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Abstract—Real-time estimation of power transmission line
impedance parameters has become possible with the availability
of synchronized phasor measurements of voltage and current.
If sufficiently accurate, the estimated parameter values are a
powerful tool for improving the performance of a range of power
system monitoring, protection and control applications, including
fault location and dynamic thermal line rating. The accuracy of
the parameter estimates can be reduced by unknown errors in
the synchronized phasors that are introduced in the measurement
process. In this paper, a method is proposed with the aim of
obtaining accurate estimates of potentially variable impedance
parameters, in the presence of systematic errors in voltage and
current measurements. The method is based on optimization to
identify correction constants for the phasors. A case study of
a simulated transmission line is presented to demonstrate the
effectiveness of the new method, which is better in comparison
with a previously proposed method. The results as well as limits
and potential extensions of the new method are discussed.

Index Terms—Accuracy, admittance measurement, impedance
measurement, optimization methods, parameter estimation, pha-
sor measurement unit, transmission line measurements

I. INTRODUCTION

C
ONTINUOUS electricity supply has become one of

the backbones of many economies worldwide. For this

reason, reliable and efficient operation of power networks is a

crucial challenge that needs to keep pace with their increas-

ingly complex nature. Reliability and efficiency are ensured

through careful monitoring, protection and control of power

systems, which requires a range of electrical measurements as

inputs. One of these inputs are the impedance parameters of

transmission lines; for example in current differential protec-

tion [1] and fault location [2].

Traditionally, parameters were calculated off-line using

handbook formulae based on tower geometry and conductor

properties [3], [4] or through fault record analysis [5]. These

methods are not able to track short-term changes in impedance

parameters, which may occur due to Joule heating and ambient

temperature variations. Nowadays it is possible to calculate

the impedance parameters of transmission lines on-line and

in real-time from synchronized phasor (synchrophasor) mea-

surements of voltage and current at both line ends. The
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synchrophasors are usually reported by Phasor Measurement

Units (PMUs) that are installed in substations [6].

Synchrophasor-based transmission line impedance determi-

nation has been investigated by many researchers since the

1990s. Early studies demonstrated the feasibility of the concept

and advantages over traditional methods [7]–[9]. The deter-

mined parameter values are only useful if they satisfy accuracy

requirements, which depend on the specific applications. For

fault location [2] and dynamic thermal line rating [10], it

is desirable to detect thermally induced variation of the line

resistance, which ranges from 1% to 20% [11].

Parameter accuracy may be expressed in terms of minimum

and maximum limits that are derived from the accuracy of the

synchrophasor measurements [1]. The accuracy of the reported

synchrophasors is influenced by the entire measurement chain.

PMUs themselves often exceed the requirements of 1%
Total Vector Error and 1 µs time-tagging to UTC, given in

IEEE Standard C37.118.1-2011 [12]; for instance, PMUs

with accuracies of ±0.03% in phasor magnitude and ±0.01�

in phase angle (±0.6 µs at 50Hz) have been manufactured

[13]. Hence, if only the accuracy of PMUs is considered,

uncertainties in impedance parameter estimates of less than

2% are possible [1].

It is important to recognize that additional systematic errors

of up to 1% in the magnitude and 1� in the phase angle of the

synchrophasors may be introduced by the remaining measure-

ment chain, as is recognized in IEEE Standard C37.242-2013

[14]. The remaining measurement chain includes instrument

transformers, cables, burdens and external time synchroniza-

tion equipment such as GPS antennae and connection cables.

Ideally, these errors should be characterized and corrected

before the impedance parameter estimation process. For ex-

ample, in addition to the nominal transformer ratios, trans-

former correction factors should be applied, and time-tagging

adjusted for delays in the synchronization signal. However,

the actual correction factors may differ from their values at

the time of characterization due to ageing or modification

of the instrumentation channel. Consequently, the measured

synchrophasors can be subject to unknown errors, which can

have an adverse impact on parameter estimation accuracy.

A number of approaches have been proposed to reduce

the impact of random errors in synchrophasor measurements

on impedance parameter determination: unbiased linear least

squares estimation [15], [16], non-linear least squares algo-

rithms [17]–[19], total least squares estimation [20] as well

as optimization procedures [7], [21]. On the other hand, the

impact and reduction of systematic errors in the synchrophasor
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Fig. 1. Nominal pi circuit diagram for a medium length transmission line.
It shows the lumped impedance and admittance components as well as the
sending and receiving end voltages and currents.

measurements with regards to impedance parameter estimation

has received less attention.

