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A Method for Automatically Finding Multiple
Operating Points in Nonlinear Circuits

Leonid B. Goldgeisser, Member, IEEE, and Michael M. Green, Member, IEEE

Abstract—A new algorithm based on a SPICE-like simulator
that searches for multiple operating points automatically, with no
user intervention required, is presented. This algorithm, which
exploits the asymmetrical properties of nonlinear mappings
that describe multistable circuits, has been implemented into
a program which automatically finds multiple (in most cases,
all) operating points of a circuit. In addition to finding multiple
operating points, this method offers another feature: it is capable
of detecting the stability of a particular operating point. Another
useful feature of this method is that it allows the user to gauge
how close a particular circuit is to possessing multiple operating
points. For circuits known to possess multiple operating points,
this method allows the user to specify which operating point is
encountered first. Unlike other continuation methods, circuit
element models are not modified; only augmenting resistors are
required. Hence, this approach lends itself well as an “add-on”
to existing circuit simulators. A number of circuit examples are
given.

Index Terms—Circuit CAD, circuit simulation, circuit theory,
multiple operating points (MOPs), nonlinear circuits, SPICE.

I. INTRODUCTION

F INDING the dc operating points of a nonlinear circuit is
one of the most important and difficult tasks in electrical

circuit simulation. In the majority of circuit simulation programs
the dc operating point is found (as in SPICE, for example) by
using a Newton–Raphson-based iterative algorithm. Such algo-
rithms have two shortcomings: First, convergence is in general
not guaranteed unless the initial guess (specified by the user
in SPICE by the .nodeset statement) is sufficiently close to
the actual solution. Unfortunately the user either may not know
the solution or cannot give a sufficiently accurate initial guess.
Second, only one operating point can be found during a single
analysis; neither location nor even existence of other operating
points is known once the algorithm has converged to a particular
operating point.

A better approach to finding a circuit’s dc operating point (de-
scribed by the solution of a set of nonlinear equations
where is smooth) is the use of a continuation
method. In general, this method entails embedding a continua-
tion parameter into a set of nonlinear equations where
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, and , which satisfies the
following conditions.

1) .
2 ) The solution of , where , is

trivial or easily found.
3) There exists a continuous curve (called a “zero curve”)

in such that and the Jacobian
matrix of is full rank for every point on .

Since gives a continuous deformation between the “easy”
problem and the “hard” problem , it
is called a homotopy. In circuit simulation applications,
is the vector of the circuit’s node voltages, gives the set of
Kirchhoff’s Current Law equations at each node1, and the con-
tinuation parameter can be chosen to control a circuit compo-
nent, such as a voltage source, a resistor, or a transistor param-
eter. The well-known “G-min stepping” and “source stepping”
algorithms, found in many versions of SPICE, are simple exam-
ples of continuation methods.

A class of homotopies, known as “probability-one,” has been
found that can be applied to simulation of nonlinear circuits [2].
These homotopies have the following properties.

• The resulting zero curve does not exhibit a bifurcation for
(achieved by appropriate randomization of the

equations).
• The zero curve remains bounded for (achieved

by ensuring that the “no-gain” property2 holds for
).

• The zero curve will not return to (achieved by
arranging the operating point of the circuit to be
unique).

Hence, in a probability-one homotopy the simulation is guar-
anteed to reach a solution at . A number of implemen-
tations of such homotopies in existing circuit simulators have
been reported [4]–[6].

An example of a zero curve (projected onto the versus
plane, where is one of the circuit’s node voltages) is shown
in Fig. 1(a). The voltage at corresponds to the “easy”
solution; the voltage at corresponds to the circuit’s oper-
ating point. If a zero curve is tracked beyond , it is possible
for it to bend back and pass through more than once, as
illustrated in Fig. 1(b). In this case, three operating points are
found. This phenomenon is known as “ -threading” and can be
exploited to allow multiple operating points to be found in a

1Most versions of SPICE actually use the modified nodal analysis represen-
tation [1] which can accommodate floating voltage sources by including addi-
tional current variables.

2This property is similar to, but slightly stronger than, the well-known pas-
sivity property of all realistically modeled transistors [3].

1057-7122/$20.00 © 2005 IEEE
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Fig. 1. (a) Example of zero curve projection; (b) example of �-threading.

single simulation. This will be discussed extensively in the next
section.

