
A Method for Change Computation in Deductive Databases

Toni Urpi Antoni Olivk

Universitat Politecnica de Catalunya
Facultat d?nforrnatica

Pau Gargallo, 5
E 08028 Barcelona - Catalonia

Abstract

Change computation is an essential component in
several capabilities of a deductive database, such as
integrity constraints checking, materialized view
maintenance and condition monitoring. In this paper, we
present a general method for change computation, which
is based on the use of transition and internal events rules.
These rules explicitly define the insertions, deletions and
modifications induced by a database update. Standard
SLDNF resolution can be used to compute the induced
changes, but other procedures could be used as well. Our
method generalizes and extends previous work on change
computation methods, and in some cases computes
changes in a more efficient way.

1 Introduction

Deductive databases generalize relational databases by
including not only base predicates (or relations), but also
derived predicates (or views). A derived predicate is
defined by means of one or more deductive rules.

In a deductive database, an update to base predicates
may induce changes on one or more derived predicates.
Change computation refers to the process of computing
the changes induced by an update. The obvious way to
compute changes would be to evaluate derived predicates
in the states before and after the update, and to compute
the differences between the two states. However, this can
be very inefficient in most cases.

Efficient change computation is essential in several

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed

for direct commercial advantage. the VLDB copyright

notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee a&or special permission from the

EndaW~7l.t.

Proceedings of the 18th VLDB Conference
Vancouver, Bristish Columbia, Canada 1992

capabilities of a deductive database, such as integrity
constraints checking [BMM90], view maintenance
lCeW911 and condition or situation monitoring
lRCB+891, and several methods have been proposed in
the past years. Some methods are specific for a particular
problem, but others are more general. Methods for
change computation can be analyzed in terms of: (1)
What kind of changes are defined?; (2) When are changes
computed?; and (3) How are changes computed?. Some
methods make a distinction between “potential” changes
and “real” changes induced by an update [Kiic91], but we
are only interested here in the computation of real
changes, representing the net effect of an update.

Most of the methods have been developed as part of
methods for integrity constraints checking. We can only
mention two of them here, and refer to [BMM90] for a
state-of-the-art survey. The method described in
lBDM88,BrD88] defines insertion and deletion changes.
An insertion occurs when a fact is true in the updated
state and false before, while a deletion occurs when a fact
is false in the updated state and true before. Thus, only
“real” or “net” changes are computed, and the
computation is performed before the database is updated.
Changes are computed using expressions derived from an
analysis of deductive rules. A similar method is given in
[Oli91], where in some cases the derived expressions are
more simplified

Incremental methods for view maintenance also
compute changes induced by an update on some
materialized view. A method where views are specified
using a standard query language, and considering
arbitrary database updates, is given in [CeW91]. The
method defines insertion and deletion changes of a
materialized view as before, but changes are computed
once base relations have been updated. Changes are
computed by production rules lWiF9O,WCL91] derived
from an analysis of the view definition. Key constraints
of base relations are also taken into account. As an
example of a more specialized work, we mention
[BCL89] where a method is presented to determine
irrelevant updates (cannot change a view) and
autonomously computable updates (the view can be
updated using the view itself and the update).

225

Change computation has also been used for situation
monitoring in active databases. [BuC79] is one of the
earlier works in this field, describing a method for
detecting that a change in base relations cannot induce a
change on an alerter. [RCB+89] presents a method
developed as part of the HiPAC DBMS [CBB+89]. They
consider not only insertion and deletions changes, as
before, but also modification changes. Each tuple of a
relation (base or derived) has an attribute that provides a
unique immutable identifier, so that a tuple is modified if
some of its attributes change. The method derives
expressions for computing induced changes, again from
an analysis of the definition of the derived predicate.

