] → S × [−0.5, 0.5), (2)

Δ(β) = (si, αi), with
{

si, i = round(β),
αi = β − i, αi ∈ [−0.5, 0.5).

(3)

where round(·) is the usual round operation, si has the closest index label to β and αi is
the value of the symbolic translation.

DEFINITION 3 (Herrera and Martínez, 2000). Let S = {s0, s1, . . . , sg } be a linguistic
term set and (si, αi) be a 2-tuple. There is always a function Δ−1 can be defined, such
that, from a 2-tuple (si, αi) it return its equivalent numerical value β ∈ [0, g], which is

Δ−1: S × [−0.5, 0.5) → [0, g], (4)

Δ−1(si, αi) = i + αi = β. (5)

From Definitions 1 and 2, we can conclude that the conversion of a linguistic term into
a linguistic 2-tuple consists of adding a value 0 as symbolic translation: Δ(si) = (si, 0).

DEFINITION 4 (Herrera and Martínez, 2000). Let a = (sk, αk) and b = (sl, αl) be two
2-tuples, they should have the following properties:

1. If k < l, then a < b.
2. If k = l, then

(a) If αk = αl, then a = b;
(b) If αk < αl, then a < b;
(c) If αk > αl, then a > b.
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Different approaches have been suggested for dealing with 2-tuple linguistic infor-
mation (Baležentis and Baležentis, 2011; Cabrerizo et al., 2005; Herrera and Herrera-
Viedma, 2000; Herrera et al., 2008; Liu, 2009; Merigó et al., 2010; Wang and Hao, 2006;
Wei, 2010a; Xu, 2005b). In order to measure the deviation between 2-tuple linguistic
variables, Liu (2009) defined a linguistic distance as follows.

DEFINITION 5. Let (sk, αk) and (sl, αl) be two 2-tuple linguistic variables, then

d
(
(sk, αk), (sl, αl)

)
=

|(k + αk) − (l + αl)|
g

(6)

is called a distance between 2-tuple linguistic (sk, α1) and (sl, α2).

2.2. The OWA Operator

The OWA operator (Yager, 1988) provides a parameterized family of aggregation oper-
ators that include the maximum, the minimum and the average criteria as special cases.
This operator can be defined as follows.

DEFINITION 6. An OWA operator of dimension n is a mapping OWA: Rn → R that has
an associated weighting W with wj ∈ [0, 1] and

∑n
j=1 wj = 1 such that:

OWA(a1, a2, . . . , an) =
n∑

j=1

wjbj , (7)

where bj is the jth largest of the ai.

2.3. The GOWA Operator

The generalized OWA (GOWA) operator (Fodor et al., 1995; Karayiannis, 2000) gen-
eralizes a wide range of aggregation operators that includes the OWA operator with its
particular cases, the OWG operator, the ordered weighted harmonic averaging (OWHA)
operator and the OWQA operator. It can be defined as follows.

DEFINITION 7. A GOWA operator of dimension n is a mapping GOWA: Rn → R that
has an associated weighting W with wj ∈ [0, 1] and

∑n
j=1 wj = 1 such that:

GOWA(a1, a2, . . . , an) =
( n∑

j=1

wjb
λ
j

)1/λ

, (8)

where bj is the jth largest of the ai, and λ is a parameter such that λ ∈ (−∞, +∞).

Note that it is possible to distinguish between descending (DGOWA) and ascending
(AGOWA) orders. The GOWA operator is commutative, monotonic, bounded and idem-
potent. It can also be demonstrated that it has as special cases the maximum, the minimum
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and the generalized mean. If we look to different values of the parameter λ, we can also
obtain other special cases such as the usual OWA operator, the geometric OWA (OWGA)
operator and the quadratic OWA (OWQA) operator.

2.4. The OWAD Operator

Recently, Merigó and Gil-Lafuente (2010) introduced a new index for decision mak-
ing using the OWA operator to calculate Hamming distance called the ordered weighted
averaging distance (OWAD) operator. For two sets A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bn}, the OWAD operator can be defined as follows.

DEFINITION 8. An OWAD operator of dimension n is a mapping OWAD: Rn ×Rn → R

that has an associated weighting W with wj ∈ [0, 1] and
∑n

j=1 wj = 1 such that:

OWAD
(

〈a1, b1〉, 〈a2, b2〉, . . . , 〈an, bn〉
)

=
n∑

j=1

wjdj , (9)

where dj is the jth largest of the |ai − bi|.