One solution is to estimate individual correction factors

for both magnitude and phase angle of voltage and current

along with the parameters in an optimization procedure [21].

However, this approach makes use of a wide range of mea-

surements and assumes time-invariant impedance parameters.

Hence, there is a need to develop effective methods for the

reduction of the impact of systematic errors in synchrophasor

measurements on real-time impedance parameter estimation.

In a previous paper by the authors, a potential solution

for this problem has been proposed [22]. It consists of a

method that assumes linear variation of the impedance pa-

rameters over short periods of time. Correction constants for

the synchrophasors are identified by minimising the residuals

of a least squares fit of the calculated parameters to a linear

model. The method was shown to effectively reduce the

impact of systematic errors in voltage measurements of a short

transmission line, neglecting shunt admittance. But for longer

lines shunt admittance is significant as it causes the current to

vary along the line, and thus needs to be taken into account

in parameter calculations. Furthermore, systematic errors can

also occur in synchrophasor measurements of current. The aim

of this paper is to propose an extension of the method such

that it can effectively reduce the impact of systematic errors in

all synchrophasor measurements for the general transmission

line modelled by the lumped pi circuit, which has both series

impedance and shunt admittance.

The rest of the paper is structured as follows: in the next

section, models for the transmission line and systematic errors

are defined and the proposed method is presented. Thereafter, a

case study of a simulated line is considered and a comparison

with an existing linear least squares-based method is made.

The fourth section is a discussion of the case study results, as

well as strengths and limits of the proposed method. The final

section concludes the paper.

II. METHODS

A. Transmission Line Model

The nominal pi circuit, as shown in Fig. 1, is the stan-

dard model for the electrical parameters of a medium length

transmission line (80 km to 240 km) [3]. For medium length

lines, the effects of shunt admittance cannot be ignored, but

lumped components are still a good approximation for the

actual, distributed parameters [3].

The circuit consists of a series impedance component Z,

as well as shunt admittance Y , which is split into two equal

components at either end of the line, as shown in Fig. 1.

The series impedance Z has resistance R and inductance

L, while the shunt admittance Y consists of conductance G
and capacitance C. Conductance G is normally considered

negligible and omitted from the model; however, it is useful

for the consideration and correction of systematic errors as

will be shown in Section II-C. The measured currents and

voltages at either end of the line are modelled by Vs, Is, Vr, Ir,

which are assumed to be phasors at the nominal power system

frequency f ; subscript s refers to sending and subscript r to

receiving end. By Kirchhoff’s Voltage and Current Laws, the

circuit equations are

Vs = (Is −
Y

2
Vs)Z + Vr (1)

Is = (Vs + Vr)
Y

2
+ Ir, (2)

where Vs, Is, Vr, Ir, Z, Y ∈ C, Z = R + jX , X = 2πfL,

Y = G+ jB, B = 2πfC and R,X,G,B,L,C, f ∈ R
>0. X

is the inductive reactance and B is the capacitive susceptance.

Substitution of (2) into (1) leads to the following formulae

for impedance Z and admittance Y :

Z =
V 2
s − V 2

r

VsIr + VrIs
(3)

Y = 2
Is − Ir
Vs + Vr

. (4)

If a single set of synchronized measurements Vs, Is, Vr, Ir is

available from a PMU or equivalent device, values of Z and

Y can be calculated; parameters R, X , G and B are obtained

from the real and imaginary parts of Z and Y, respectively.

B. Systematic Errors in the Synchrophasor Measurements

In this paper, systematic errors in the form of a proportional

error in the phasor magnitude and additive offset in the phase

angle are considered. Let Ṽs be a synchrophasor measurement

of the sending end voltage Vs with systematic errors as in

magnitude and φs in phase angle. Vs and Ṽs are related by

Vs = Ṽs(1 + as) exp(jφs), (5)

where Ṽs ∈ C, as,φs ∈ R. This structure is chosen in line with

transformer correction factors, which are the general model for

expressing errors caused by instrument transformers [23]. The

systematic errors are assumed to be constant, since in real-

time applications, the utilized voltage and current measure-

ments span only a limited part of the instrument ranges and

instrumentation channels are designed for long-term stability.