Over the years, there have been a number of algorithms pro-
posed for finding multiple operating points of circuits [7]–[11].
However, all of these algorithms have the disadvantage of
requiring piecewise-linear transistor models; moreover, little
insight into the qualitative nature of these multiple operating
points is given. Homotopy methods using standard continuous
transistor models have also been reported. In [12] multiple op-
erating points are found by using combinations of ideal diodes
and current-controlled current sources. In [13] an algorithm
based on the SPICE transient analysis is given where the user
identifies feedback loops in order to search for multiple oper-
ating points. In [14] finding multiple operating points using a
type of -threading is presented. In [15] a technique for finding
multiple operating points by setting various initial points on a
zero curve is presented.

In this paper, we discuss methods by which the likelihood
of -threading can be increased, thereby increasing the chance
of finding multiple operating points. We also discuss a funda-
mental relationship between the way operating points are en-
countered on a zero curve and the stability of these operating
points.

II. CONDITIONS FOR LAMBDA-THREADING

A. No-Threading Property

Although -threading is a desirable characteristic, it is not
guaranteed for all continuation methods. In this section we will
derive sufficient conditions for -threading. Before doing this,
we can gain some insight into this problem by first stating a
simple condition under which -threading cannot occur:

No-Threading Property: Suppose a homotopy has the
following properties.

1) The circuit being simulated is eventually passive for
.

2) The solutions to and are unique.
3) (i.e., the homotopy is symmetric

around ).

Then, -threading cannot occur.
Proof: We first note that, as proved in [16], any eventu-

ally passive circuit must possess an odd number of structurally
stable operating points. Let us first suppose that the circuit being
simulated possesses three structurally stable operating points ,

Fig. 2. Illustration of effect of symmetry on �-threading.

, and . Then, assuming the homotopy has the global conver-
gence conditions given above, the zero curve for must
consist of disjoint zero curves as shown in Fig. 2(a). One of these
curves will connect to operating point . The other curve
cannot intersect (since the circuit has a unique so-
lution) and therefore must connect operating points and .

If the homotopy is symmetric around , then so must
the zero curves, as illustrated in Fig. 2(b). Hence, the curve
connecting operating points and must form a closed loop,
which implies that, for , the curve that intersects oper-
ating point cannot be connected to the other operating points,
thereby preventing -threading from occurring. We can make
the same statements in the case of circuits with higher numbers
of operating points; the case for 5 operating points is illustrated
in Fig. 2(c) and (d).

Since we have shown that arranging the homotopy to be sym-
metric prevents the zero curve from threading, then we conjec-
ture that making the homotopy asymmetric will allow the zero
curve to thread. This idea will be explored shortly. However, we
first need to make some statements regarding the relationship
between operating point stability and order of operating points
on a zero curve.

B. Zero Curve Bifurcations and Operating Point Stability

As mentioned in Section I, one of the requirements for global
convergence is that the zero curve be free of bifurcations for

. An example of a zero curve that contains a bifurcation
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Fig. 3. (a) Zero curve with bifurcation. (b) Unfolded bifurcation after applying
a small perturbation to the homotopy. (c) Unfolded bifurcation after applying a
different small perturbation to the homotopy.

is shown in Fig. 3(a). Let us assume that this curve corresponds
to a circuit that possesses three operating points , and .
Furthermore, let us assume that operating point is unstable of
type . (This type of operating point instability is defined in
[17]; any circuit that possesses three operating points must have
exactly one operating point.) It is proved in [18] that any
small perturbation in the homotopy will cause an “unfolding”
of the bifurcation, as illustrated in Fig. 3(b). In the continuation
methods described in [2], voltage sources with random values
are inserted into the circuit at to achieve this unfolding.
We now assume that the unfolded zero curves shown in Fig. 3(b)
connect as shown for so that -threading is achieved. It
is proved in Lemma 2.1 of [19] that must decrease through
a operating point. Hence, the threading must occur in the
order shown either in Fig. 3(b), or in Fig. 3(c). In both cases,
operating point is always the second operating point reached.
In general, any operating point found after an even number of

crossings is unstable (provided that the zero curve does
pass through a bifurcation).

C. Criteria for Finding Multiple Operating Points

In an attempt to make a homotopy as asymmetric as possible
in order to “encourage” -threading, we place the following
conditions on a homotopy for .

1 ) The zero curve is bounded for .
2) There exists some such that the circuit corre-

sponding to any possesses a unique operating
point.

Fig. 4. Illustration of a zero curve passing through three operating points.

Fig. 5. Circuit illustrating a special type of homotopy.

3) The unique operating point of the circuit corresponding to
is “close” to an operating point of the original (i.e.,
) circuit.

4) There exists some such that the circuit corre-
sponding to any possesses a unique oper-
ating point.

