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ABSTRACT In today’s Internet of Things research community, Cloud-fog framework is a potential

technology for Internet of Things to support energy consumption of an IoT system and delay-sensitive

applications that require almost real-time responses. However, how to schedule the computational tasks

which is to offload to fog nodes or cloud nodes is not fully addressed until now. In this paper, in order to

solve the complex task scheduling problem with some priority constraints of IoT applications taking into

account the energy consumption and reducing energy consumption on the condition of satisfying the mix

deadline, we formulate an associated task scheduling problem into a constrained optimization problem in

cloud-fog environment. A laxity and ant colony system algorithm(LBP-ACS) is put forward to tackle this

problem. In this algorithm, a strategy of task scheduling is not only considering the priority of a task, but

also its finished deadline. In order to handle the sensitivity of task delay, the laxity-based priority algorithm

is adopted to construct a task scheduling sequence with reasonable priority. Meanwhile, to minimize the

total energy consumption, the constrained optimization algorithm based on ant colony system algorithm is

used to obtain the approximate optimal scheduling scheme in the global. Compared with other algorithms,

the experimental results show that the proposed algorithm can effectively reduce the energy consumption of

processing all tasks, while ensuring reasonable scheduling length and reducing the failure rate of associated

tasks scheduling with mixed deadlines.

INDEX TERMS IoT, energy consumption, task scheduling, ant colony algorithm, laxity.

I. INTRODUCTION

Due to potential computation, storage and processing capac-

ity, cloud computing becomes primary computing paradigm

to supported the IoT scenario and to leverage a massive

heterogeneous set of devices can access internet anywhere,

anytime [1]. In the coming era of the Internet of Things (IoT),

it is estimated that above 50 billions of devices and smart

objects with huge capacity for collecting and exchanging

information intelligently will be interconnected in 2020 [2].

These large deal of devices will generate a tidal wave of data

or service requests in IoT Scenario. Generally, many data

stored to cloud where the resource is deployed far away from

the end users over the Internet will not only pose heavy bur-

den to network performance and network bandwidth but also

result in unbearable transmission latency which is degraded

The associate editor coordinating the review of this article and approving
it for publication was Shuiguang Deng.

quality of service (QoS) to end users [3]–[5]. Especially,

it is not providing low-latency guaranteed to delay-sensitive

applicationswhich are very common in IoT scenarios [6]–[8].

Recently, Fog computing, which is proposed by Cisco

in 2012 [9], is great attention for its potential in satisfying

the requirements not yet well-addressed by the current Cloud

Computing. The fog computing paradigm extends the com-

putational resources available in the Cloud data center to

the edge of the network as desired by IoT solutions. Fog

computing aims to process part of the applications or IoT

data locally on network edge, which can reduce the burden

of data transferred via Internet and meet the needs of users.

In the Cloud-Fog framework, Fog nodes are deployed at

the edge of network, such as forest park, bus terminal and

shopping center. Fog node can to pre-store cloud data and

handle request between the IoT devices and the cloud data

center. In order to reducing the delay and meet the needs of

delay-sensitive applications, request will be processed in fog
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nodes that is one or two hops to the data sources, while latency

tolerant and large-scale tasks can still be efficiently processed

by the cloud.

A. MOTIVATION

In the IoT scenario represented by the intelligent transporta-

tion system, smart devices such as vehicles, traffic lights,

mobile phones, sensors, CCTV surveillance cameras are con-

nected to the fog device through a wireless network, and

the fog device is connected to the cloud server through the

optical fiber. The fog node receives the data in the traffic

environment through the sensor, thereby detecting the speed

of the nearby pedestrians and vehicles, and further interacting

with the adjacent signal lights. Based on the above process-

ing information, the fog device sends a warning message

to the vehicle to avoid collision or congestion by adjusting

the adjacent green light period. At the same time, smart

devices collect traffic information such as peak hours and

emergency locations to the cloud server for statistical anal-

ysis, and finally report the road condition information to the

user. Throughout the process, the vehicle receives warning

messages, smart lights to adjust the period and the user’s

smart device to receive traffic information, where the dead-

lines for these application tasks are different, and subtasks

have dependencies. Through the cooperation of fog nodes

and cloud nodes, which process collaboratively of applica-

tions with interdependence and mixing deadlines to meet low

latency. At the same time, cloud server analyse, process traffic

information and provide road condition information, finally

ensuring traffic safety and stability. At the same time, taking

into account the general trend of global energy consumption

soaring, low energy consumption computing needs to be

resolved. Optimizing energy consumption, on the one hand,

it can reduce production costs. On the other hand, it can

save energy and reduce emissions. Finally, it can achieve

green computing and protect the environment. In the above

scenario, the resources are dynamically utilized to ensure

that the hybrid deadlines of DAG tasks are met through the

collaborative calculation of cloud resources. Therefore, this

paper will study the problem of optimized energy consump-

tion scheduling for interdependent taskswithmixed deadlines

in the cloud and fog computing system.

