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Abstract— Correct assessment of bradykinesia is a 

key element in the diagnosis and monitoring of 

Parkinson’s disease. Its evaluation is based on a 

careful assessment of symptoms and it is quantified 

using rating scales, where the Movement Disorders 

Society-Sponsored Revision of the Unified 

Parkinson's Disease Rating Scale (MDS-UPDRS) is the 

gold standard. Regardless of their importance, the 

bradykinesia-related items show low agreement 

between different evaluators. In this study we design 

an applicable tool that provides an objective 

quantification of bradykinesia and that evaluates all 

characteristics described in the MDS-UPDRS.  

Twenty-five patients with Parkinson’s disease 

performed three of the five bradykinesia-related 

items of the MDS-UPDRS. Their movements were 

assessed by four evaluators and were recorded with 

a nine degrees of freedom sensor. Sensor fusion was 

employed to obtain a three-dimensional 

representation of movements. Based on the resulting 

signals, a set of features related to the characteristics 

described in the MDS-UPDRS was defined. Feature 

selection methods were employed to determine the 

most important features to quantify bradykinesia. 

The features selected were used to train support 

vector machine classifiers to obtain an automatic 

score of the movements of each patient.  

 The best results were obtained when seven features 

were included in the classifiers. The classification 

errors for finger tapping, diadochokinesis and toe 

tapping were 15-16.5%, 9.3-9.8% and 18.2-20.2% 

smaller than the average inter-rater scoring error, 

respectively.  

The introduction of objective scoring in the 

assessment of bradykinesia might eliminate 

inconsistencies within evaluators and inter-rater 

assessment disagreements and might improve the 

monitoring of movement disorders.  

 

I. INTRODUCTION 

 

Bradykinesia is defined as slowness of movement1 

and is one of the main symptoms of Parkinson’s 

disease (PD)2. Its accurate evaluation is essential for 

correct diagnosis and monitoring of PD. The gold 

standard for assessing its severity and that of other 

movement disorder’s symptoms is the evaluation by 

a well-trained clinician using standard clinical rating 

scales3. While a physical examination of the patient 

and a careful evaluation of the symptoms are 

required for the assessment of bradykinesia, rating 

scales are employed to express its severity as a 

quantity. The most widely used for PD is the 

Movement Disorders Society-Sponsored Revision of 

the Unified Parkinson's Disease Rating Scale (MDS-

UPDRS)4. In its motor evaluation section, it defines a 

series of tasks that are performed by the patient and 

the movement performance characteristics that 

should be assessed. The assessment is represented 

by a sum score that summarizes movement 

performance. However, in spite of its ubiquitous use, 

the evaluation of the bradykinesia-related items of 

the MDS-UPDRS shows low inter-rater agreement 

between movement disorders specialists1. This 

limitation hampers the evaluation of bradykinesia 

and the diagnosis and monitoring of PD. An objective, 

unbiased scoring of these items of the MDS-UPDRS 

could improve the evaluation of bradykinesia.  

The characteristics that are evaluated for the 

bradykinesia-related items of the MDS-UPDRS 

include amplitude, speed, hesitations, halts and any 

variability or changes in these features over time4. 

The objective measurement and analysis of these 

characteristics (or very similar ones) has been the 

goal of previous studies1,2,5–10. Different sensors or 

combinations of sensors have been employed, such 

as accelerometers1,2,6 , gyroscopes1,7,8, magnetic 

sensors9 and tactile screens10. This resulted in a wide 

variety of measurement systems and methodologies 

that have allowed for bradykinesia assessments to be 

extended to even outside the hospital8,11. In recent 

years, the Modified Bradykinesia Rating Scale 

(MBRS), which assesses amplitude, speed, and 

rhythm of movements with individual scores was 

introduced12. Its reliability has been evaluated with 

motion sensors in different tasks1,13,14. While it 
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provides increased sensitivity in identifying different 

components of bradykinesia, it shares some of the 

limitations of the UPDRS because it also relies on 

subjective clinical judgment1. In spite of good results, 

these objective assessments are still not commonly 

used and the MDS-UPDRS remains the gold standard 

for the quantification of bradykinesia15. In order to 

bring objective and unbiased assessment tools to 

clinical practice, the gap between current subjective 

clinical rating scales and the wide variety of sensors 

and methods used for objective assessment of 

bradykinesia needs to be closed.  