5) The unique operating point of the circuit corresponding to
is “close” to an operating point, different from the

one in Condition 3, of the original circuit.
These properties are illustrated in Fig. 4. Condition 1 is easily

realized by requiring that any circuit corresponding to
be passive. Conditions 2 and 4 are satisfied by requiring struc-
turally stable operating points corresponding to and

. The shaded regions in Fig. 4 correspond to the homo-
topy’s “regions of uniqueness.” Under these conditions, the only
possible zero curve that can exist must pass through at
least three times as illustrated in Fig. 4. We will discuss “close-
ness” properties 3 and 5 in the next section.

III. NEW HOMOTOPY

A. Closeness of Operating Points

To illustrate how two operating points can be close to each
other (e.g., conditions 3 and 5 from Section II-C), we construct
a simple homotopy as follows. Given a circuit with a speci-
fied stable operating point, suppose we measure a set of port
voltages as illustrated in Fig. 5(a). We now con-
sider the augmented circuit shown in Fig. 5(b) where each port
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is augmented with a series connection of a resistor and a
voltage source , where is the th port voltage measured in
the original Fig. 5(a) circuit. As discussed in [20], the port volt-
ages will be constant for any . Let us consider a
homotopy with the following properties.

1) for .
2) for .
Note that corresponds to all ports connected directly

to the voltage sources. Suppose that the circuit corresponding
to has no feedback structures (as defined in [21]) and
therefore must possess a unique operating point. For this homo-
topy, the resulting zero curve will exhibit nearly constant values
of node voltages for all and thus the arclength will
be almost unity—the lowest possible value. We call this type of
homotopy “arclength reducing.” As long as this zero curve does
not include a bifurcation, then a small perturbation in the homo-
topy (i.e., perturbations in voltage source values) will result in
a small change to the zero curve.

It is cumbersome to insert a voltage source at each node; a
more efficient approach would be to instead set the operating
region of each transistor in the circuit. Moreover, it is also un-
realistic to expect the node voltages to be available before the
simulation has been run! A new homotopy described in the next
section will dispense with both of these restrictions.

Unlike other homotopies previously reported, the implemen-
tation of the arclength reducing homotopy is based on simply
augmenting the circuit being simulated with series combina-
tions of resistors and voltage sources placed in appropriate lo-
cations. If the resistance of the augmenting resistor can assume
both zero and infinite values then it allows us to model both
short and open circuits, respectively. If we are simulating a cir-
cuit with transistors, it is convenient to augment the circuit cor-
responding to a set of expected transistor states. Using short
and open circuits we can force selected transistors to be in cer-
tain states and thus control the overall circuit behavior. In order
to work with transistor circuits we introduced the concept of a
“pseudomodel.” The augmenting resistor and the pseudomodel
are two basic concepts upon which the arclength reducing ho-
motopy is based. Those two concepts are briefly described in the
next section. More detailed information can be found in [22],
[23].

B. Pseudomodels

Using the augmenting resistors we can replace each tran-
sistor3 in the circuit being simulated by one of the “pseudo-
models” shown in Fig. 6. We have defined three general pseudo-
models: low-current (corresponding to a transistor’s cutoff state
where all currents are near zero); low-voltage (corresponding
to the saturation region for the bipolar junction transistor (BJT)
or triode region for MOS); and high-impedance (corresponding
to forward-active for BJT or saturation for MOS). In Fig. 6(a),
these states are illustrated for bipolar and MOS transistors; ex-
tension to other types of transistors is straightforward. This re-
placement ensures that the operating point corresponding to

3We exclude diode-connected transistors from this replacement since they are
essentially two-terminal nonlinear resistors and thus cannot be one of the two
transistors that defines a feedback structure.

Fig. 6. (a) Augmented transistor pseudomodels corresponding to � = 0. (b)
Homotopy definition.

is “close” to the chosen operating point of the circuit being
simulated. For the high-impedance pseudomodel, the value of
the augmenting voltage source is determined based on the tran-
sistor model and the expected value of current.

Notice that each of the pseudomodels is constructed simply
by augmenting the transistor with either a short circuit or a
voltage source. Moreover, since at every transistor is
replaced by one of the pseudomodels4, any feedback structure
in the original circuit will be destroyed; hence, the circuit cor-
responding to must possess a unique operating point
[21] which can easily be found using standard Newton–Raphson
techniques. The homotopy itself is simply defined as shown in
Fig. 6(b). Each augmenting short circuit at becomes an
open circuit at .

In order to realize a continuous deformation from a short cir-
cuit to an open circuit, a parametric representation of the aug-
menting resistors must be used. Assume the augmenting resistor
has a voltage across it and conducts a current with the stan-
dard associated reference directions. Then, we can write

(1)

where and are positive constants and is a monotonically
increasing function of such that (corresponding to
a short circuit) and (corresponding to an open circuit).
We used the following function to realize this characteristic:

(2)

Parameters (a positive integer) and (a positive real number)
determine the location of the bend and the steepness of the non-
linear function . By adjusting and one can optimize the
behavior of for a particular transistor model [23]. For the sim-
ulations presented in this paper, and were used.