In this paper, we focus on associated task scheduling prob-

lem in cloud-fog environment. For the scheduling problems

of complex tasks with priority constraints in IoT applications,

a task scheduling strategy is proposed, which is the combina-

tion of laxity-based priority algorithm and ant colony system.

In the process of calculating the priority, the limitation of the

task deadline is considered. In order to enhance the sensitivity

of task delay, the laxity-based priority algorithm is adopted to

construct a task scheduling sequence with reasonable priority.

At the same time, in order to minimize the total energy

consumption, the constrained optimization algorithm based

on ant colony system algorithm is used to obtain the approx-

imate optimal scheduling scheme in the global. Compared

with other algorithms, the experimental results show that the

proposed algorithm can effectively reduce the energy con-

sumption of processing all tasks, while ensuring reasonable

scheduling length and reducing the failure rate of associated

tasks scheduling with mixed deadlines.

B. THE CONTRIBUTIONS OF THIS PAPER

The contributions of this paper are as follows:
- When calculating the associated task priority, in order

to enhance the sensitivity of task delay, we proposed

the laxity-based priority algorithm to construct a task

scheduling sequence with reasonable priority.

- In order to minimize the total energy consumption,

the constrained optimization algorithm based on ant

colony system algorithm is used to obtain the approx-

imate optimal scheduling scheme in the global.

- Compared with other algorithms, the experimental

results show that the proposed algorithm can effectively

reduce the energy consumption of processing all tasks,

while ensuring reasonable scheduling length and reduc-

ing the failure rate of associated tasks scheduling with

mixed deadlines.
The remainder of the paper is organized as follows:

Section II presents a survey of related work about associated

task scheduling in cloud-fog environments. In section III,

we firstly introduce the system architecture. Next, we for-

mulate a mathematical formulation for associated tasks

scheduling policy. Finally, the associated task scheduling

strategy based on laxity and ant colony system is proposed.

We describe some experimental results in section IV, fol-

lowed by our conclusions in Section V.

II. RELATED WORK

As a complement to cloud computing, fog computing is a

novel introduced paradigm, the number of task scheduling

mechanisms specifically aiming at cloud and fog computing

framework is quite limited so far. Although there has been a

lot of work on task scheduling for cloud computing, it cannot

be directly applied to the cloud computing framework.

From the viewpoint of IoT applications, Zhao et al. [10]

pointed out that it is necessary to consider how to deploy

the fog node resources for hybrid computing scenario, so as

to realize efficient coordination of cloud and fog computing

resources and how to implement appropriate scheduling of

tasks and resources according to business needs.

In the cloud-fog architecture, in order to minimizing ser-

vice delay and ensuring service quality, Souza et al. [11], [12]

transform the QoS-aware service allocation problem into an

integer optimization problem.

Xiuli et al. [13] introduced the cloud and fog network

architecture into the field of car networking to solve the

problem of high latency and not to support for mobility and

location awareness in today’s car networking. An improved

particle swarm optimization algorithm is proposed to reduce

delay and improve quality of service QoS. Reference [14]

proposed an architecture based on fog regions and clouds, and

designed an efficient task schedulingmechanism for heuristic
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scheduling algorithm to minimize the task completion time

and improve user experience.

Although there have some research on MEC,

Deng et al. [15] first mathematically formulates the task

offloading decision problem. It decomposes the primal prob-

lem into three sub-problems of corresponding subsystems,

which can be independently solved. And author has compared

the energy consumption and system delay between cloud

computing, edge computing and cloud-edge computing. All

of them solve a binary computation offloading problem in

nature, namely the architecture they have proposed only

includes cloud server or edge server. However, these works

only consider independent tasks and ignore associated tasks.

In IoT Scenario, each application is comprised of multiple

interdependent tasks and each of which is specified by an

amount of processing works.