Current assessment of bradykinesia is impaired by 

two inherent inconveniences: the evaluator’s 

individual bias and inconsistency and scale 

limitations due to the limited number of categories of 

the scale16. In a separate study16 we propose a 

solution to the problem of the limited number of 

categories. Here, we propose an automatic and 

objective method for assessment of the bradykinesia-

related items of the MDS-UPDRS that uses a 

supervised classification algorithm (support vector 

machine (SVM) based) to reproduce the evaluators’ 

classification results. Specifically, to bridge the gap 

between the current quantification of bradykinesia 

and automatic measurement and assessment tools, 

we base our analysis on data that are highly 

comparable to what an evaluator can observe and 

define features that are very similar to the 

characteristics that are evaluated for the 

bradykinesia-related items of the MDS-UPDRS.  

The most accurate technique to monitor human 

movements in a research setting is by using optical 

motion analysis systems3. However, such systems 

impose many restrictions that make them unsuitable 

for routine clinical assessment. Instead, to obtain an 

accurate description of movement, a nine degrees of 

freedom (9DoF) sensor (Shimmer17, Dublin, Ireland, 

version 2r, composed of three accelerometers, three 

gyroscopes and three magnetic sensors) was 

employed to capture movement performance. By 

integrating the information of each individual signal 

using a sensor fusion algorithm an accurate estimate 

of three-dimensional movement was obtained. The 

result of this algorithm, in the form of quaternions, 

was transformed to Euler angles. By selecting the 

Euler angle that best represented the observed 

movement for the specific MDS-UPDRS item, and 

subsequently extracting features that are very 

similar to the characteristics defined in the MDS-

UPDRS, we ensured that the automatic measurement 

and assessment method was highly comparable to 

the current quantification of bradykinesia.  

To objectively evaluate movement performance 

we employed support vector machines (SVM). A SVM 

classifier can include every feature available, but this 

might result in overfitting and poor classification 

performance due to the curse of dimensionality18. 

Alternatively, the classifier can only include the 

features that produce an improvement on the 

classification. However, this can result in the 

exclusion of some important features. We took a 

middle way between these two methods and 

included two features a priori that can be related to 

two important characteristics described in the MDS-

UPDRS (amplitude and speed), and then included 

additional features into the classifier based on their 

performance. An alternative approach to reduce data 

dimensionality and thereby avoid the curse of 

dimensionality is principal component analysis 

(PCA). We explored this alternative approach as well, 

as features based on principal components will 

express more of the variance recorded by the sensors 

and may therefore result in a better classifier. These 

two approaches were adopted to evaluate whether 

features from expert knowledge obtain a better 

performance over features from dimensionality 

reduction.  

To determine which features should be included in 

the classifier, an iterative method (forward-selection 

wrapper19) was used. In each iteration an extra 

feature was included in the classifier, based on the 

classifier performance. This process was repeated 

until there was no improvement in the performance 

of the classifier.  

SVM is a supervised classifier that learns from 

given labels. The scores from evaluators were used 

as labels to train the classifier. The performance of 

the classifier was obtained using leave-one-out cross-

validation20 (LOOCV) which is a technique used to 

estimate the classification error on new data. 

In this study we aim to obtain an objective evaluation 

of bradykinesia that eliminates inconsistency of an 

evaluator. Different evaluators might weight 

movement characteristics differently. Therefore, the 

features selection procedure was performed using 

the scores of four clinical evaluators, separately. This 

resulted in four different classifiers (for each MDS-

UPDRS bradykinesia-related item) that learned from 

different labels and that might include different 

features. The classification error of these classifiers 

was averaged for each iteration and these averages 

were compared against the inter-rater scoring error 

to assess the performance of our automatic 

measurement and assessment methods. 



 

II. METHODS 

 

Twenty-five patients with mild to moderate PD (age: 

64.4 ± 1.7 y, 13 male, 12 female , SCOPA-COG 

cognition test: 30.0 ± 1.0) and ten age-matched 

controls (age: 65.2 ± 3.2 y, 6 male, 4 female, SCOPA-

COG cognition test: 28.5 ± 1.4). Every participant 

performed items 3.4 (finger tapping), 3.6 

(diadochokinesis) and 3.7 (toe tapping) of the motor 

examination section of the MDS-UPDRS with both 

right and left limbs. All participants were asked to 

perform the tasks as fast and accurately as possible. 

Controls were included to evaluate the relevance of 

features included a priori in the classifier. For every 

patient, each task was videoed and later scored by 

four well-trained clinicians according to the 

guidelines of the MDS-UPDRS. The study was 

conducted according to the principles of the 

Declaration of Helsinki (2008) with prior approval of 

the Ethics committee of the University Medical 

Center Groningen (UMCG). 