We present here a general method for change
computation that can be applied in all database
capabilities discussed above. The method takes into
account key constraints of base and derived predicates.
This allows us to define insertion, deletion and
modification changes of derived predicates, where
modification is defined as a change in some non-key
argument of a predicate. The method computes the
changes once the database has been updated The changes
are computed using expressions that are more simplified
than those obtained in the previous methods, thus
providing more efficient ways of change computation.
The expressions are derived at compilation time, and
evaluated when the database is updated

The paper is organized as follows. Next Section defines
basic concepts of deductive databases. In Section 3 we
present the concept of internal event, a key concept of
our method. Internal events capture in a natural way the
notion of change. We also present the transition and
internal events rules. Transition rules relate the old
database state with the new state and the events that have
occurred in a transition. Internal events rules define the
conditions upon which an internal event happens. These
rules are a particular application of the rules that we
developed for the design of information systems [OSSS].
In Section 4 we show how internal events rules can be
simplified We give a set of simplifications that allow us
to obtain simplified expressions for change computation.
Then, in Section 5 we present our method for change
computation, which can be based on the use of standard
SLDNF resolution. We also point out some optimization
techniques that can be applied. Our method is compared
with some of the previous work in Section 6. Finally,
we give in Section 7 the conclusions and point out future
research.

2 Deductive Databases

A deductive database D consists of three finite sets: a set
F of facts, a set R of deductive rules, and a set I of
integrity constraints. A fact is a ground atom. The set of
facts is called the Extensional Database (EDB), and the

set of deductive rules is called the Intensional Database

WY.
We assume that database predicates are either base or

derived. A base predicate appears only in the extensional
database and (eventually) in the body of the deductive
rules. A derived predicate appears only in the intensional
database. Every database can be defined in this form @aR
861.

We also assume that each database predicate (base or
derived) has a non-null vector of arguments, k, that form
a key for the predicate. We have then two types of
predicates: those, P(k,x), with key and non-key
arguments and those, P(k), with only key arguments,
where both k andx are vectors.

2.1 Deductive Rules

A deductive rule is a formula of the form:

A~L,A . . . A L, withnll

where A is an atom denoting the conclusion, and L,,
L, are literals representing conditions. Each Li is either
an atom or a negated atom. Any variables in A, L,,
L, are assumed to be universally quantified over the
whole formula. We also assume that the terms in the
conclusion must be distinct variables, and the terms in
the conditions must be variables or constants.

Condition predicates may be ordinary or evaluable. The
former are base or derived predicates, while the latter are
predicates, such as the comparison or arithmetic
predicates, that can be evaluated without accessing the
database.

As usual, we require that the database before and after
any update is uZlaved [Llo 871, that is any variable that
occurs in a deductive rule has an occurrence in a positive
condition of an ordinary predicate. This ensures that all
negative conditions can be fully instantiated before they
are evaluated by the “negation as failure” rule.

In this paper we deal with stratified databases [ABW
881. A database is stratified if the set of its predicate
symbols can be partitioned into a finite set of classes,
say S,,..., S, such that for every deductive rule P t
Conditions, with P E Sj,

(i) if Q E Si is the predicate symbol of a
positive condition of P, then i I j, and

(ii) if Q E Si is the predicate symbol of a
negative condition of P, then i c j.

2.2 Integrity Constraints

An integrity constraint is a closed first-order formula
that the database is required to satisfy. We deal with
constraints that have the form of a denial:

t L, A . . . A L, with n 2 1

226

where the Li are literals, and variables are assumed to be
universally quantified over the whole formula. More
general constraints can be transformed into this form as
described in [LIT 841. For the sake of uniformity, we (as
in [DaW 89, Kow 781) associate to each integrity
constraint an inconsistency predicate Icn and thus it has
the same form as the deductive rule. We call them
integrity rules.

To enforce the concept of key we assume that associated
to each P(k,x) there is a key integrity constraint that we
define as:

1cnC.k) t P(k,x) A P(k,x’) A x fx’

For example, if the EDB has the predicate
Employee(emp,dept), the key integrity rule stating that
emp forms a key for the predicate would be:

Icl(emD) t Employee(emp,dept) A
Employee(emn,dept’) A dept + dept’

Note that, for clarity, we underline the key arguments
of each predicate.