Generally speaking, associated tasks have a priority con-

straint relationship with each other. When all necessary

input data form its predecessor tasks arrive at the target

resources, The subsequent task will start to be process [16].

An associated scheduling problem can be represented by

a direct acyclic graph (DAG) [17], which is usually con-

sidered is an non-deterministic polynomial-time complete

(NP-complete) problem. The heuristic algorithms is used to

finding approximate optimal solutions. The heterogeneous

earliest finish time (HEFT) algorithm is the most popular

and widely used algorithm, which includes two main phases:

a task prioritizing phase for computing the priorities of all

tasks based on upward rank value and assigning the selected

task to the processor which minimizes the task’s finish

time [18], [19]. Reference [20] proposed an extended HEFT

cost-aware scheduling heuristic algorithm that recursively

calculates the priority value of each task based on compu-

tational cost and communication cost. Then, the scheduler

assigns each task to the cheapest virtual machine.

In [21], Pham andHuh propose a heuristic-based algorithm

to deal with the DAG-based task scheduling problem. When

the user’s own fog device can not meet the demand, it enables

the leasing cloud resource to handle the tasks. The main

objective is achieving balance between the makespan and

the monetary cost of cloud resources. However, this paper

does not take into account the needs of latency sensitive

applications that require task processed to complete within a

certain delay. when formulating the task scheduling strategy,

it is becoming increasingly more important to consider the

deadline of the task.

In [22], Deng et al. studied the allocation of workload to

reduce energy consumption and latency in the cloud and fog

computing system. The cloud and fog system was divided

into three independent sub-systems, using separately convex

optimization technique, on linear integer programming and

Hungarian method. These optimization algorithms solve the

problem of traffic allocation in the independent fog-cloud

subsystems in order to achieve the minimum transmission

delay from foggy to cloud and power consumption. The result

shows that fog computing improves performance for cloud

computing by sharing the part computing burden, so band-

width and transmission latency can reduce. However, this is

less well suited to the fog computing infrastructure because

the cloud data center is responsible for the allocation of work.

So it can reduce overall performance.

From the viewpoint of service composition inMobile Edge

Computing, Deng et al. [23], [24] investigate service provi-

sioning problem in distributed edges, and proposed some

offloading strategies for solving optimal service provisioning

problem. In [25], [26], authors carried up their research of

service composition problem in mobile environment.

In this paper, we main deal with the associated tasks

scheduling problem in cloud-fog computing, a task schedul-

ing strategy is proposed, which is the combination of

laxity-based priority algorithm and ant colony system. In the

process of calculating the priority, the limitation of the task

deadline is considered. In order to enhance the sensitivity of

task delay, the laxity-based priority algorithm is adopted to

construct a task scheduling sequence with reasonable priority.

At the same time, in order to minimize the total energy con-

sumption, the constrained optimization algorithm based on

ant colony system algorithm is used to obtain the approximate

optimal scheduling scheme in the global.

III. TASK SCHEDULING IN FOG-CLOUD ENVIRONMENT

A. SYSTEM ARCHITECTURE

In the cloud-fog computing environment, fog nodes at the

edge of the network cooperate regionally together, connecting

to the cloud nodes at the same time. The cooperation of the

cloud and fog nodes achieve to satisfy mobile user’s need.

If fog nodes are limited to process the tasks, tasks are sent to

cloud node. In this paper, in the fog-cloud computing system,

we assume that the system consists of m fog nodes located

in the edge of the network, u routers in the path between fog

nodes and cloud nodes, and n cloud nodes located in the cen-

ter of the network. The fog node communicates directly with

the terminal devices and immediately forwards all received

requests to the cloud-fog broker. The cloud-fog broker is

responsible for analysing and estimating tasks and resources

and then assigning tasks on the basis of the task scheduling

policy. Since the fog nodes are close to the cloud-fog broker,

the time consuming for data communication between each

other is negligible. In order to ensure the performance and

normal operation of the system in the cloud-fog computing

environment, according to the different needs of users or

applications, such as reducing energy consumption, reducing

costs or minimizing the completion time, a task schedul-

ing strategy that meets user requirements is formulated, and

finally the task scheduling strategy is deployed in the fog

cloud broker. We describe the operation of our scheduling

model by summarizing the steps for running a scheduled

service in figure 1.

Firstly, intelligent terminal devices send requests to its

attached fog node at the edge of the network (step 1).