 

A. Signal acquisition 

Before each task was performed, a 9DoF orientation 

sensor was placed on the specific body part of 

interest. For finger tapping the sensor was placed on 

the dorsal side of the proximal phalange of the index 

finger. For diadochokinesis the sensor was placed on 

the dorsal side of the forearm close to the wrist. 

Finally, for toe tapping the sensor was placed on the 

instep of the foot over the shoe of the participant. 

Each 9DoF sensor incorporates nine internal sensors 

(three accelerometers, three gyroscopes and three 

magnetic sensors), where sensors of the same type 

are orthogonally aligned to each other. Before every 

measurement, each sensor was calibrated using the 

Shimmer 9DoF Calibration v2.317 application. This 

prevented misalignment of the electronic board 

containing the internal sensors with the outer case 

and ensured proper recording of the magnetic 

sensors. All signals were recorded at a sampling rate 

of 51.2 Hz and streamed via bluetooth to a computer. 

 

B. Sensor Fusion 

To reduce the effects of noise and to obtain a more 

accurate estimate of movement, all signals from each 

sensor were combined with a sensor fusion 

algorithm21 that allows the estimation of the spatial 

orientation parameters of the 9DoF sensor. This 

algorithm, based on quaternions, achieves the level 

of accuracy of a Kalman filter (which is considered 

the most popular probabilistic fusion algorithm22) 

without the computational expense that the latter 

requires21. The quaternion representation of an 

orientation vector used in this algorithm has the 

advantage that it is not affected by singularities  
 

 (gimbal lock) associated with Euler angles21 that 

affect other algorithms. The output of the algorithm 

in the form of quaternions was converted to Euler 

angles. Since for each task, most of the movement can 

be described by a single Euler angle (for finger 

tapping by the angle that describes the flexion and 

extension of the index finger, for diadochokinesis by 

the angle that describes the pronation and 

supination of the wrist and for toe tapping by the 

angle that describes the dorsiflexion and plantar 

flexion of the foot) the analysis of each tasks was 

performed on the corresponding Euler angle signal 

that explained most of movement. 

 

C. User interface 

Shimmer provides a basic acquisition program in 

LabView23 (Austin, Texas, U.S.A.) that includes a 

three dimensional representation of a 9DoF sensor. 

This program was modified to display a three 

dimensional model that represents the body parts 

involved in each movement (see Fig. 1 for two 

examples). This representation allowed visual 

identification of improper calibration as indicated by 

false rotational movements in the model for 

motionless sensors and verification that the 

recording procedure was correctly performed 

(sensors placed incorrectly would be indicated by 

unusual movements of the model). 

 

D. Signal processing 
 

By nature, human body movements are limited to a 

maximum frequency of 20 Hz24. Therefore, to 

decrease artifacts such as drift and the noise 

produced by the main electrical power line, the 

signals were band-pass filtered between 0.3 and 20 

 
Fig. 1.  Left: Orientation sensor on index finger for finger 

tapping task (top) and its corresponding model (bottom). 

Right: Orientation sensor on the wrist for diadochokinesis 

task (top) and its corresponding model (bottom). 
 



Hz (second order Butterworth filter). Then, to obtain 

a smoother version of the signals for feature 

extraction, spline interpolation was used to fit each 

signal (Fig. 2) using a smoothing parameter25 ρ = 0.1 

(Eq. 1). With this approach, the fitted spline does not 

go through every single point of the original signal 

but only represents the general pattern of the signal. 

The function that was minimized to obtain the 

smoothing spline is given in Eq. 1: 
2

2 2

2

( ( )) (1 ) ( )i i ii

d s
w y s x

dx
ρ ρ+ + −∑ ∫               (1) 

Here, ρ is the smoothing parameter and wi is the 

specified weight of data point i. The first term is the 

mean squared error (MSE) when the curve s, which is 

a function of x, is used to predict y. The second term 

is an added penalty function that limits the curvature 

of s26. Two versions of each signal were thus 

obtained: one with more detail (raw angle (RA) 

signal) and one with less detail (smoothing spline 

angle (SSA) signal). Features were subsequently 

extracted from these two signals. 