On the basis of accuracy classes of instrument transformers

and previous characterization of instrumentation channels, the

errors are assumed to be less than 1% in magnitude and less

than 0.01 rad in phase angle [14]. Thus it is assumed that

|as|, |φs| < 0.01 and the following small angle approximation

is made:

exp(jφs) ≈ 1 + jφs. (6)
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Substituting (6) into (5) gives

Vs = Ṽs(1 + as)(1 + jφs) = Ṽs(1 + as + jφs + jasφs). (7)

The lower order term jasφs will be omitted. Hence,

Vs = Ṽs(1 + as + jφs). (8)

Define the overall error δVs ∈ C in the synchrophasor

measurement Ṽs as

δVs = Vs − Ṽs = (as + jφs)Ṽs. (9)

Similarly, Ĩs, Ṽr, Ĩr ∈ C are defined as synchrophasor mea-

surements that have systematic errors ar,φr, bs, θs, br, θr such

that Vr = Ṽr(1+ar+jφr), Is = Ĩs(1+bs+jθs), Ir = Ĩr(1+
br + jθr), and δIs, δVr, δIr ∈ C are overall errors defined as

δVr = (ar + jφr)Ṽr, δIs = (bs + jθs)Ĩs, δIr = (br + jθr)Ĩr.
Suppose the values of as,φs, ar,φr, bs, θs, br, θr are un-

known. Then the impedance and admittance estimates from

synchrophasors with systematic errors are given by

Z̃ =
Ṽs

2
− Ṽr

2

ṼsĨr + Ṽr Ĩs
(10)

Ỹ = 2
Ĩs − Ĩr

Ṽs + Ṽr

, (11)

where Ṽs, Ĩs, Ṽr, Ĩr have been substituted into (3) and (4).

Z̃ and Ỹ deviate from Z and Y , respectively, and thus the

estimated parameters are in error. This loss of accuracy can be

reduced by estimating values of as,φs, ar,φr, bs, θs, br, θr to

correct the phasor measurements. The following observations

are used to simplify the problem:

• Since Z is proportional to (V 2
s −V 2

r ), it is more sensitive

to as,φs, ar,φr than to bs, θs, br, θr and the error in Z
caused by as,φs is approximately equal and opposite to

the error caused by ar,φr (see Appendix C).

• Since Y is proportional to (Is − Ir), it is more sensitive

to bs, θs, br, θr than to as,φs, ar,φr and the error in Y
caused by bs, θs is approximately equal and opposite to

the error caused by br, θr (see Appendix C).

Therefore it is assumed that error constants as, ar,φs,φr can

be combined into ’net’ errors a,φ in Ṽr, where a = ar −

as,φ = φr − φs, |a|, |φ| < 0.02. Similarly bs, θs, br, θr are

combined into errors b, θ in Ĩr, where b = br − bs, θ = θr −

θs, |b|, |θ| < 0.02.

In the next section a method for estimating values of a,φ, b
and θ is presented.

C. Proposed Method for Identification of Correction Con-

stants

To reduce the deviations in estimated parameters Z̃ and Ỹ
due to systematic errors that were described in the previous

subsection, synchrophasor measurements should be corrected

before parameters estimates are calculated. A method has been

designed to identify such correction constants and is presented

in the following paragraphs.

The method assumes no knowledge of the true values of

impedance and admittance parameters. Instead, it is assumed

that the behaviour of the resistance and reactance is ap-

proximately linear over short periods relative to the thermal

time constant of overhead line conductors (5min to 20min
according to IEEE Standard 738-2012 [24]) because of slow

variation in the rate of change of resistance and reactance.

Conductance and susceptance are assumed to be constant.

Therefore the calculated parameters are fitted to linear models

with respect to time. Let the models for R,X,G,B be

fR, fX , fG, fB : R+
→ R, respectively, where

fR(ti) = qRti + rR (12)

fX(ti) = qXti + rX (13)

fG(ti) = rG (14)

fB(ti) = rB (15)

and qR, rR, qX , rX , rG, rB ∈ R are constants, which are

estimated in a least squares sense from a set of N ∈ N

parameter values Ri, Xi, Gi, Bi ∈ R, calculated at time

instants ti, i = 1, . . . , N , with ti = i∆t and ∆t ∈ R the

constant time interval between synchrophasor measurements.

The time interval tN−t1 is a moving window that is chosen to

be less than the thermal time constant of the line. The details of

the estimation of qR, rR, qX , rX , rG, rB are given in Appendix

A.

Suppose that Ri, Xi, Gi, Bi are calculated from syn-

chrophasor measurements with systematic errors, then the

goodness of fit of fR, fX , fG, fB is reduced. To measure the

goodness of fit, the sum of the squared residual is calculated

as

SR =

N
X

i=1

(Ri − fR(ti))
2, (16)

where SR ∈ R
+. Equivalent expressions are assumed for

SX , SB , SG ∈ R
+, in terms of Xi, fX , Gi, fG, Bi, fB , re-

spectively. By minimizing SR, SX , SG and SB , correction

constants can be found that maximize the goodness of fit

of fR, fX , fG and fB , and thus result in impedance and

admittance parameter estimates that are more consistent with

the expected physical behaviour of the line over time.