Next, the fog node sends immediately the request data
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FIGURE 1. Model of the tasks scheduling in fog-cloud architecture.

and parameter information to the cloud-fog broker (step 2).

In order to process in distributed way, each job is decom-

posed into a series of tasks (step 3) in the cloud-fog broker.

At the same time, the number of instructions of the task and

the usage of the required resources are estimated (step 4).

Handling all information of tasks and resources, the cloud-

fog broker runs a scheduling algorithm (step 5)to implement

task allocation and get a scheduling scheme. According to

the scheduling scheme, tasks are sent to the corresponding

fog node or cloud node (step 6). The nodes are responsible

for processing all tasks assigned (step 7) and then sending

the processing results to the cloud-fog broker (step 8). After

the tasks are completed, results of the tasks are combined in

the cloud-fog broker (step 9). Finally the response results are

sent to the end users (step 11) through the fog node (step 10).

B. TASK MODELLING BASED ON DIRECTED

ACYCLIC GRAPH

In the IoT environment, an application consists of a series of

interdependent tasks. Associated tasks with interdependen-

cies are usually modelled as directed acyclic graphs (DAG),

which are defined as follows.

Definition 1: A directed acyclic graph G = (V ,E), which

describe a set of associated tasks and their priority constraints.

V = {v1, v2, . . . , vi, vl} (∀vi ∈ V , l ∈ [1, l])

• vi−length is the length of the computation task vi. Con-

sidering that the tasks are all composed of instructions,

the task length measured by the number of instructions.

the unit is the MI(million instructions).

• vi−deadline denotes the deadline of the task vi.

E =
{

ek,i|vk , vi ∈ V
}

represents a collection of depen-

dencies between tasks. ek,i denotes that the task vk is a

predecessor task for task vi.

C. THE FORMALIZATION OF ASSOCIATED TASK

SCHEDULING PROBLEMS

In the DAG task map, a task that does not have any predeces-

sors node is called an ingress node ventry, and a task that does

not have any successor node is called an egress node vexit .

The ingress node exists as the predecessor node of other task

nodes. Other tasks can only be processed after the execution

of the ingress node is completed. The execution result of the

ingress node will transfer the data as input to the resource

where the subsequent task is located.

Considering that the tasks in the DAG have a priority

constraint, we assume that the task can be executed only if

all the input data of the task available. The input data of the

task is not only from the predecessor tasks in the DAG, but

also some data resources (such as data storage) stored on the

cloud nodes or fog nodes.

Assume task vi is assigned to a resource node Rj, c
(

e
k,i
i

)

represents the data transfer time from node Rf to Rj to execute

task vi, then c
(

e
k,i
i

)

is defined as follows.

ci =



dmi +

vi∈pred(wi)
∑

vk∈exe(rf )

dk,i



×

(

1

Rj−bw
+

1

Rf−bw

)

(1)

c
(

e
k,i
i

)

=

{

ci, if j = f

0, otherwise,
(2)

where, dmi denotes the data where have stored in node Rf , and

dk,j represents the data from all predecessor nodes ofVi which

can be obtained through network traffic monitoring software.

In this paper, we assume bandwidth, time delay and task size

can be obtained by existing technical means. The Rj−bw and

Rf−bw is the bandwidth of nodes Rj and Rf . The bandwidth is

defined as the number of bits that can be transmitted per unit

time.

When all necessary input data reaches the target cloud or

fog node, the task will start to prepare, but also consider

whether the target resource is idle. If the target resource is not

idle, it needs to wait. Therefore, the earliest execution time of

the task is determined by the predecessor task transmission

time and the earliest idle time of the target processing node.

The values of EST
(

vi,Rj
)

and EFT
(

vi,Rj
)

are computed as

follows.

EST
(

vi,Rj
)

= max

{

avail
(

Rj
)

, max
vk∈pred(vi)

(

vk ,Rf
)

+c
(

e
fj
i

)

}

(3)

EFT
(

vi,Rj
)

= w
(

vi,Rj
)

+ EST
(

vi,Rj
)

(4)

where, avail
(

Rj
)

denotes the the earliest time that node Rj
completes the last assigned task and be ready to execute

another task. pred (vi) is the predecessor node of the task vi.

w
(

vi,Rj
)

denotes the execution time of task vi on node Rj.