Keys of derived predicates can be deduced from the
deductive rules of these predicates, using a procedure
similar to that presented in [DaBO, chapters 19,201

3 Transition and Internal Events Rules

In this section we define the events, a key concept in our
method We also explain how to derive the transition and
internal events rules for a given database. These rules
depend only on the deductive rules. They are independent
from the base facts stored in the database. In a later
section we will discuss the use of these rules for change
computation.

We extend here the work reported in [Oh 911 in three
directions. First, we define not only insertions and
deletions, but also modifications of base and derived
predicates. Usually, modifications are handled as deletions
followed by insertions, but handling them as a base
concept allows to improve efficiency. Second, we change
the definition of transition rules to deal with the case
where induced changes must be computed once base
predicates have been updated. And third, we take into
account key information.

3.1 Events

Let Do be a database, U an update and D the updated
database. We say that U induces a transition from Do (the
old state) to D (the new state). We assume for the
moment that U consists of an unspecified set of base
facts that have been inserted, deleted an&or modified.

Due to the deductive rules, U may induce other updates
on some derived predicates. Let P be a derived predicate,
and let P” and P denote the evaluation of P in D” and D,
respectively. Assuming that P”(K,X) holds in D”,

where K and X are vectors of constants, three cases are
possible:

a.1 P(K,X) also holds in D
a.2 T3y such that P(K ,y) holds in D
a.3. 3x’, such as X’, for which P(K,X’) and X+X’

holds in D

and assuming that P(K,X) holds in D, three cases are
also possible:

b.1 P”(K,X) also holds in Do
b.2 T3y such that P”(K,y) holds in D”
b.3. 3x’, such as X’, for which P”(K,X’) and X+X’

holds in Do

In case a.2 we say that a deletion internal event occurs
in the transition, and we denote it by GP(K,X). In case
b.2 we say that an insertion internal events occurs in the
transition, and we denote it by tP(K,X). In cases a.3 and
b.3 we say that a modification internal event occurs in
the transition, and we denote it by pP(K,X,X’) and
pP(K,X’,X), respectively.

Formally, we associate to each derived predicate P an
insertion and a deletion internal event predicate defined as:

(1) V’k,x @V,x) -P&x) A 7 3yPVwN
(2) V’k,x @P&x) - P”(k,x) A ~3yWwN

where k and x are vectors of variables.
Furthermore, we associate to each derived predicate P

with non-key arguments, a modification internal event
predicate defined as:

(3)Vk,x,x (@Y&x,x’) H P’=(k,x) A P(k,x’) A xfx’)

We handle the modification of a key as a deletion
GP(k,x) and an insertion tP(k’,x).

From the above, we then have the equivalences:

(4) V’k,x P%x) ti
(P(k,x)A 1 Wk,x) A 1 P(k,x’,xN
v &P(k,x)

v NW,x,x’N

(5) Vk,x (-P’(k,x) t)
(d’(k,x)/\T tiP(k,x)h p(k,x,x’))

v P(k,x)

v N’@,x’,x))

which relate the old state with the new state and the
internal events induced in the transition.

We also use definition (l), (2) and (3) above for base
predicates. In this case, LP, 6P and p.P facts represent the
external events (given by the update) corresponding to
insertion, deletion and modifications of base facts,
respectively. Therefore, we assume from now on that U
consists of an unspecified set of insertion and/or deletion
and/or modification external events. Notice that by (l),
(2) and (3) we require:

227

(6) Vk,x (tP(k,x) + 7 3yP’(k,y)) and
(7) Vk,x (GP(k,x) + PO(k,x)) and
(8) Vk,x,x’ (p.P(k,x,x’) + P’(k,x) A x fx’)

also to hold for base predicates. Again, the pPpredicate
is defined only if P has non-key arguments. Due to this
similar definition, we use sometimes the term “event” to
denote either an internal or external event