The OWAD operator is commutative, monotonic, bounded and idempotent. This dis-
tance operator provides a parameterized family of aggregation operators ranging from the
minimum to the maximum distance.

When using the OWAD operator, it is assumed that the available information includes
exact numbers or crisp numbers. In the following, we shall develop the 2-tuple linguistic
generalized ordered weighted averaging distance (2LGOWAD) operator.

3. The 2LGOWAD Operator

The 2-tuple linguistic generalized ordered weighted averaging distance (2LGOWAD) op-
erator is an extension of the OWAD operator that uses generalized means and 2-tuple
linguistic variables in the aggregation. The 2LGOWAD provides a model that is able to
assess the information in situations with high degree of uncertainty by using 2-tuple lin-
guistic variables. Moreover, by using the generalized means, we obtain a generalization
that includes a wide range of 2-tuple linguistic aggregation distance operators, such as
the 2-tuple linguistic maximum distance, the 2-tuple linguistic minimum distance, the
2LNHD, 2LWHD, 2LNED, 2LWED, 2LOWAD and 2LEOWAD operators. It can be de-
fined as follows.

DEFINITION 9. Let X = {xi | xi = (sxi , αxi), i = 1, 2, . . . , n} and Y = {yi | yi =
(syi , αyi), i = 1, 2, . . . , n} (sxi , syi ∈ S, αxi , αyi ∈ [−0.5, 0.5), i ∈ N) be two sets
of linguistic 2-tuples, then the 2-tuple linguistic generalized ordered weighted averaging
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distance (2LGOWAD) operator can be defined as follows:

2LGOWAD
(
(x1, y1), . . . , (xn, yn)

)
=

( n∑
j=1

wjd
λ
j

)1/λ

, (10)

where wj is the weighting vector such that wj ∈ [0, 1] and
∑n

j=1 wj = 1, dj is the jth
largest of the d(xi, yi) and d(xi, yi) is the argument variable represented in the form of
distance defined by (6), and λ is a parameter such that λ ∈ (−∞, +∞).

EXAMPLE 1. Let S be a linguistic term set defined by (1), X = {x1, x2, x3, x4} =
{(s1, α0.2), (s4, α0.4), (s5, α−0.2), (s6, α0)} and Y = {y1, y2, y3, y4} = {(s4, α0.3),
(s4, α−0.4), (s7, α−0.3), (s2, α0.2)} be two sets of linguistic 2-tuples, then d(x1, y1) =
d((s1, α0.2), (s4, α0.3)) = |(1+0.2)−(4+0.3)|

8 = 0.388. Similarly, we have d(x2, y2) =
0.1, d(x3, y3) = 0.238, d(x4, y4) = 0.475.

Assume the following weighting vector W = (0.3, 0.2, 0.4, 0.1) and without loss
of generality, let λ = 2, if we calculate the distance between X and Y by using the
2LGOWAD operator, then we have:

2LGOWAD(X, Y ) =
(
0.3 × 0.4752 + 0.2 × 0.3882 + 0.4 × 0.2382

+ 0.1 × 0.12
)1/2 = 0.349.

From a generalized perspective of the reordering step, we can distinguish between
the descending 2LGOWAD (D2LGOWAD) operator and the ascending 2LGOWAD
(A2LGOWAD) operator by using wj = w∗

n−j+1, where wj is the jth weight of the
D2LGOWAD and w∗

n−j+1 the jth weight of the A2LGOWAD operator.
In the following, we shall study some desirable properties of the 2LGOWAD operator.

Theorem 1 (Commutativity). If f is the 2LGOWAD operator, then

f
(
(x1, y1), . . . , (xn, yn)

)
= f

(
(u1, v1), . . . , (un, vn)

)
, (11)

where ((u1, v1), . . . , (un, vn)) is any permutation of the arguments ((x1, y1), . . . , (xn, yn)).

Theorem 2 (Monotonicity). Assume f is the 2LGOWAD operator, if d(xi, yi) �
d(x′

i, y
′
i) for all i, then

f
(
(x1, y1), . . . , (xn, yn)

)
� f

(
(x′

1, y
′
1), . . . , (x

′
n, y′

n)
)
. (12)

Theorem 3 (Boundedness). Assume f is the 2LGOWAD operator, then

min
i

(
d(xi, yi)

)
� f

(
(x1, y1), . . . , (xn, yn)

)
� max

i

(
d(xi, yi)

)
. (13)
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Theorem 4 (Idempotency). Assume f is the 2LGOWAD operator, if d(xi, yi) = a for all
i, then

f
(
(x1, y1), . . . , (xn, yn)

)
= a. (14)

4. Families of 2LGOWAD Operators

By choosing a different manifestation of the weighting vector and the parameter λ in the
2LGOWAD operator, we are able to obtain different types of 2-tuple linguistic aggrega-
tion distance operators.