Then w
(

vi,Rj
)

is computed as follows. The (vk ,Rf ) is the

finish time of vk on node Rf .

w
(

vi,Rj
)

=
vi−length

Rj−mips
(5)

In the process of association task scheduling, if the task is

assigned to the fog nodes, considering that the end user has

only one or two hops to the fog nodes, the transmission energy

consumption will be negligible, so the energy consumption
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only includes the calculation energy consumption on the fog

node. The energy consumption formula is as follows [27].

E
fog
ij = pidle (a+ 1)× EFTij +

∫

Comij

[p (t)− pidle] dt (6)

Here a = tidle/tact denotes the ratio of free time to active

time of the fog nodes. pidle is the free power of the fog nodes.

p (t) is the power of the fog node at the moment t of executing

the task.

If the task is assigned to the cloud node located in the

network center, and the long-distance transmission needs to

be performed by multiple core routing devices. The energy

consumption includes the transmission energy of the core

router and the computing energy consumption on the cloud

node. The energy consumption formula is as follows [27].

Erouteri = r ×

(

< Pidle >

U < Cmax >
+ Eb

)

× Nbit (7)

Here, Eb = (Pmax − Pidle) / (CmaxU), Pmax denotes the

router’s maximum power consumption, Pidle represents the

router’s free power consumption,Cmax denotes the maximum

load on the router and U represents the router’s utilization,

Let r denote the average number of routers in the path.

Nbit denotes the number of bits of the task taski through the

core router.

Ecloudij =
(

α × Ucpu + β × Umem

+ γ × Ubw)× Pcloudj × EFTij + E
router
i (8)

where Ucpu is CPU utilization of the virtual machine, Umen is

the memory usage of the virtual machine, Ubw is the uti-

lization of the bandwidth of the virtual machine, Let α, β,

γ denote the coefficient among these three parts, which is

α + β + γ = 1.

Based on the requirements of user tasks and optimiza-

tion goals, this paper presents a constraint associated tasks

scheduling model in the cloud and fog framework, which is

defined by:

min F =
∑

i

∑

j

{

cij × E
fog
ij +

(

1− cij
)

× Ecloudij

}

(9)

s.t.



















EFTij ≤ vdeadline

0 ≤ i ≤ l

0 ≤ j ≤ q

(5), (8)− (10)

(10)

where, the value of cij does not determine whether task i is

assigned to node j. cij ∈ {0, 1} denotes that the i-th task

has been already assigned to the resource-j. If the resource

is a fog node, the value of cij is 1, otherwise, the value

is 0, which means the task is assigned to the cloud node.

F represents the total energy consumption for all tasks. For

easy explanation, we illustrate by an example: There two

task, task-1 and task-2, and two resource, resource-1 and

resource-2, that need to be calculated for energy consump-

tion. Besides, the task-1 is assigned to resource-1, and the

task-2 is assigned to resource-2. In this situation, we assume

resource-1 is a fog node and resource-2 is a cloud node,

namely c11 = 1, c22 = 0. We use formula (9) to calculate

energy consumption. That is 1×E
fog
11 +(1− 1)×Ecloud11 +0×

E
fog
22 +(1− 0)×Ecloud22 . In addition, the tasks and resources in

this paper are already the smallest unit. In this research work,

we assume the resources and tasks are to be minimized with-

out any further divided actions, and the relationship between

the resources and tasks is one-to-one correspondence. That

is to say, there is no task assigned to two resource nodes,

and no resource node performs two tasks. So the variables of

c12 and c21 don’t need to consider in this paper. In our later

experiment, we also eliminate these meaningless values.

D. ASSOCIATED TASK SCHEDULING STRATEGY

In order to solve the problem of associated task scheduling

in the IoT with mixed deadlines, this paper proposes a com-

bination of improved HEFT priority and ant colony-based

scheduling strategy. Therefore, the scheduling strategy can

achieve to select the most suitable resource for the task based

on the DAG, and achieve the goal that meets the mixed

delay of the task and achieve low energy consumption. The

associated task scheduling strategy based on laxity and ant

colony system (LBP-ACS) proposed in this chapter is put

forward, which is divided into two parts: the laxity-based

priority algorithm (LBPA) and the ant colony-based con-

strained optimization algorithm (COA-ACS). The first step

uses the laxity -based priority algorithm (LBPA) to obtain

the task priority sequence, and the second step uses the con-

strained optimization algorithm based on ant colony system

(COA-ACS) to obtain the task scheduling scheme.