 

E. Determination of features 

To obtain features related to the characteristics 

defined in the MDS-UPDRS (e.g. amplitude, speed and 

their variability), we first identified each movement 

repetition in the signal by distinguishing the peaks 

and valleys in the SSA signal. Then, we defined the 

amplitude of a single movement as the difference in 

amplitude from a peak to the next valley and the 

frequency of each movement as the inverse of the 

time between consecutive peaks (Fig. 2). To 

represent amplitude and frequency (representing 

speed of movement) as mentioned in the MDS-

UPDRS, the mean amplitude and mean frequency 

across all identified movements were calculated. Due 

to its smoothness, the SSA signal more closely 

resembles the observed oscillation pattern 

associated with the type of movements studied in the 

MDS-UPDRS than the RA signal. On the other hand, 

the low-pass filtering effect of the spline 

interpolation reduces the amplitude of each 

individual movement repetition in the SSA signal. We 

therefore decided to calculate features for both the 

RA and SSA signals. 

Other characteristics that are evaluated according 

to the MDS-UPDRS are decrement of movement 

amplitude, and slowing of movement. To capture 

decrement of movement amplitude, the slope of the 

straight line fitted through all movement amplitudes 

as a function of movement repetition number was 

taken (slope amplitude). To capture slowing of 

movement, a similar procedure was performed for 

the movement frequencies, resulting in the feature 

slope frequency. These procedures were performed 

for both the RA and SSA signals.  

Rhythm is another characteristic mentioned in the 

MDS-UPDRS and can be defined as any sequence of 

regularly recurring events. To account for this 

characteristic we estimated features based on its 

reciprocal, movement variability. We estimated 

amplitude and frequency variability by calculating 

the standard deviations (std) of all individual 

movement amplitudes and frequencies, respectively. 

This resulted in the features std amplitude and std 

frequency. 

Another characteristic mentioned in the MDS-UPDRS 

is regularity. The expected regular signal of a healthy 

subject describes a smooth pattern. To account for 

regularity we obtained features related to the 

smoothness of the signal. Compared to their 

corresponding RA signals, SSA signals are much 

Number Feature 
Squared 

version  

number 

1 Slope amplitude RA 22 

2 Mean amplitude RA 23 

3 Standard deviation amplitude RA 24 

4 Slope frequency RA 25 
5 Mean frequency RA 26 

6 Standard deviation frequency SSA 27 

7 Slope amplitude SSA 28 

8 Mean amplitude SSA 29 

9 Standard deviation  amplitude SSA 30 

10 Slope frequency SSA 31 

11 Mean frequency SSA 32 

12 Standard deviation  frequency SSA 33 

13 Filtered signal fit (SSE) 34 

14 Filtered signal fit (R2) 35 

15 Filtered signal fit (RMSE) 36 

16 Percentage of Hesitations 37 
17 CV of zero crossings 38 

18 Mean maxV during movement initiation 39 

19 CV maxV during movement initiation 40 

20 Mean maxV during movement 

termination 

41 

21 CV maxV during movement termination 42 

 
Fig. 2.  Example of raw angle signal (gray) and smoothing spline 

angle (black) signal for diadochokinesis. The frequency of each tap 

is obtained as the inverse of the time (t) between consecutive 
peaks. In the figure the frequency of tap six was defined as the 

inverse of the time difference between the sixth and the fifth peaks.  

The amplitude of each tap is obtained as the difference in 

amplitude from a peak to the next valley. In the figure the 

amplitude of tap eight was defined as the amplitude difference 

between the eighth peak and the eighth valley.  



smoother. The goodness of fit of SSA signals to their 

corresponding RA signals thus provides an indication 

of the smoothness of movement. The discrepancy 

between these two signals is summarized in the 

following additional features: Sum of Squares due 

to Error (SSE) which is the total deviation of the SSA 

signal from the RA signal, the coefficient of 

determination (R2) and the Root Mean Squared 

Error (RMSE)27  

We additionally included features describing 

maximum velocity during movement initiation and 

termination. First, to estimate the velocity of each 

movement, the first derivative of the SSA signal was 

calculated. According to Shima et al.9, we determined 

the maximum velocity during initiation of each 

movement (extension for finger tapping, dorsiflexion 

for foot tapping and supination for diadochokinesis) 

and during termination of each movement (flexion 

for finger tapping, plantar flexion for  

foot tapping and pronation for diadochokinesis) 

and used their mean and coefficient of variation (CV) 

resulting in the features mean and CV maxV during 

movement initiation and mean and CV maxV 

during movement termination. 

Finally, hesitations were quantified according to 

Shima et al.9, employing zero crossings in the 

acceleration signal. The acceleration signal was 

calculated as the second derivative of the SSA signal. 