We will refer to the homotopy defined above as
where is the vector of nodal voltages as discussed in Section I.
This homotopy is completely defined for by the set of

transistor states and (1) and (2).
One way to extend the arclength reducing homotopy for

finding multiple operating points might be to specify the

4Loops of short circuits must be avoided, however.
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Fig. 7. (a) Schmitt trigger circuit corresponding to � = 0. (b) Schmitt trigger circuit being simulated (corresponding to � = 1. (c) Circuit corresponding to
� = 2. (d) Resulting zero curve.

transistor states corresponding to a pair of expected operating
points. One of these operating points is used to construct the

circuit; the other to construct the circuit. (In
practice, it is of course unrealistic to expect the user to specify,
a priori, two operating points. In the next section, we will show
how to dispense with this requirement, leading to an algorithm
that automatically searches for multiple operating points.)

On this basis, we construct a new homotopy that is de-
fined for as follows:

(3)

where corresponds to a set of transistor states that
may be different from those corresponding to . Thus,
the homotopy is completely defined for
by two sets of transistor states, one corresponding to and
the other corresponding to , and (1) and (2).

As an example, consider the Schmitt trigger circuit shown in
Fig. 7(b). The behavior of this circuit is well known. It possesses
two stable operating points: One of these operating points cor-
responds to biased in saturation and biased in cutoff;
the other operating point has the transistor operating regions
reversed. It also possesses an unstable operating point corre-
sponding to both transistors biased in the forward-active region.

A homotopy was constructed with the pseudomodels
corresponding to the first stable operating point as shown in Fig.
7(a) and the pseudomodels corresponding to the second
stable operating point as shown in Fig. 7(c). This simulation
does obtain three operating points; the zero curve projection of
the node 1 voltage is shown in Fig. 7(d).

C. Opposite States

We will now describe how a multiple operating point search
algorithm can be implemented without requiring the user to
specify appropriate transistor states a priori. In order to find ap-
propriate transistor states to be assigned to and , we
arrange for the state to be constructed using a known op-
erating point of the circuit. (This can be done by use of another

TABLE I
DEFINITION OF “OPPOSITE STATE” OF TRANSISTOR

homotopy or some other simulation method. Or, the cir-
cuit could be constructed by selecting expected transistor states
based on the designer’s knowledge of the circuit’s operating
point. Finally, the states can be selected randomly. Global con-
vergence guarantees that an operating point will be found even
though the arclength will be greater than unity.) After a simu-
lation from to is run, the transistor states for the
operating point obtained at are recorded; the threading
homotopy is then constructed based on these transistor states.
The state is constructed by setting the pseudomodel of
each transistor to the “opposite” state to that set for . The
“opposite” state of a transistor is defined in Table I.

D. Multiple Operating Point Search Algorithm

The multiple operating point search (MOPS) algorithm is
based on the principle which is somewhat “opposite” to the
No-threading Property. Based on an analysis of an operating
point previously identified, the algorithm “assumes” that there
is an operating point which is opposite (as defined above) to the
original operating point, and constructs the homotopy from the
known operating point (defined at ) to the predicted lo-
cation of the opposite operating point (defined at ). As
will be shown shortly, our experiments indicate that in the ma-
jority of simulations of circuits possessing multiple operating
points, the predicted operating point (i.e., opposite of one al-
ready found) is indeed very close to the location of the existing
operating point of a circuit. Based on this observation, the fol-
lowing algorithm has been constructed. We assume that one op-
erating point has already been found.
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Fig. 8. Voltage regulator circuit and zero curves.

Multiple Operating Point Search Algorithm:

1) Construct the homotopy with corre-
sponding to the transistor states in the operating point pre-
viously found and corresponding to the opposite of
these transistor states.

2) Track the zero curve for this homotopy and note all oper-
ating points found (corresponding to crossings of ).

3) For each new operating point found, repeat steps 1 and 2
until no new operating points are found.

Choosing the transistor states opposite to the the cor-
responding transistor states attempts to utilize the homo-
topy’s asymmetry around , thereby maximizing the prob-
ability of -threading. In order to ensure that each zero curve
does not contain a bifurcation, in implementation of this algo-
rithm, some randomization must always be present in the homo-
topy. This is accomplished by introducing small random pertur-
bations in (2).