1) LAXITY-BASED PRIORITY ALGORITHM (LBPA)

FOR OBTAINING PRIORITY SEQUENCES

The LBPA algorithm aims to calculate the laxity of each

task by recursively, and then calculate the priority of each

associated subtask according to the laxity, and finally convert

the DAG-based task graph into an ordered task sequence. The

laxity of a task is the shortest time that can be delayed before

the deadline of the task,which indicates the urgency or time

sensitivity of the task. The priority of the task is determined

by the laxity of the tasklaxity (vi). The smaller the laxity of the

task, the higher the priority of the task. That is to say, the time-

sensitive task is preferentially scheduled. Let the time laxity

of the task (vi) is recursively defined by:

laxity = min
vk∈succ(vj)

{

laxity (vi)− c (k, i)− w (vi)
}

(11)

laxity (vi) =

{

vi−deadline − (vi), if vi = vexit

laxity, otherwise,
(12)

where, w (vi),c (k, i) denote the average calculation time

of the task (vi) and the average transmission time of the
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Algorithm 1: LBPA

Input: Tasks Graph G (V ,E) and List of VM Vj
Output: A task priority sequence

1 Calculate (vi), c
(

vk,i
)

according to Formula 13, 14;

2 for i = l to 1 do

3 Calculate laxity (vi) according to Formula 12 ;

4 sort laxity (vi) get the task priority sequence TaskList;

5 return The task priority sequence← TaskList;

task (vi), respectively. They are defined as follows.

w (vi) =
vi−length
q
∑

i=1

Rj−mip/q

(13)

c (k, i) =
c (k, i)

q
∑

i=1

Rj−bw/q

(14)

According to the formula 12, the time laxity of each task

is calculated from the exit node of the task map to the ingress

node in a recursive manner, then according to the time laxity

of the task, the priority sequence of the task TaskList is

obtained in ascending order.

The laxity-based priority algorithm (LBPA) is shown in 1.

2) CONSTRAINED OPTIMIZATION ALGORITHM BASED ON

ANT COLONY SYSTEM (COA-ACS) FOR TASK ASSIGNMENT

Using the laxity-based priority algorithm (LBPA) above,

the priority sequence of the task is obtained, and the asso-

ciated task scheduling problem and the ant colony system

algorithm are combined to propose a constrained optimiza-

tion algorithm based on the ant colony system, which Choose

the right cloud or fog resource for the task of the prior-

ity sequence. The scheme description of each ant for each

trip is shown in figure 2. The horizontal axis represents

the task of the task priority sequence TaskList , and the

vertical axis represents the cloud or fog resource. If the

task vi is assigned to the resource Rj, it is represented as

edge (i, j) (i = 1, 2, . . . ,m+ n).

FIGURE 2. Illustration of a solution of an ant in search.

(1) Task Priority

According to the algorithm of the task priority LBSFC,

we can calculate the priority of the task and obtain the

sequence of the task execution.

(2) Initialization Pheromone

In the DAG-ACS algorithm, we first obtain the task allo-

cation scheme Z [i] through the greedy algorithm. Then,

according to the calculation of the energy consumption

formula of the resource of the cloud and fog. Finally we

can calculate the initial pheromone τ0 as shown in the

following formula.

Z [i] =

l−1
∑

i=0

argmin (F) (15)

τ0 = 1/ (1× Fz) (16)

According to the above formula, the pheromone is ini-

tialized on the path eij formed by the each task and the

virtual machine.

(2) Select Resources and Calculate Heuristics

In the iteration of the DAG-ACS algorithm, each ant k

establishes a route of performing l (number of tasks)

steps. When selecting a cloud or fog resource for each

task based on the task’s priority sequence, each ant has

two ways to select resources, as shown in the following

formula. For each task vi, we first generate a random

number q ∈ [0, 1]. If q ≤ q0, the ant will greedily choose

the pheromone and the source with high heuristic infor-

mation value. Otherwise, the ant will select the resource

according to the roulette. The probability rule p
(k)
ij (t) of

the resource selection for the roulette is calculated as

follows.

rvi (t) =

{

[

τij (t)
]α (

ηij
)β

, q ≤ q0

Roulette selection, otherwise,
(17)

p
(k)
ij (t) =























[

τij (t)
]α (

ηij
)β

∑

k∈allowedk
[τik (t)]α (ηik)

β
,

if j ∈ allowedk

0, otherwise,

(18)

where τij (t) represents the pheromone on the path eij in

the t th iteration. α, β are respectively control parameters.

allowedk denotes the virtual machine that the k th ant can

select.