An individual movement was considered to contain 

hesitations if its corresponding acceleration signal 

contained more than two zero crossings. The 

percentage of individual movements containing 

hesitations (percentage of hesitations) and the CV 

of the number of zero crossings of each individual 

movement (CV of zero crossings) were determined 

as features related to hesitations. 

 

F. Feature selection 

The features so far described constitute the basic 

set of features (set 1) that was used in the forward-

selection wrapper to select features for the classifier. 

Since the relationship between the selected features 

and an evaluator’s scores might be better described 

by non-linear than by linear relationships we also 

formed a set of features (set 2), which was composed 

of the features of set 1 and their squared values. A 

summary of all features is given in Table 1. 

Our goal is to select features such that the 

characteristics described in the MDS-UPDRS are 

captured. Amplitude and frequency (representing 

speed of movement) are two characteristics that can 

be more easily and more reliably estimated from 

sensor recordings than the rest of the characteristics 

(variability, hesitations, halts, etc.). Since these two 

characteristics are mentioned in the MDS-UPDRS we 

decided to include the features that represent them 

(mean amplitude and mean frequency) in the 

algorithm. The relevance of these two features to 

improve the classification performance was 

evaluated using a t-test to compare their values 

between patients and controls. A t-test is a univariate 

feature importance method28. Univariate methods 

assume feature independence. This assumption is 

not met by amplitude and frequency (higher 

amplitudes can only be obtained at the cost of speed 

and vice versa). Therefore feature importance was 

tested on the product of amplitude and frequency. 

The results of the t-test indicate that this feature is 

significantly different between patients and controls. 

Therefore, we decided to include the two features 

mean amplitude and mean frequency of the SSA 

signal in the classifiers a priori, before the first 

iteration of the feature selection algorithm. 

Wrappers are multivariate methods that take into 

account feature dependencies. They potentially 

achieve better results because they do not make 

simplifying assumptions regarding feature 

independence. The forward-selection wrapper 

approach is an iterative method that includes one 

feature into the classification algorithm with each 

iteration19. It allows to observe the performance of 

the classifier (in terms of number of tasks correctly 

classified) as features are added to the classifier. The 

inclusion of features with meaningless variance in 

terms of classification will only confound learning 

methods18. Thus, instead of entering every feature 

into the classifier, a subset of features must be used. 

There are different feature selection methods. The 

forward-selection wrapper approach16 was selected 

for this study, because it is easier to interpret the 

incorporation of each feature into the model than in 

the backward-selection approach where relations 

between variables are taken into account. To select 

features, wrappers use the same evaluation criterion 

as employed by the classifier itself (in this case the 

classification error). To determine which feature 

should be added, in each iteration, the performance 

of the classifier is evaluated with all already included 

features plus each candidate feature individually. The 

method will select the feature that results in the 

largest performance improvement. This method was 

used separately on sets 1 and 2 resulting in a subset 

of features for each (subsets 1 and 2). 

We also explored classification performance when 

features are obtained by dimensionality reduction 

using PCA. PCA was applied to set 2 only, as it 

contains more features than set 1. The resulting 

principal components (PCs) represent the 

(combined) features from expert knowledge in order 



of explained variance. However, more explained 

variance does not necessarily imply better 

classification performance. We built two classifiers 

on the basis of the resulting PCs (set 3): subset 3 was 

built by adding the PC to the classifier (with each 

iteration) that explained most of the remaining 

variance. Finally, subset 4 was built using the 

forward-selection wrapper approach on the PCs. For 

a fair comparison across methods, the first two PCs 

that explained most variance were also included a 

priori before the first iteration of the feature 

selection method (see Fig. 3 for an overview of the 

four classification approaches). 

 

G. Classification 

All classification approaches employed the 

classification error as evaluation criterion. The 

classification error was defined as the percentage of 

patients that were incorrectly classified (according to 

the evaluator’s classification) using leave-one-out 

cross-validation29 (LOOCV), which was used instead 

of other less computationally expensive algorithms 

in view of the relatively low number of participants30. 

The automatic classification was done using support 

vector machines (SVMs). SVMs employ kernels to 

map the data into a higher dimensional feature space 

where data can be separated by a hyperplane31. 