SR and SX are sensitive to errors in Ṽs and Ṽr and can be

minimized by finding optimal values of correction constants

a,φ for Ṽr. Hence, optimization problem 1 is formulated:

minimize
a,φ

gZ(a,φ) = SR + SX

subject to |a| < 0.02, |φ| < 0.02,
(17)

with initial values: a = 0,φ = 0. The objective function

gZ : R2
→ R

+ is evaluated using correction constants a,φ
to recalculate the impedance parameters as follows:

Zi = Ri + jXi = Z̃i +
∂Z

∂Vr

�

�

�

Vr=Ṽri

δVri , (18)

where δVri = (a + jφ)Ṽri , and Z̃i is calculated using (10)

from synchrophasor measurements Ṽsi , Ĩsi , Ṽri , Ĩri taken at

time ti. The first order Taylor approximation of Z is taken

because δVri is small and in this way Zi remains linear in

a,φ. The partial derivative ∂Z
∂Vr

is given in Appendix B. Once

Ri and Xi have been recalculated using (18), new values for
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qR, rR, qX , rX , rG, rB are estimated and SR as well as SX

are updated to give a new value of gZ .

Similarly, SG and SB are sensitive to errors in Ĩs and Ĩr.

Optimization problem 2 is defined to identify optimal values

of correction constants b, θ ∈ R for Ĩr that minimize SG and

SB :
minimize

b,θ
gY (b, θ) = µ(SG + SB)

subject to |b| < 0.02, |θ| < 0.02,
(19)

with initial values: b = 0, θ = 0. Since G and B are of

the order of 10�6 and 10�4, respectively, SG and SB can

become very small and factor µ is introduced to avoid bad

scaling. The objective function gY : R2
→ R

+ is evaluated

using correction constants b, θ to recalculate the admittance

parameters as follows:

Yi = Gi + jBi = Ỹi +
∂Y

∂Ir

�

�

�

Ir= ˜Iri

δIri , (20)

where δIri = (b+jθ)Ĩri , and Ỹi is calculated using (11) from

synchrophasor measurements Ṽsi , Ĩsi , Ṽri , Ĩri taken at time ti.
The first order Taylor approximation of Y is taken because δIr
is small and Yi remains linear in b, θ. The partial derivative
∂Y
∂Ir

is given in Appendix B.

Both (17) and (19) are nonlinear constrained optimization

problems, for which minima can be obtained with a range of

algorithms. In this instance the interior-point method was cho-

sen [25]. gZ and gY are convex and thus the local minima are

global in the feasible regions.The reason is that Zi and Yi are

linear in the respective correction constants and estimation of

qR, rR, qX , rX , rG, rB (see Appendix A) as well as evaluation

of gZ and gY preserve convexity.

Fig. 2 shows a flow chart that summarizes the processes

of identifying correction constants and estimating values of

the line parameters. The final parameter estimates at a given

time tN are obtained by fitting functions fR, fX , fB to the

parameter values calculated from corrected measurements and

evaluating fR(tN ), fX(tN ), fB(tN ). The aim of this step is

to give parameter estimates with reduced random variation,

which occurs in the individually calculated parameter values.

In the next section, the effectiveness of the proposed method

is demonstrated in a case study.

III. CASE STUDY

In this section, the specifications of the transmission line

simulation are given, and results of the application of the

proposed method as well as an existing linear least squares-

based method are presented.

A. Transmission Line Simulation

A single phase of the 400 kV, 102 km long transmission

line located between substations Grendon and Staythorpe,

East Midlands, England [26], was simulated in Matlab. The

nominal parameter values are R0 = 2.96Ω, X0 = 32.4Ω
and B0 = 3.69× 10�4 S. The resistance was assumed to

vary sinusoidally within ±4% of the nominal value, which

corresponds to a change in line temperature of approximately

±10 �C over the period of the simulation.

Fig. 2. This flow chart illustrates how values for correction constants and
impedance parameters are estimated by the proposed method.
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Fig. 3. This graph shows the magnitude of the sending and receiving end
voltages over the period of the simulation.

The network at either end of the line was modelled by an

equivalent voltage source; Fig. 3 shows the root-mean-square

(rms) magnitude of the sending and receiving end voltages.