REMARK 1. When λ = 1, the 2LGOWAD operator becomes the 2LOWAD operator.

2LGOWAD
(
(x1, y1), . . . , (xn, yn)

)
=

n∑
j=1

wjdj . (15)

REMARK 2. When λ → 0, we form the 2LOWGD operator.

2LGOWAD
(
(x1, y1), . . . , (xn, yn)

)
=

n∏
j=1

d
wj

j . (16)

REMARK 3. When λ = −1, we get the 2LOWHAD operator.

2LGOWAD
(
(x1, y1), . . . , (xn, yn)

)
=

1∑n
j=1

wj

dj

. (17)

REMARK 4. When λ = 2, we get the 2LEOWAD operator.

2LGOWAD
(
(x1, y1), . . . , (xn, yn)

)
=

( n∑
j=1

wjd
2
j

)1/2

. (18)

Note that in all these cases, if wj = 1/n, we get the 2-tuple linguistic average situation
such as the 2-tuple linguistic normalized Hamming distance (2LNHD) and the 2-tuple
linguistic normalized Euclidean distance (2LNED), and if the ordered position of dj is
the same than the position of d(xi, yi), we get the 2-tuple linguistic weighted average
type including the 2-tuple linguistic weighted Hamming distance (2LWHD) and the 2-
tuple linguistic weighted Euclidean distance (2LWED).

Note that other families could be obtained by using different values in the parameter λ.
Especially, we find the 2-tuple linguistic maximum distance when λ → ∞ and the 2-tuple
linguistic minimum distance when λ → −∞.

REMARK 5. If we analyse the weighting vector, then, we find the following cases:
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• The 2-tuple linguistic maximum distance (w1 = 1 and wj = 0, for all j �= 1).
• The 2-tuple linguistic minimum distance (wn = 1 and wj = 0, for all j �= n).
• The 2-tuple linguistic generalized distance (wj = 1/n for all j).
• The step-2LGOWAD operator (wk = 1 and wj = 0, for all j �= k).
• The centered-2LGOWAD operator (if it is symmetric, strongly decaying from the

center to the maximum and the minimum, and inclusive).
• The olympic-2LGOWAD operator (w1 = wn = 0 and for all others wj = 1/

(n − 2)).
• The median-2LGOWAD operator (if n is odd we assign w(n+1)/2 = 1 and wj = 0

for all others. If n is even, then we assign wn/2 = w(n/2)+1 = 0.5).
• Etc.

REMARK 6. We could develop a lot of other families of 2LGOWAD weights in a similar
way as it has been developed in a lot of studies (Merigó and Casanovas, 2010a, 2010b,
2011b; Merigó and Gil-Lafuente, 2010; Merigó et al. 2011; Xu and Chen, 2008; Zeng
and Su, 2011).

5. Quasi-2LOWAD Operators

The 2LGOWAD can be generalized by using quasi-arithmetic means in a similar way
as it was done by Fodor et al. (1995), Merigó and Casanovas (2010a, 2011b). We call
it the Quasi-2LOWAD operator. Its main advantage is that it provides a more general
formulation because it includes the 2LGOWAD operator as a particular case. It can be
defined as follows.

DEFINITION 10. Let Ŝ be a 2-tuple linguistic set. A Quasi-2LOWAD operator of dimen-
sion n is a mapping Q2LOWAD: Ŝn × Ŝn → R that has an associated weighting vector
W of dimension n such that the sum of the weights is 1 and wj ∈ [0, 1], then:

Q2LOWAD
(
(x1, y1), . . . , (xn, yn)

)
= g−1

( n∑
j=1

wjg(dj)
)

, (19)

where dj is the jth largest of the d(xi, yi) and d(xi, yi) is the argument variable rep-
resented in the form of distance defined by (6), and g is a general continuous strictly
monotonic function.