Consider the following database D:

Base Facts
Person(John,l9), Person(Ann,lS),
Person(Tom,20), Works(Tom)

Deductive rules
(E.l) Young(ga) t Person&a) A a<20
(E.2) Student(&a) t Young(p,a) A -S%rks@)

Let the update be the set of external events U = {
tPerson(Mary, 15),pPerson (John, 19,20),
&Person(Ann,l5,16) }. The internal events induced by U
on Young are: tYoung(Mary,15), GYoung(John,l9) and
~Young(Ann,l5,16) and the internal events induced on
Student are: tStudent(Mary,15), GStudent(John,19) and
@tudent(Ann,15,16).

3.2 Transition Rules

Let P be a derived predicate of the database. The definition
of P consists of the rules in the database having P in the
conclusion. Assume that there are m (m21) such rules.
For our purposes, we require to rename the predicate
symbol in the conclusions of the m rules by P, . ..P. and
add the set of clauses:

P t Pi i = l...m

Consider now one of the rules P,(k,x) t L, A . . . A
L,. When the rule is to be evaluated in the old state its
form is Poi(k,x) t Lo, A . . . A Lo, whereLo, (r =
l...n) is obtained by replacing the predicate Q of L, by
Q”. Now, if we replace each literal in the body by its
equivalent definition given in (4) or (S), we get a new
rule, called a transition rule, which defines predicate P” i
(old state) in terms of new state predicates and events.

More precisely, if L”, is an ordinary positive literal
Q’,(k,, x r) we apply (4) and replace it by:

(Q,(k,,x,) A 1 LQ(k,,x,) A 7 ~Q,(k,,x’,,x,N
v GQ,@,,x,)
v pQr@r,xr,x’r)

and if Lo, is an ordinary negative literal 7Q”,(k,,x,) we
apply (5) and replace it by:

(--Q&,x,) A 1 ~Q,(k,,x,) A 1 vQ,(k,,x,,x’,))
v LQ$,,xr)
v vQ,(k,#,,x,)

If Lo, is an evaluable predicate, we just replace Lo,
(positive or negative) by its new state version L,.

It will be easier to refer to the resulting expression if
we denote it by:

U&‘=,) = Q,(k,,x,) A 7 LQ,(k,,x,) A 7 CLQ(k,,x’r+)
if Lo, = Q”,(k,,x,)

=lQ(kr,x,) A 7 6Qr(k,,x,) AT PQ(krvxr,x’r)
if Lo, = 7Q”,(k,,x,)

= L, if Lo, is evaluable

DOLO ,) = 6Q,(k,, x ,I if Lo, = Q”,(k,,x,)
= LQ,(k,,x,) if Lo, = TQ”,(k,,x,)

MCL”,) = flQr(kr,xr,x’J if Lo, = QO@,,x,)
= pQ,(k,,x’r,q) if Lo, =lQor(k,,x,)

Notice that all variables x’~ are new, that is, not used
before.

UC,), DC,) and M(L”,) express condition for which
Lor is true. U(L”,) corresponds to the case in which Lo,
is unchanged in the transition. D(L’,) corresponds to the
case in which Lo, is Deleted, while M(L’,) corresponds
to the case when L”r is Modified.

With this notation we then have:

r=n
(9) PiOr ,X>* rcl II U(L”,) v DCLO,) V M(L’r) I UP,) 1

where the first option is taken if Lo, is an ordinary
literal and the second one if Lo, is evaluable. After
distributing A over v, we get an equivalent set of
transition rules, each of them with the general form:

r=n
(10) P”ij(k,X) + rf; [W”) I D&O,) I MC’,) 1

j = 1 . . . cr

(11) pi(k,X) + pi,j(k,X) j = 1 . . . a

with a = 3& * 2ki, where nk is the number of
ordinary literals with non-key arguments, and ki is the
number of ordinary literals with only key arguments.