IV. CIRCUIT EXAMPLES

A. Brokaw Voltage Regulator

The voltage regulator circuit shown in Fig. 8(a) is commonly
used to generate an output voltage that is highly insensitive to
temperature [24]. Resistors are placed in the circuit to im-
prove the matching of the current mirror consisting of transis-
tors and . This circuit includes “start-up” circuitry (con-
sisting of ) that prevents it from setting
at its zero state. A simulation of this circuit was run for four dif-
ferent values of , each incorporating the multiple operating
point search algorithm described in the previous section. The
zero curve projections versus for each of the four simu-
lations are shown in Fig. 8(b). All four zero curves are almost

Fig. 9. Circuit with nine dc operating points.

the same except for one area which is encircled and shown mag-
nified in the bottom part of the graph. It can be seen from the
plots that for k the circuit possesses three operating
points: the desired one, where is near 5 V; one where
is close to (latch-up state); and a third, unstable operating
point.

Using the other two operating points found as starting points
(as specified in the algorithm), additional simulations were run;
however, no additional operating points were found.

This example illustrates another very important advantage of
the continuation method presented here. By observing the en-
tire zero curve, the designer can be made aware of not only the
number of operating points the nominal circuit possesses, but
also information is given regarding how close the circuit is to
possessing additional dc operating points. For example, for the
case where k it can be observed that even though the
circuit does not have multiple operating points, it is very close to
having them. Hence, this method allows the designer to gauge
the robustness of a circuit’s dc behavior.

Another simulation was run without the startup circuitry, con-
sisting of , and , removed. Such a circuit is
known to have a zero state where all transistors are off. The re-
sulting zero curve (where was set to 5 k), shown in Fig. 8(c)
where five operating points (three stable) were found, clearly
shows the presence of such a state.

B. A BJT Circuit With Nine Operating Points

The circuit shown in Fig. 9 has been shown to possess nine
dc operating points [25]. We will apply the MOPS algorithm
to find those operating points. To find the first operating point
we will start from a randomized state. The result of the MOPS
algorithm is shown in Table II.

The transistor states corresponding to all nine operating
points are shown in Table III. As discussed earlier, all even-in-
dexed operating points are unstable. In addition, operating point
9 is unstable of type , as defined in [17].

Some graphical simulation results are shown in Fig. 10.
Two-dimensional (2-D) zero-curve projections of nodes 6 and
7 versus are shown in Fig. 10(a) and (b), respectively. A
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TABLE II
MULTIPLE OPERATING SEARCH ALGORITHM PATH FOR BJT CIRCUIT WITH

NINE OPERATING POINTS

TABLE III
DC9: 9 OPERATING POINTS

TABLE IV
AB+C LOGIC CIRCUIT: TRUTH TABLE WITH ALLOWED LOGIC STATES

three-dimensional (3-D) curve showing both voltages versus
is shown in Fig. 10(c).

C. Combinational Logic Circuit With Feedback

The circuit shown in Fig. 11 consists of combinational logic
with feedback through a set of AND gates connected to its in-
puts. The operating points of such a circuit include those corre-
sponding to the states of for which . We have
simulated a CMOS realization of the circuit implementing the
logic function . The realization and the logic dia-
gram of the circuit is shown in Fig. 12.

(a)

(b)

(c)

Fig. 10. (a) V versus �; (b) V versus �; (c) V and V versus �.

We will first analyze this circuit by hand. From the logic di-
agram of the circuit shown in Fig. 12(a) we can construct the
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Fig. 11. Combinational logic with latch up inputs.

Fig. 12. Combinational logic. CMOS realization.

TABLE V
LISTING OF 23 OPERATING POINTS FOUND BY MOPS FOR FIG. 12

LOGIC CIRCUIT

truth table shown in Table IV containing all valid logic states;
all of these operating points can be shown to be stable.

The MOPS algorithm found 23 operating points for the cir-
cuit, all of which are listed in Table V. Included in all of these
operating points are the six valid logic states listed in Table IV;
these are indicated by a “Yes” in the last column of Table V.

Fig. 13. (a) V versus �; (b) V versus �; (c) V , and V versus �.

Some graphical simulation results are shown in Fig. 13. 2-D
zero-curve projections of nodes and versus are shown
in Fig. 13(a) and (b), respectively. A 3-D curve showing both
voltages versus is shown in Fig. 13(c).

V. CONCLUSION

We have described how threading homotopy curves can be
exploited to find more than one operating point of a circuit
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during a single simulation. A method of constructing threading
homotopies for circuits based on transistor states has also been
described. It has been shown that multiple operating points can
be found using this algorithm with no user intervention or a
priori knowledge of locations of operating points.
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