Analyzing the reordering step, we also find that the weights of the ascending and
descending versions are related by wj = w∗

n−j+1, where wj is the jth weight of the
QD2LOWAD and w∗

n−j+1 is the jth weight of the QA2LOWAD operator. As we can
see, the 2LGOWAD operator is a particular case of the Q2LOWAD when g(dj) = dλ

j .
Note that all the properties and particular cases discussed with respect to the 2LGO-
WAD operator also subject to this generalization. Thus, we could analyze a wide range
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of families of Quasi-2LOWAD operators, including the Quasi-olympic-Quasi-2LOWAD,
the Quasi-S-Quasi-2LOWAD, and the Quasi-median-Quasi-2LOWAD. Note also that the
Quasi-2LOWAD operator includes many other situations such as the exponential-Quasi-
2LOWAD and the radical-Quasi-2LOWAD.

6. Decision Making with the 2LGOWAD Operator

In the following, we present a numerical example of the new approach in a decision
making problem. We study a problem of investment selection where a decision maker is
looking for the optimal strategy. We analyze different particular cases of the 2LGOWAD
operator such as the 2LNHD, the 2LNED, the 2LOWAD and the 2LEOWAD. Note that
with this analysis, we obtain ”optimal” choices that depend on the aggregation operator
used in each particular case. Then, we see that each aggregation operator may lead to
different results and decisions. The main advantage of the 2LGOWAD is that it includes
a wide range of particular cases, reflecting different potential factors to be considered in
the decision making problem depending on the situation found in the analysis. Thus, the
decision maker is able to consider a lot of possibilities and select the aggregation operator
that is in closest accordance with his interests.

Assume that a company wants to invest some money in a region. Initially, they con-
sider five possible investment alternatives.

• A1 = Invest in the European market.
• A2 = Invest in the American market.
• A3 = Invest in the Asian market.
• A4 = Invest in the African market.
• A5 = Do not invest money.

In order to evaluate these investments, the investor has brought together a group of
experts. This group considers that each investment alternative can be described with the
following characteristics:

• C1 = Benefits in the short term.
• C2 = Benefits in the mid term.
• C3 = Benefits in the long term.
• C4 = Risk of the investment.
• C5 = Other variables.

Due to the fact that the general characteristics are very imprecise because they contain
a lot of particular aspects, the experts cannot use numerical values in the analysis. Instead,
they use linguistic variables to evaluate the general results obtained for each candidate
depending on the characteristic considered. In order to do so, they establish the following
linguistic scale.

S =
{
s0 = extremely poor; s1 = very poor; s2 = poor;

s3 = slightly poor; s4 = fair; s5 = slightly good;

s6 = good; s7 = very good; s8 = extremely good
}
.
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Table 1

Available investment strategies

C1 C2 C3 C4 C5

A1 (s6, α0.2) (s5, α0.3) (s4, α0.3) (s3, α0.2) (s5, α0.1)

A2 (s4, α−0.2) (s4, α0) (s6, α0.1) (s2, α0.4) (s5, α0.2)

A3 (s4, α0.1) (s3, α−0.2) (s5, α−0.3) (s1, α0.2) (s4, α0.1)

A4 (s5, α−0.2) (s3, α0.1) (s6, α0) (s3, α0.4) (s7, α0.2)

A5 (s2, α0.2) (s5, α0.2) (s3, α−0.2) (s5, α0.1) (s4, α0.3)

Table 2

Ideal investment strategy

C1 C2 C3 C4 C5

I (s7, α0.2) (s6, α0.3) (s7, α0.2) (s6, α0.3) (s7, α0.4)

Table 3

Aggregated results

Max Min 2LNHD 2LNED 2LWHD 2LWED 2LOWAD 2LEOWAD

A1 0.388 0.125 0.258 0.281 0.274 0.293 0.231 0.256

A2 0.488 0.138 0.323 0.345 0.308 0.329 0.288 0.312

A3 0.634 0.288 0.413 0.431 0.403 0.423 0.378 0.392

A4 0.4 0.025 0.248 0.284 0.22 0.268 0.21 0.255

A5 0.625 0.138 0.37 0.421 0.346 0.381 0.321 0.374

After careful analysis of these characteristics, the experts have given the following
information shown in Table1. Note that the results are linguistic values represented with
the 2-tuple linguistic approach.

The experts establish the values of an ideal investment as it is shown in Table 2. This
ideal investment represents the optimal results for the company.

In this problem, the group of experts considers that the general attitudinal character
of the company is given by the following weighting vector: W = (0.1, 0.2, 0.2, 0.2, 0.3).
With this information, it is possible to aggregate the available information in order to take
a decision. The method consists in comparing the available investments with the ideal
one by using the 2LGOWAD operator and its particular cases. The results are shown in
Table 3.