In the above set of rules (10) it will be useful to
assume that the rule corresponding to j = 1 is:

(12) PO,,Jk,x) C u(Lo,) A . . . A u(Lo,)

F,xamDle 2

The transition rules corresponding to derived predicates
Young and Student defined in Example 1 are:

(E.3) Young”,,, t Person@a) A 7 tPerson@,a)
A 7 pPerson@,a’,a) A a<20

(E.4) Young”,,,(p,a) c GPerson@,a) A a<20
(E.5) Young”,,,(p,a) t p.Person(gqa’) A a<20
with:
(E.6...8)Youngol@,a) c Young”ij@,a) j = 1 . . . 3
(E.9) Young”@a) t Young”,@a)

228

(E.lO)

(E.ll)

(E. 12)

(E.13)
G-14)

(E.15)

with:

Student” i,i(p,a) t Youngaa) A T tYoung(p,a)
A T pYoung@,a’,a) A TWorks@) A 7 6ubrks@)

Student” i,&,a) t YOUng(SZa) A 7 LbbuIg(~,a)

A 7 pYoung(Da’,a) A tWorks(p)
Student“ ,,+,a) t &Young&a) A TWorks@)

A 7 GWorks(p)
Student” ,,&,a) t GYoung&a) A tWorks@)
Student” 1 ,(&a) c pYOUng@,a,a’) A ~works@)

A T GWorks@)
Student” ,,,@,a) t l,tYoung(Q,a,a’) A tWorks(p)

(E.16...21)Student0,(p,a) t Student”,&,a) j = 1...6
(E.22) Student’(p,a) t Student”,(p,a)

Some transition and internal events rules are not
allowed, due to the presence of some negative literals in
their bodies. This could be solved with a minor
transformation. For example, in rule E.3 replace
+tPerson(p,a’,a) by TAux(p,a) and add the rule:
Aux(p,a) t I.LPerson(p,a’,a).

3.3 Insertion Internal Events Rules

Let P be a derived predicate. Insertion internal events of P
were defined in (1) as:

Vk,x (LP(k,x) t;r P(k,x) A 7 3yP’(k,y))

If there are m rules for predicate P, we have:

(13) tP(k,x) t P,(k,x) A ~3yP’,(k,y) A . . . A

7 3yP’=,(k,y) /\...A1 3yP”,(k,y) i=l...m

Notice that P,(k,x) A -FlyP’,(k,y) represent insertion
events of predicate Pi. Thus, we have:

(14) LP(k,x) c d’,(k,x) A 7 gyP“,(k,y) A...A

7 3yPoisl(k,y) A 7 3yPoi+l(k,y) /\...A

7 3yP”,(ky) i=l...m

(15) LF’i(k,X) + Pi(k,X) A 1 ‘Ypi(k,Y) i= 1 . ..m

Rules (14) and (15) are called insertion inrernal events

rules of predicate P and Pi, respectively. They allow us to
deduce which tP and tPi facts (induced insertions) happen
in a transition.

In section 4.3 we show how rules (15) can be
simplified.

3.4 Deletion Internal Events Rules

Let P be a derived predicate. Deletion internal events for
P were defined in (2) as:

Vk,x @P(k,x) c) PO(k,x) A 7 3yP(k,y))

If there are m rules for predicate P, we then have:

(16) GP(k,x) t p,(k,x) /\ 7 3yP,(k,y) A . ..A

-, 3yPi(k,y) A... A 7 3yP,(k,y) i=l...m

Note that P’,(k,x) A -3yP,(k,y) represent deletion
events of predicate Pi. Therefore, we have:

(17) 6P(k,x) t 6P,(k,x) A 7 3yP,(k,y) /\...A

1 ‘YPim,(k,Y) A 7 ‘YPi+l(k,Y) A.../\

1 W’#W i=l...m

(18) 6P,(k,x) t pO,(k,x) A 7 gyPi(k,y) i=l...m

Rules (17) and (18) are called deletion internal events

rules of predicate P and P i, respectively. They allow us to
deduce which &P and 6P, facts (induced deletions) happen
in a transition.