Originally, SVMs were designed for binary 

classification. In this study, the performance on each 

task was scored between zero and four according to 

the MDS-UPDRS criteria by each of the four 

evaluators. From the several methods that extend 

SVMs use to multiclass classification32, a one-versus-

all strategy, which employs binary classifiers (e.g. 

score-zero class vs the rest of the classes) was 

selected (illustrated in Fig. 4). In each binary 

classifier the features derived from every 

performance but one (according to LOOCV) were 

used as training samples to construct a hyperplane. 

The remaining performance is used as a test sample. 

Its location in the feature space determines the 

confidence value, which can be interpreted as the 

Euclidian distance of the sample to the separating 

hyperplane and it expresses the confidence of a 

sample to belong to a certain class. The remaining 

sample is then classified in the class that obtained 

the highest confidence value across all binary 

classifiers. When using SVMs, the choice of the kernel 

determines the separation boundaries of the classes. 

In this study the Radial Basis Function (RBF) (Eq. 2) 

kernel was used, which is generally a reasonable 

choice33. 

 
2
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Fig. 3.  Overview of four classification approaches. From each set of 

features a subset with optimal features is constructed. The first 

two sets are composed of features from expert knowledge and the 

last two contain features obtained from PCA. Subsets 1, 2 and 4 are 

built using the forward-selection wrapper as the feature selection 

algorithm while subset 3 includes in each iteration the PC that 

explains most of the variance that has not already been included. 

Two features are included in each subset a priori before the 

addition of more features.  

 
Fig. 4. Multi-class classification using SVM and the RBF kernel in a 

one-versus-all methodology using LOOCV with only two features. 

In this example tasks were evaluated from 0 to 3 (four classes). In a 

one-versus-all methodology every single class is evaluated against 

the rest of the classes (e.g. red dots correspond to the amplitude 

and frequency of the tasks scored as zero and white dots 

correspond to the amplitude and frequency of the remaining tasks 

in the top left figure). The different decision surfaces created using 
the red and white dots are illustrated with different colors. The 

confidence of a new sample (green dot representing the task left 

out by LOOCV) to belong to a certain class is represented by the 

color of the surface and by the scale on the right of each figure. The 

new sample is then classified in the class that obtained the highest 

confidence (score 0 in the example).  



 

Here, x and x’ are two training samples of the 

feature space and γ determines the influence of the 

squared Euclidian distance (between the feature 

vectors x and x’) to build the hyperplane. In this 

study γ = 1.0 was selected. To avoid poor 

performance due to relatively large values of 

individual features, all features were first normalized 

using z-scores. 

For all methods, the classification error obtained at 

each iteration of the feature selection wrapper was 

compared against the average inter-rater scoring 

error. This error was defined as the average 

percentage of tasks that were classified differently by 

each combination of two evaluators. 

 

III. RESULTS 

 

A. Combined amplitude-frequency 

The distributions for combined amplitude-frequency 

were all normally distributed for the three MDS-

UPDRS items and for both groups with the exception 

of toe tapping for patients (p=0.04, Kolmogorov-

Smirnov test). T-tests were used for all group 

comparisons including toe tapping, since its 

distribution did not show large differences from 

normality. Combined amplitude-frequency was 

always higher for controls than for patients (finger 

tapping: controls M=131.85 deg/s, patients 

M=107.73 deg/s, p=0.0002; diadochokinesis: 

controls M=170.68 deg/s, patients M=150.78 deg/s, 

p=0.03; toe tapping: controls M=32.19 deg/s, 

patients M=12.16 deg/s, p<0.0001, Fig. 5). 

 

B. Classification 

The effects of the curse of dimensionality (the 

performance does no longer increase (substantially) 

even though more features were added) are visible 

for each of the three items approximately after the 

sixth iteration (seven features used) (illustrated in 

Fig. 6). Therefore, we focus our analysis on the 

results obtained before this effect occurs. 

1) Finger tapping  

The average classification error for each subset is 

illustrated for finger tapping in Fig. 6 (left). 

Classification employing features in subsets 1 and 2 

gave better results than employing features in 

subsets 3 and 4. When seven features were included 

(sixth iteration) the classification error for subsets 1 

and 2 was 33% and 31.5% respectively: an 

improvement of 15-16.5% compared to the average 

inter-rater scoring error (48%). These performances 

were just 0.5-1% lower than the best performance of 

the classifiers that occurred at the 9th and 10th 

iterations, respectively. After four iterations the best 

performance for subset 3 was obtained, resulting in a 

classification error of 53.5%: 5.5% worse than the 

average inter-rater scoring error. After six iterations 

the classification error of subset 4 was 41.5%: this 

performance is 6.5% better than the average inter-

rater scoring error and 4.5% worse than the best 

performance found at iteration eight. 