A variable load profile ranging from 15% to 100% of rated

current was assumed to occur over a seven hour period; rms

values of current magnitude are shown in Fig. 4. Synchronized

measurements of steady-state current and voltage phasors at

each line end were taken at time intervals of ∆t = 2min for

blocks of 10 s.
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Fig. 4. This graph shows the magnitude of the sending and receiving end
currents over the period of the simulation. Their difference is very small
compared to the absolute magnitudes.

In order to reflect the measurement uncertainty that would

be present in practice, the measurements were contaminated

with Gaussian noise of mean zero and standard deviations

of 0.03% and 0.04% in magnitudes of voltage and current,

respectively, and 0.3mrad in all phase angles.

Systematic errors in both sending and receiving end voltages

and currents as modelled in Section II-B were applied to all

synchrophasor measurements. The mean of the synchrophasors

was taken over each 10 s block to generate an individual set

of measurements every two minutes; in total there were 203
measurement sets. A moving window of N = 8 measurement

points, spanning 16min, was used to estimate the impedance

and admittance parameters of the line in real-time. Thus, 196
estimated values were computed for each of R,X and B.

In order to test the effectiveness of the method, different sets

of systematic errors were applied to the measurements. In each

case, the magnitude and phase errors were selected randomly

from a uniform distribution in the interval [−0.01, 0.01]. In

total, 100 000 cases were studied, giving sufficiently small

confidence intervals on the relevant metrics, which will be

defined in section III-C.

B. Existing Linear Least Squares Method

The proposed method was applied to identify correction

constants a,φ, b, θ to improve the accuracy of the calculated Z
and Y values. For comparison, an existing linear least squares

(LS) method was also applied to each window to obtain

parameter estimates [15]. This method models the transmission

line as a general two-port network, in which voltages and

currents are related by

Vs = A ∗ Vr +B ∗ Ir (21)

Is = C ∗ Vr +D ∗ Ir, (22)

where A,B,C,D ∈ C are constants.For the eight measure-

ment sets in a given window, (21) was expanded into two

equations by taking the real and imaginary parts to give 16

real equations in total. The real and imaginary parts of A
and B were computed through unbiased linear least squares

estimation.

TABLE I
SYSTEMATIC ERRORS IN THE SYNCHROPHASOR MEASUREMENTS

Magnitude Phase Angle TVE

Ṽs as = 0.0008 φs = 0.0059 0.60%

Ṽr ar = −0.0021 φr = −0.0076 0.78%

Ĩs bs = −0.0016 θs = 0.0095 1.02%

Ĩr br = 0.0037 θr = −0.0034 0.38%

By assuming a pi circuit (Fig. 1) inside the two-port

network, constants A,B,C,D can be expressed in terms of

impedance Z and admittance Y :

A = 1 + Y Z/2 (23)

B = Z (24)

C = Y (1 + Y Z/4) (25)

D = 1 + Y Z/2. (26)

Z and Y are calculated from least squares estimates of A
and B using (23) and (24):

Z = B (27)

Y = 2(A− 1)/B. (28)

C. Metrics for Evaluation of Method Performance

Two metrics are used to evaluate the accuracy of the

impedance and admittance parameter estimates over the sim-

ulation period. The first is the rms error E∆P calculated over

all parameter estimates; it indicates how far the estimates are

from the true values.

Let the errors in the individual parameter estimates be

∆Pi = Pi − P0, where Pi refers to the parameter estimates

Ri, Xi, Bi at each time instant ti, i = [1 . . . 196] and P0 to the

nominal parameter values R0, X0, B0. Then

E∆P =
1

P0

v

u

u

t

1

196

196
X

i=1

∆P 2
i . (29)

The second metric is Σ∆P , the standard deviation of the

parameter errors as a fraction of the nominal values. This

metric indicates the variability of the parameter error over the

simulation period. Σ∆P is given by

Σ∆P =
1

P0

v

u

u

t

1

195

196
X

i=1

(∆Pi − µ∆P )2, (30)

where µ∆P = 1/196∗
P196

i=1
∆Pi is the mean parameter error.

E∆P and Σ∆P are not defined for conductance G as its

nominal value is zero.

D. Results

The results of the case study are presented in two parts: first,

one individual case with a specific set of systematic errors is

considered; then the aggregated results from 100 000 cases of

systematic errors are presented.
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Fig. 5. This plot shows the values of the identified correction constants over
time for the individual simulation case.
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over time for the individual simulation case.