In section 4.1 we show how rules (18) can be
simplified.

3.5 Modification Internal Events Rules

Let P be a derived predicate. Modification internal events
for P were defined in (3) as:

Vk,x,x’ (pP(k,x,x’) H p(k,x) /\ P(k,x’) A x f x’)

If there are m rules for predicate P we then have:

(20) pP(k,x,x’) t PO,(k,x) A P&k,x’) A x # X’

i,h=l...m

Notice that Poi(k,x) A Pi(k,x’) A x f X’ qmSf2nt

modifications events of predicate Pi. Therefore, we have:

(21) pP(k,x,x’) t Poi(k,x) /t P,(k,x’) /\ x # x’
i=l...m, h=l...m except i

(22) I.LP(k,X,x’) + @‘i(k,X,X’) i=l...m
(23) CLPi(k,X,X') tP'i(k,X) A Pi(k,X')A X fX'

i =l...m

Rules (21)-(22) and (23) are called mod@ztion

internal events rules of predicate P and P i, respectively.
They allow us to deduce which l.tP and pPi facts (induced
modifications) happen in a transition. Notice that rules
(21) are defined only when m>l.

We show in section 4.2 how rules (21) and (23) can be
simplified.

ExamDIe 3

The insertion, deletion and modification internal events
rules corresponding to predicate Young defined in
Example 1 are (the rules for Student are similar):

(E.23) tYoung(p,a) t Young(ga) A 7 ~yYOUng"(~,y)

(E.24) 6Young(p,a) t Young’(@a) A 7 ~yYoUng(p,y)

(E.25) pYoung(p,a,a’) t Young’(aa)AYoung(p,a’)r\ a+a’

with the transition rules for Young’(p,a) given in
Example 2.

229

4 Simplification of Internal Events Rules

In this section we introduce the simplifications that can
be applied to the deletion, insertion and modification
internal events rules. As mentioned in section 3, we can
often simplify and even remove some of these rules.
Applying these simplifications, we obtain a set of rules
semantically equivalent to the former but with a smaller
evaluation cost. In fact, we will see in section 6 that the
application of our simplifications produces expressions
that are more optimized that those obtained by other
methods.

We need to introduce first some terminology. If P is a
predicate defined with a single rule, we denote by B(P)
the body of its defining rule. B(P) is a conjunction of one
o more literals. We also denote by A\B A without B (a
if A=B).

4.1 Simplification of Deletion Internal
Events Rules

Deletion internal events rules for predicate Pi were defined
in (18) as:

ZP,(k,x) t P“,(k,x) A 7 3yP,(k,y) i = 1 . . . m

replacing Poi(k,x) by its equivalent definition given in
(11) wegec

(24) GPi(k,x) t Poij(k,x) A -, 3yP,(k,y)
i = 1 . . . m, j = 1 . . . a

We can remove from (24) the rules corresponding to j =
1, which have the form given in (12), since Poi,l(k,x)
+ P,(k,x). We can then reduce the set (24) to:

(25) 6Pi(k,X) t POij(k,X) A ~ 3yPi(k,y)
i = 1 . . . m, j = 2 . . . a

which can be rewritten as:

(26) GPi(k,x) t B(p”$ A 7 3yB(Pi)o
i = 1 . . . m, j = 2 . . . a

where o is the substitution {y/x, 2*/z}, z is the set of
variables in B(P,) except k and x; and z’ are new
variables.

There are several simplifications that can be applied to
rules (26) above. All of them are based on the analysis of
the relationship between a literal L,,(k,,u,) in B(Poij)
and the corresponding literal in B(P,)o. The result of this
simplification can be either a reduced form of the
expression ,3yB(PJcror a removal of the rule.