Until iteration six, the unique features selected by 

more than one classifier for subsets 1 or 2 (besides 

features 8 and 11 that were included a priori) were 

the features 12, 1 and 22. 

2) Diadochokinesis  

The average classification error at each iteration 

for each subset is illustrated for diadochokinesis in 

Fig. 6 (center). Overall classification performed 

better for subsets 1 and 2 than for subsets 3 and 4. 

After six iterations the classification errors for subset 

1 and 2 were 35.5% and 36%, respectively: an 

improvement of 9.3-9.8% compared to the average 

inter-rater scoring error (45.3%). Classification for 

subset 3 shows very poor improvement 

performance. The best performance was obtained 

after iteration ten, resulting in a classification error 

of 44.5%: a minor improvement of 0.8% compared to 

the average inter-rater scoring error. However, 

classification for subset 4 shows a similar pattern as 

for subsets 1 and 2. At the sixth iteration a 

classification error of 40% is obtained: an 

improvement of 5.3% compared to the average inter-

rater scoring error and 9.8% worse than the best 

performance found at iteration ten. 

Until iteration six, the unique features selected by 

more than one classifier for subsets 1 and 2 (besides 

features 8 and 11 that were included a priori) were 

the features 1, 4, 5, 10, 16, 28 and 37. 

 

3)  Toe tapping 

The average classification error for each subset is 

Fig. 5. Boxplots of combined amplitude-frequency feature for 

finger tapping (left), diadochokinesis (center), and toe tapping 

(right). On average, for the three tasks controls exhibit a 

significantly higher combination of amplitude and frequency than 
patients.  



illustrated for toe tapping in Fig. 6 (right). After six 

iterations the classification error for subsets 1 and 2 

was 37.5% and 35.5%, respectively: an improvement 

of 18.2-20.2% compared to the average inter-rater 

scoring error (55.7%) and only 1.5-2.5% worse than 

the best performance for these subsets. Classification 

for subset 3 showed very poor performance, 

obtaining its lowest error at iteration two (52%): 

only 3.7% better than the average inter-rater scoring 

error and not showing improvement afterwards. On 

the other hand classification performance for subset 

4 showed a continuous improvement. After six 

iterations it obtained a classification error of 35%: an 

improvement of 17% compared to the average inter-

rater scoring error and 5.5% worse than its best 

performance. 

Until iteration six, the unique features selected by 

more than one classifier for subsets 1 or 2 (besides 

features 8 and 11 that were included a priori) were 

the features 2, 12, 21 and 33. 

 

IV. DISCUSSION 

 

In this study we showed how objective 

measurement and assessment of the bradykinesia-

related items of the MDS-UPDRS can be achieved 

using a 9DoF sensor and SVM-based classification. 

Our approach resulted in a consistent scoring of 

tasks with a lower classification error than the inter-

rater classification error that occurs when 

bradykinesia is assessed by different evaluators. 

Classification based on features that were closely 

related to the important characteristics assessed in 

the MDS-UPDRS outperformed classification based 

on features that resulted from dimensionality 

reduction (PCA) for two of the three bradykinesia-

related items. The importance of selecting 

appropriate and relevant features is most obvious 

from the results obtained when, at each iteration, the 

PC that explained most of the remaining variance in 

the dataset was added (subset 3); this approach 

resulted in the worst classification performance 

among all subsets. 

As expected, for all items and before too many 

features were entered in the algorithm, classification 

based on subset 2 obtained a slightly better 

classification more rapidly than for subset 1. This 

suggests that the relation between the selected 

features and the clinical evaluation might be non-

linear. Among the many non-linear transformations 

of features that could have been used (e.g. 

logarithmic, square root, etc.), we only investigated 

the change in classification performance when 

quadratic features were added to the set of features. 

It may be that including features derived from other 

nonlinear transformations of the original features 

would further improve classification performance. 

Amplitude and speed are the two characteristics 

mentioned in the MDS-UPDRS that can be more 

directly related with specific features from the 

recorded signal. After confirming their relevance 

with a feature importance test we decided to include 

them a priori into the feature selection algorithm. A 

different approach would be a feature selection 

algorithm without a priori inclusion of features. 

However, depending on the scores used to train the 

classifiers, some features that according to the MDS-

UPDRS should be included in the classifier might be 

left out. The other extreme case would have been to 

include every feature, which would most likely result 

in overfitting and problems due to the curse of 

dimensionality.  