The heuristic information ηij denotes the expected value

of processing the task vi on the resource rj. When select-

ing heuristic information, the task completion time and

energy consumption are fully considered. ηij calculation

formula is as follows.

ηij =
1

weight × EFTij + (1− weight)× Eij
(19)

where EFTij and Eij represent the completion time and

energy consumption that the task vi is assigned to the

resource rj, respectively. The weight denotes the weight

of the task completion time.

(3) Local Pheromone Update

When constructing a task assignment scheme, the value

of the pheromone is constantly changing since the ant

will generate and volatilize of the pheromone on the
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path eij. For example, if the ant selects the resource rj for

the task vi, the pheromone on the path eij will partially

evaporate. The calculation formula is shown following.

τij (t) = (1− ε)× τij (t)+ ε × τ0 (20)

where the parameter ε (0 ≤ ε ≤ 1) is a pheromone

volatilization factor.

(4) Global Pheromone Update

After each iteration completed, all ants have already

built a task assignment strategy. According to the opti-

mal allocation strategy, global pheromone updating is

performed which is performed according to the follow-

ing formula.

τij (t + 1) = (1− ρ)× τij (t)+ ρ ×1τ kij (21)

where the parameter ρ is the pheromone volatility factor,

0 < ρ < 1 . 1τ kij is computed as follows.

1τ kij =







Q

Fbest (t)
, if eij is best path

0, otherwise,

(22)

whereQ is an adaptive parameter. where Fbest is the total

energy consumption of the best-path in the first t ants

searched.

(5) Algorithm Termination Condition

If the calculation has reached the expected value,

the algorithm is terminated, and otherwise entering the

next iteration. If the maximum number of iterations is

reached, the algorithm terminates.

IV. EXPERIMENT AND ANALYSIS

In this experiment, in order to evaluate the performance of the

proposed scheduling mechanism, we compare our algorithm

with three others: Greedy for Energy(GfE), HEFT [18], and

DEACO. The GfE algorithm only considers energy con-

sumption metrics, ignoring task load balancing and time

factors. The HEFT algorithm is a classic list scheduling

algorithm, which only pays attention to the task completion

time. According to the priority of the task, the task is assigned

to the resource with the fastest processing speed, so that all

tasks can be completed in the shortest possible time. We use

Cloudsim [28] and extend the modular of task scheduler with

fog for modeling and simulation of the fog-cloud comput-

ing infrastructure. All parameters are presented in Table 1.

our experiment covers a random graph G = (V,E) with the

increase of sizes from 20 to 100 and a set of heterogeneous

Vms that are from 2 cloud nodes and 6 fog nodes. The I/O

data of a task have a size from 5 to 6 MB.

Based on the parameters’ settings in Tables 1, results of

three metrics are obtained and illustrated in Figures 3-5.

Figure 3 shows the comparison of task scheduling length

using LBP-ACS, GfE, HEFT and DEACO algorithms. It is

shown that task scheduling length gets longer with the slightly

increase of tasks number. In terms of schedule length, GfE

algorithm gets the worst case, HEFT algorithm obtains the

Algorithm 2: COA− ACS

Input: The task priority sequence← TaskList and List

of VM Vj, K , Nmax
Output: solution =

{edge (i, j) | (i = 1, 2, . . . , l; j = 1, 2, . . . ,m+ n)},

minEnergy

1 for Iter = 1 to Nmax do

2 for k = 1 to K do

3 Get a task allocation scheme Z [i] by adopting a

greedy algorithm ;

4 Compute τ0 according to Formula 16 ;

5 Initialize ηij, q0 each ant select a path edge (i, j)

randomly ;

6 while i ≤ l do

7 Randomly generate a number q ;

8 for j = 1 to n do

9 if q ≤ q0 then

10 Choose the Vmj←

argmax
{

[

τij (t)
]α [

ηij (t)
]β

}

;

11 Compute EFTij, Eij,ηij, pij according to

Formula (5− 3) , (5− 16) , (5− 15);

12 Choose the Vmj for vi ;

13 Update local pheromone according to

Formula 20 ;

14 Calculate best energy Fbest ;

15 Record the best path eij ;

16 Update global pheromone according to

Formula 22,21;

17 minEnergy← Fbest ;

18 return solution← best path edge (i, j), minEnergy;

TABLE 1. Experiment parameters setting.

best result while LBP-ACS and DEACO are in the middle.