As we can see, for most of the cases the best alternative is A4 because it seems to
be the one with the lowest distance to the ideal investment strategy. However, for some
particular situations, we may find another optimal choice. Therefore, it is of interest to
establish an ordering of the investments for each particular case. Note that the best choice
is the one with the lowest distance. The results are shown in Table 4.
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Table 4

Ordering of the investment strategies

Ordering Ordering

Max A1 � A4 � A2 � A5 � A3 2LWHD A4 � A1 � A2 � A5 � A3

Min A4 � A1 � A2 � A5 � A3 2LWED A4 � A1 � A2 � A5 � A3

2LNHD A4 � A1 � A2 � A5 � A3 2LOWAD A4 � A1 � A2 � A5 � A3

2LNED A1 � A4 � A2 � A5 � A3 2LEOWAD A4 � A1 � A2 � A5 � A3

As we can see, depending on the aggregation operator used, the ordering of the invest-
ment strategies may be different. Therefore, the decision concerning which investment
strategy select may be also different.

7. Conclusions

We have presented the 2LGOWAD operator as an aggregation operator that uses the main
characteristics of the GOWA and OWAD operators. We analyzed it as an extension of the
OWAD operator that uses generalized means and uncertain information represented in the
form of 2-tuple linguistic variables. This operator is very useful because it generalizes the
GOWA operator for uncertain situations in which it is not possible to use exact numbers.
Moreover, it includes many different types of 2-tuple linguistic aggregation distance op-
erators, such as the 2LNHD, the 2LNED, the 2LWHD, the 2LWED, the 2LOWAD and
2LEOWAD operators.

We have also introduced the Quasi-2LOWAD operator. This operator is a further gen-
eralization of the 2LGOWAD operator that includes the use of quasi-arithmetic means.
This generalization is more complete because it includes the 2LGOWAD operator as a
special type as well as many other operators.

We have presented an application of this new approach to a decision making problem
regarding the selection of investment strategies. The main advantage of the 2LGOWAD
operator is that it makes it possible to consider a wide range of situations depending on
the interests of the decision maker. Depending on the particular operator used, the results
and decisions may be different.

In future research, we expect to develop further generalizations by considering other
types of the GOWA operator and applying them to other decision making problems. Par-
ticularly, the hybrid multi-criteria decision making methods (Fouladgar et al., 2012a,
2012b; Ginevičius et al., 2012) are to be developed and employed.
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Sutvarkytojo svertinio vidurkio operatoriumi ir atstumo funkcijomis
pagr ↪istas metodas daugiakriteriniam sprendim ↪u priėmimui
naudojantis dvinariais lingvistiniais kintamaisiais

Shouzhen ZENG, Tomas BALEŽENTIS, Chonghui ZHANG

Šiame straipsnyje pristatomas metodas, skirtas daugiakriteriniam sprendim ↪u priėmimui remian-
tis dvinariais kintamaisiais išreikšta lingvistine informacija, t.y. apibendrintasis dvinario lingvis-
tinio sutvarkytojo svertinio vidurkio atstumo (2LGOWAD) operatorius. Šis operatorius yra sutvar-
kytojo svertinio vidurkio (OWA) plėtinys, leidžiantis atsižvelgti ↪i apibendrintus vidurkio matus, at-
stumo funkcijas ir neapibrėžt ↪a informacij ↪a, išreikšt ↪a dvinariais lingvistiniais kintamaisiais. Atskiri
2LGOWAD operatoriaus atvejai yra: dvinaris lingvistinis maksimalus atstumas, dvinaris lingvisti-
nis minimalus atstumas, normalizuotas dvinaris lingvistinis Hamming atstumas, svertinis dvinaris
lingvistinis Hamming atstumas, normalizuotas dvinaris lingvistinis Euklido atstumas, svertinis dvi-
naris lingvistinis Euklido atstumas, dvinaris lingvistinis sutvarkytasis svertinis vidutinis atstumas,
dvinaris lingvistinis sutvarkytasis Euklidos vertinis vidutinis atstumas. Straipsnyje aptariamos pa-
grindinės ši ↪u operatori ↪u ypatybės ir taikant kvazi-vidurk↪i apibendrinamas 2LGOWAD operatorius.
Pateikiamas nauj ↪uj ↪u operatori ↪u taikymo sprendim ↪u priėmimo (investavimo strategijos pasirinkimo)
procese pavyzdys.