 
Fig. 6. Boxplots of combined amplitude-frequency feature for finger tapping (left), diadochokinesis (center), and toe tapping (right). Below 

each graph there is a visualization of the features selected for subsets 1 and 2 for each evaluator on each iteration. The incorporation of a 

non-repeated feature is indicated in pale gray. On dark gray the features that are selected by more than one classifier are indicated. 



A. Feature selection 

For most of the subsets the best classification 

performance was obtained around the sixth iteration. 

In most cases, further inclusion of features did not 

improve or even declined classifier performance. Our 

discussion is therefore focused on the features 

selected by the classifiers in subsets 1 and 2 until this 

iteration. The features selected by the classifiers 

suggest which features were more relevant for each 

evaluator. 

1) Finger tapping  

From set 1, feature 1 (slope amplitude RA) and 

feature 12 (std. frequency RA) were the only features 

selected by more than one classifier. This indicates 

that the variability in movement speed (feature 12) 

and the decrease in movement amplitude (feature 1) 

are important characteristics to score this task. A 

decrease in movement amplitude is typical for 

patients with PD. Probably both methods selected 

the slope from the RA signal (feature 1) and not from 

the SSA signal (feature 7) because the low-pass filter 

effect of the spline interpolation reduced signal 

amplitude. From set 2, feature 1 was also selected by 

more than one classifier. Moreover, the only other 

feature selected by more than one classifier was its 

squared version (feature 22). For subset 2 feature 12 

was only selected by one classifier. This probably 

occurred because one classifier included the square 

of featured 12 (feature 33), instead. 

2) Diadochokinesis  

From set 1, five features were selected by at least 

two classifiers for diadochokinesis. Features 1 (slope 

amplitude RA), 4 (slope frequency RA), 5 (mean 

frequency RA), 10 (slope frequency SSA) and 15 

(percentage of hesitations) were selected. From set 2, 

only two features were selected by at least two 

classifiers: feature 15 was substituted by its squared 

version (feature 37) and the squared version of slope 

amplitude SSA signal (feature 28) was also included. 

The inclusion of slope frequency and slope amplitude 

underlines the importance of the decrease in 

amplitude and speed of movement to rate this task. 

Since feature 11 (mean frequency SSA) was one of 

the a priori selected features, it is interesting to 

notice that two classifiers also included feature 5 

(mean frequency RA). This suggests that the 

information contained in these two features is 

different. The percentage of hesitations was a feature 

selected from both sets 1 and 2 for diadochokinesis, 

while it was not selected for the other two 

bradykinesia-related items of the MDS-UPDRS. We 

suggest that this may be explained by the fatigue 

induced by this task, which may result in short 

movement halts that can be identified on video. 

3) Toe tapping  

From set 1, feature 2 (mean amplitude RA) and 

feature 12 (std frequency SSA) were the only 

features selected by more than one classifier for toe 

tapping. For the classifiers that employed set 2 the 

std frequency of SSA signal was substituted by its 

squared version (feature 33). In contrast to the other 

two bradykinesia-related items of the MDS-UPDRS, 

feature 1 (slope amplitude RA) was not selected by 

more than one classifier. This can be explained by the 

difficulty of evaluating the small amplitude 

movements involved in toe tapping. Feature 21 (CV 

maxV during movement termination) was selected 

by more than one classifier from set 1, but it was not 

selected anymore from set 2. This probably occurred 

because one classifier included the square of 

featured 21 (feature 42). 

In this study we allowed the inclusion of repeated 

features in the feature selection algorithm. The 

reasons are twofold. First, the kernel employed by 

the SVM classifier (RBF) defines the shape of the 

decision boundary. The decision boundary obtained 

in a larger feature space (with more dimensions) 

might produce a better classification even if the 

features included are repeated. Also, limiting the 

inclusion of features to only non-repeated features 

might force the inclusion of non-relevant features. 

V. CONCLUSION 

The objective evaluation based on features 

eliminates inconsistency within an evaluator. Using a 

classification algorithm with objective features we 

were able to score the bradykinesia-related items of 

the MDS-UPDRS task more accurately than the 

average inter-rater scoring error. However, since 

classifiers learned from labels obtained from 

evaluators individual bias is still present in each 

classifier. Following the same methodology with a 

larger number of evaluators and employing only the 

tasks where consensus is found could lead to an 

unbiased objective measuring system. This could 

lead to an improvement in the assessment and 

monitoring of movement disorders. 
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