Specifically, our algorithm is 9.7% better than DEACO. And

compared with GfE, our LBP-ACS algorithm even achieves

a far better performance, about 36.5%.

116224 VOLUME 7, 2019



J. Xu et al.: Method Based on the Combination of LBP-ACS for Cloud-Fog Task Scheduling

FIGURE 3. Scheduling Length of LBP-ACS vs. GfE. HEFT and DEACO.

FIGURE 4. Energy Comparison of LBP-ACS vs. GfE. HEFT and DEACO.

FIGURE 5. Failure Ratio of LBP-ACS vs. GfE. HEFT and DEACO.

Regarding the energy consumption for cloud or fog

resources, as we can see that the energy consumption for

cloud or fog resources gets bigger with the increase of tasks

number in figure 4. It is observed that although HEFT pro-

vides the best performance, it has the highest energy con-

sumption while the opposite is true for GfE algorithm. This is

mainly due to the fact that the HEFT algorithm only focuses

on the processing time, and blindly pursues reducing the

task completion time, while ignoring the energy consump-

tion index. Similarly, the GfE algorithm only focuses on

the energy consumption index, and ignores the task deadline

constraint. In contrast, our LBP-ACS algorithm conduces to

the benefits of balance between schedule length and energy

consumption for cloud or fog resources. Compared with

HEFT algorithm, our LBP-ACS algorithm can save 11.1% of

the energy consumption while performance reduction is not

more than 6.8%. And compared with DEACO, our LBP-ACS

algorithm can save 7.1% of the energy consumption, which

means that our LBP-ACS algorithm has the advantage of

reducing energy consumption together with its effectiveness.

In the experiment, we evaluated the performance in terms

of a Failure ratio, defining the failure rate as the ratio of the

number of tasks not completed within the deadline to the total

number of scheduled tasks.

FA =
Countfail

Counttotal
× 100% (23)

where, Countfail denotes the number of tasks that fail to

schedule, which includes all tasks that fail to meet dead-

line constraints. Counttotal is all tasks with the deadline

constraints.

Figure 5 shows that the failure ratio using different algo-

rithms. As we can see that LBP-ACS algorithm outper-

formed all other algorithms, which has the lowest failure

rate. as the other algorithms were not primarily designed

to meet deadlines, whereas the LBP-ACS algorithm takes

account of the deadlines for each end task. Although the

HEFT algorithm minimizes the scheduling length of the task,

it does not take into account the deadline constraints of task

when calculating the priority. The delay-sensitive task is not

preferentially scheduled, so the failure rate is higher than

LBP-ACS algorithm. For the associated task schedule with

deadline constraints, not only should the task completion time

be minimized, but also tasks with sensitive deadlines should

be prioritized.

In summary, the proposed LBP-ACS algorithm can effec-

tively reduce the energy consumption while improving the

task scheduling success rate compared with other algorithms

in solving the associated task scheduling problem with mixed

deadlines.

V. CONCLUSION AND FUTURE WORK

In this paper, in order to exert advantage of the cloud and fog

computing, we adopt a cloud and fog cooperation architec-

ture. For the purpose of obtaining the most benefit from such

an architecture, one must allocate computing tasks strate-

gically at each processing node of cloud or fog layer. For

the scheduling problems of complex tasks with priority con-

straints in IoT applications. This paper addresses associated

task scheduling in hybrid cloud-fog computing. The associ-

ated task scheduling strategy based on laxity and ant colony

system is proposed in cloud-fog environment, which takes

into account the energy consumption and tries to fulfil reduce

energy consumption on the condition of satisfying the mix

deadline. Simulations and numerical results have shown that

our work can show a better performance than other existing

methods.

In future work, on the one hand, we intend to deploy

our proposal algorithm into real world systems. We consider

an IoT deployment scenario with a user-defined analysis

queries (tasks) that need to be performed on several fog

nodes at the edge or public cloud nodes available to perform

VOLUME 7, 2019 116225



J. Xu et al.: Method Based on the Combination of LBP-ACS for Cloud-Fog Task Scheduling

the queries. With the planned implementation, we can thor-

oughly observe the performance in the real-world operation

and find the shortcomings to improve our proposal. On the

other hand, we should consider the scheduling of tasks that

include independent tasks and associated tasks.
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