1) Individual Case: Table I lists the values of one set of

systematic errors that was applied to the voltage and current

phasors as well as the resulting Total Vector Errors (TVE). The

plot in Fig. 5 shows the values of the correction constants

that were identified using a moving window of N = 8
measurements as described in section II-C. It can be observed

that a ≈ −0.003 ≈ ar−as (from Table I), which is consistent

with the assumption that a corrects the net error. Similar

observations can be made for φ, b, θ. Fig. 6 to Fig. 8 show

the final parameter estimates over the simulation period.

In Table II the root-mean-square and standard deviation of

the parameter errors are given. For R,X,B the rms error

of the proposed method is significantly smaller than for the

existing estimator. Similarly, the standard deviation of the error
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Fig. 8. This plot shows the nominal and estimated values of susceptance B

over time for the individual simulation case.

TABLE II
PARAMETER ERRORS FOR ONE INDIVIDUAL CASE

R X B

E∆ (%)
PM1 3.51 0.111 1.11
LS2 11.9 0.212 38.7

Σ∆ (%)
PM1 0.974 0.0855 1.09
LS2 2.85 0.111 20.8

1 Proposed Method
2 Least Squares Method

TABLE III
ERRORS IN RESISTANCE R FOR 100 000 CASES

Percentile
50th 75th 95th

E∆R (%)
PM1 6.35(10) 10.8(1) 16.7(1)
LS2 7.07(10) 11.4(1) 17.4(1)

Σ∆R (%)
PM1 0.925(1) 0.998(1) 1.20(1)
LS2 2.85(1) 2.86(1) 2.89(1)

1 Proposed Method
2 Least Squares Method

is lower, indicating less variability in the parameter estimates.

2) Large Number of Cases: Tables III to V summarize

the results from the simulation of 100 000 different cases of

systematic error sets. The 50th, 75th and 95th percentile of the

distributions of the root-mean-square and standard deviation of

parameter errors are listed to give an indication of the level

of accuracy and consistency of the applied methods. For each

percentile the 95% confidence interval is given in brackets. For

resistance R, the distributions of rms error occupy a similar

range for both the proposed and the existing method, with

the 95th percentile at 17%. However, the proposed method

yields significantly lower standard deviations of error at around

1%, whereas the existing method yields 2.9%. Both methods

produce lower errors in reactance X , with rms errors of the

order of 1% and standard deviation of error of approximately

0.1%. In contrast, for susceptance B the level of error differs

greatly between the methods. While the proposed method

gives rms errors of 1% to 2%, the existing method results

in rms errors of over 100%. The standard deviation of errors

is also an order of magnitude larger for the existing method.
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TABLE IV
ERRORS IN REACTANCE X FOR 100 000 CASES

Percentile
50th 75th 95th

E∆X (%)
PM1 0.581(10) 0.984(10) 1.52(1)
LS2 0.597(10) 1.01(1) 1.56(1)

Σ∆X (%)
PM1 0.0818(10) 0.0890(10) 0.108(1)
LS2 0.110(1) 0.111(1) 0.112(1)

1 Proposed Method
2 Least Squares Method

TABLE V
ERRORS IN SUSCEPTANCE B FOR 100 000 CASES

Percentile
50th 75th 95th

E∆B (%)
PM1 1.18(1) 1.39(1) 1.82(1)
LS2 99.8(10) 168(1) 261(1)

Σ∆B (%)
PM1 1.05(1) 1.06(1) 1.08(1)
LS2 21.6(1) 21.9(1) 22.4(1)

1 Proposed Method
2 Least Squares Method

IV. DISCUSSION

A. Comparison of Methods

Based on the results presented in the previous section, the

proposed method demonstrated equal or better performance

compared to the existing linear least squares-based method.

The linear least squares method finds an optimal estimate

for the parameters of a two-port network; these are then used

to calculate impedance and admittance parameters of the pi

line. The advantage of this approach over estimating the pi

line parameters directly, is that it makes use of redundant

measurements such that constant systematic errors, as mod-

elled in this paper, either cancel or only cause a constant

offset in the estimated parameters. However, the linear least

squares method also assumes constant parameters in time, and

even small variations over a moving window lead to variable

parameter errors. This robustness to systematic errors, yet

weak accuracy for variable parameters, explains the relatively

similar results in the accuracy of the resistance and reactance

parameters in the case study for both methods. Therefore

it may appear that there is no significant advantage in the

suggested method. However, one of the crucial differences

is that the proposed method has demonstrated approximately

50% less variability in the errors of resistance values. The

resistance is the parameter with the highest temperature sen-

sitivity, hence, it is desirable to monitor changes in its value.

This can be done to good accuracy even if there is a constant

error in the estimated values, however, the accuracy of the

estimated changes deteriorates quickly with increasing error

variability.

In field applications, the true value of the impedance and

admittance parameters can never be known; thus, the accuracy

of estimated parameters has to be assessed on their repeatabil-

ity and consistency with expected physical variations. Based

on these criteria, the proposed method has clear advantages

over other estimation techniques.

B. Requirements of the Proposed Method

While the proposed method has strong potential to improve

the accuracy of impedance parameter estimation, it also has

some limitations. The method relies on increased residuals that

are caused by systematic measurement errors to identify cor-

rection constants. In the case where the errors have the same

size at both line ends (as = ar,φs = φr, bs = br, θs = θr)

there would be no increase in residuals and hence the method

would not yield any improvement. However, in these cases the

error in the estimated parameters is constant and only of the

order of the systematic errors; therefore the overall effect is

small. Increased residuals only occur if there is variation in the

load of the transmission line, which is thus a requirement for

the method to identify correction constants. The required level

of load variation depends on the magnitude of the systematic

errors as well as the random noise in the synchrophasor

measurements. Measurement noise is in turn related to the

overall load level, as the noise increases towards the lower end

of instrument scales. A conservative estimate of the minimum

load variation would be 10% of maximum line loading.

Furthermore, the method assumes that over the time window

that spans the utilized measurements the parameters are either

constant or varying linearly. This implies that the minimum

load variation has to occur within this time, which is limited

by the thermal time constant. Depending on the load profile

of the transmission line, not all time windows may satisfy

these requirements; one possibility of overcoming this issue

is to reuse correction constants from previous time windows

with higher load variation. To summarize, the applicability

and effectiveness of the proposed method depends on the

specific circumstances of the transmission line operation and

measurement instruments as well as the accuracy requirement

for the estimated parameter values. Further work is needed to

better understand and predict the relationship between these

factors.

C. Limiting Assumptions

In presenting the new method in this paper, some assump-

tions have been made. Firstly, the method has been defined

on a single-phase transmission line model. Most transmission

lines in power networks have three phases, which couple and

thus require more complex models. In the case of identical

conductors and symmetric geometry, the method may be

applied to the positive sequence components, provided that

the behaviour of the systematic error can be modelled as a

proportional error in amplitude and additive in phase angle.

Further research is required to confirm whether the method can

be effective for various three-phase transmission line systems.

The systematic errors were assumed to be constant, directly

proportional in magnitude and additive in the phase angle.

The systematic errors may follow different, non-linear models.

Over small ranges, these variations may still be approximated

well by the error model in this paper. More work is required to

investigate if and how the method can be adapted to identify

correction constants for other models and if it can be used to

select the most appropriate error model.
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V. CONCLUSION

The contribution of this paper is in the field of accurate,

real-time synchrophasor-based transmission line impedance

parameter estimation.

A method was proposed for estimating the impedance pa-

rameters of medium-length transmission lines in the presence

of systematic errors in the utilized synchrophasor measure-

ments of voltage and current. The method assumes constant

or linearly changing parameters over short periods of time and

identifies correction constants through optimization.

The effectiveness of the proposed method was compared

with that of an existing linear least squares method in a

case study of a simulated transmission line. The results are

promising and suggest that the method has significant potential

to improve parameter estimation accuracy in practical field

applications. Limits of the method and future work have been

discussed.

Accurate, real-time synchrophasor-based transmission line

impedance parameter estimation is a powerful factor in im-

proving the performance of power system monitoring, protec-

tion and control applications and thus in creating more reliable

and resilient electricity networks.

APPENDIX A

ESTIMATION OF CONSTANTS IN LINEAR PARAMETER

FUNCTIONS

To estimate qR, rR from Ri, i = [1, . . . , N ], vectors R ∈

R
N ,QR ∈ R

2 and matrix HZ ∈ R
N⇥2 are defined, where

R =
⇥

R1 . . . RN

⇤T
,QR =



qR
rR

�

,HZ =



t1 . . . tN
1 1 1

�T

.

The N-dimensional model R, based on the theoretical model

fR(ti) = qRti + rR, is given by the matrix equation

R = HZQR + ε, (31)

where ε = [ε1, . . . , εN ]T are error terms. To satisfy the least

squares criterion, min
PN

i=1
ε2i , QR is computed using

QR = (HT
ZHZ)

�1HT
ZR. (32)

In the same manner, qX , rX are calculated using vectors

X ∈ R
N ,X =

⇥

X1 . . . XN

⇤T
and QX ∈ R

2,QX =
⇥

qX rX
⇤T

.

To estimate qG from Gi, i = [1, . . . , N ] vectors G,HY ∈

R
N and QG ∈ R are defined, where

G =
⇥

G1 . . . GN

⇤T
,HY =

⇥

1 . . . 1
⇤T

,QG =
⇥

rG
⇤

.

The N-dimensional model G, based on the theoretical model

fG(ti) = rG, is given by

G = HYQG + ε, (33)

where ε = [ε1, . . . , εN ]T are error terms. To satisfy the least

squares criterion, min
PN

i=1
ε2i , QG is computed by

QG = (HT
YHY)�1HT

YG. (34)

In the same manner, rB is calculated using vector B ∈

R
N ,B =

⇥

B1 . . . BN

⇤T
and QB ∈ R,QB =

⇥

rB
⇤

.

APPENDIX B

PARTIAL DERIVATIVES OF Z AND Y

Let Vs, Is, Vr, Ir ∈ C,Ω = C
4 \ {VsIr + VrIs = 0} ,Γ =

C
4\{Vs + Vr = 0}. Define complex functions Z : Ω → C, Y :

Γ → C, where

Z = (V 2
s − V 2

r )/(VsIr + VrIs) (35)

Y = 2(Is − Ir)(Vs + Vr). (36)

Rewrite Z as Z = h1/h2 and Y as Y = h3/h4, where

h1 : C
2

→ C, h2 : Ω → C, h3 : C
2

→ C, h4 : C
2 \

{Vs + Vr = 0} → C,

h1 = V 2
s − V 2

r , h2 = VsIr + VrIs (37)

h3 = 2(Is − Ir), h4 = Vs + Vr. (38)

Since h1, h2, h3, h4 are complex polynomials, Z and Y are

rational functions. By the differentiability of complex polyno-

mials and the quotient rule, Z and Y are differentiable at all

points in Ω and Γ, respectively. The partial derivatives of Z
with respect to Vs and Vr are

∂Z

∂Vs

=
2Vs

VsIr + VrIs
−

(V 2
s − V 2

r )Ir
(VsIr + VrIs)2

∂Z

∂Vr

=
−2Vr

VsIr + VrIs
−

(V 2
s − V 2

r )Is
(VsIr + VrIs)2

.

(39)

The partial derivatives of Y with respect to Is and Ir are

∂Y

∂Is
=

2

Vs + Vr

,
∂Y

∂Ir
= −

2

Vs + Vr

. (40)

APPENDIX C

APPROXIMATION: ERRORS AT ONE LINE END

To a first order linear approximation, the change in Z caused

by changes in Vs and Vr is given by

δZ =
∂Z

∂Vs

δVs +
∂Z

∂Vr

δVr

=
2(VsδVs − VrδVr)

VsIr + VrIs
−

(V 2
s − V 2

r )(IrδVs + IsδVr)

(VsIr + VrIs)2
,

(41)

where results from Appendix B have been used. Let the

relative change in Z be

∆Z =
δZ

Z
=

2(VsδVs − VrδVr)

V 2
s − V 2

r

−
IrδVs + IsδVr

VsIr + VrIs
. (42)

Suppose errors are modelled at both line ends by δVs = (as+
jφs)Ṽs and δVr = (ar + jφr)Ṽr. Then the relative change

around Ṽs, Ṽr is

∆Zexact =
2((as + jφs)Ṽs

2
− (ar + jφr)Ṽr

2
)

Ṽs

2
− Ṽr

2
, (43)

where only the first, dominant term is considered. Now sup-

pose all errors are modelled to be in Ṽr, such that δVs =
0, δVr = (a + jφ)Ṽr where a = ar − as,φ = φr − φs. Then

the relative error becomes

∆Zapp =
−2(ar − as + jφr − jφs)Ṽr

2

Ṽs

2
− Ṽr

2
. (44)
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The difference between the exact and approximate relative

error is

∆Zexact−∆Zapp =
2(as + jφs)(Ṽs

2
− Ṽr

2
)

Ṽs

2
− Ṽr

2
= 2(as+ jφs).

(45)

Hence, by modelling all error to be in Ṽr, an approximation

of 2(as+ jφs) is made in the relative error of the impedance,

which is constant and of a lower order than the overall error

∆Zexact. Using an equivalent expression for ∆Y , a similar

argument can be produced for modelling all errors in current

in Ĩr.
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