Deletion of a positive literal
If t?Q&k,,,u,,) is a literal in B(P”, .) and Q,Jk,,,v,,) is the
corresponding literal in B(P,)o, ihen the expression 7
3yB(Pi)o can be removed from (26). Notice that u,,,vt,

can be null.
Proof: By (2), 8Qh(kh,uh) + 7 3yQ,(k,,y) and thus

Q&k,,,v,,) is false. 0

Insertion of a negative literal
If tQ,,(kh) is a literal in B(Poij) and 7Qh(kh) is the
corresponding literal in B(P,)cr, then the expression
-3yB(PJa can be removed from (26).

If tQ,(k,,u,) is a literal in B(Poij) andL = -Qh(kh,vh)
is the corresponding literal in B(P,@, then the expression
7 3yB(P,)o can be simplified to -,3y (B(PJd\L A II,, f
Vh).

Proof: By (l), K&(k,,) + Q&k,,) and thus -Qh(k,,) is
false. Also by (l), tQl(k,,u,) + QJk,,,u,,). Given that
k, is a key for Qh, then -Qh(kh,v,,) is true only when
Uh fVh. 0

Modification of a literal
If pQ,,(k,,,u,,,u’,,) (resp., @,.,(k,,,u’,,,u,,)) is a literal in
Bvij) and L = Q,,(k,,, v ,,) (resp., L = -Q Jk,,, v ,,)) is the
corresponding literal in B(Pi)9 then the expression
-Ely B(P,)a can be simplified to 73~ (B(p,)ti A u’~=v h)

(resp., -Jy(B(PJdL A u,,fv,,)).
Proof: We give the proof for the modification of a

positive literal. By (3), pQh(kh,u,,,u’,,) 3 QJk,,,u’,,).
Given that k, is a key for Q, then Qh(kh,v,,) is me
only when u’~ = v,,. We prove similarly the
modification of a negative literal. 0

Unchanged positive literal
If Q&k,,,u,,) is a literal in B(Poij) and L = Q&k,,,v,,) is
the corresponding literal in B(PJo, then the expression
-3yB(P.)o can be simplified to
v) Not&e that u v can be nulT’y(B(p,)tiL A uh = h’ h’ h

Proof: Similar to the previous one. @

Unchanged negative literal

If7Q,,(k,) is a literal in B(Poij) andL = 7Qh(kh) is the
corresponding literal in B(P,)cr, then the expression 7
3yB(PJocan be simplified to 7 Yy(B(p,)o\L).

Proof: StraightforwardO

Auxiliary simplifications
Some of the simplifications insert comparison literals in
the expression ~yB(P)cr. A simple analysis of such
literals produce further simplifications. For example:

a) If a literal has the form u = u, then it can be removed.

b) If a literal has the form u # u, then 7 3 yB(PJo
becomes true.

c) If a literal L has the form uh = vh, where uh (resp.,
vh) is free (resp., bound) in -, Z!yB(P,)cr, then we
remove the literal and replace the expression by

(-‘YWiWHuh’vhI.

230

Applying the above simplifications to the rules
corresponding to 6Young(ga) and 6Student@,a) given in
Example 3, we get:

(E-26) GYoung(p,a) t GPerson@,a) A a<20
(B.27) sYoung(g,a) t ~Person(ga,a’)~ac20 A ,a’<20
(E.28) GStudent@,a) t Young&a) A T tYoung@,a)

A T l.tYoung@,a’,a) A LWorks@)
(E.29) GStudent@,a) t 6Young(p,a) A 4%rks@)

A 7 GWorks@)
(E.30) 6Student&a) t GYoung(ga) A tWorks@)
(E.31) GStudent@a) t yYoung(ga,a’) A rWorks@)

4.2 Simplification of Modification
Internal Events Rules

Modification internal events rules for predicate Pi were
defined in section 3.5 as:

(21) pP(k,x,x’) t P’,(k,x) h P,(k,x’) A x f X’

i=l...m, h=l...m except i
(22) P(k,x,x’) + U’i(k,x,x’) i=l...m
(23) CIPi(k,X,X’) t pOi(k,X) A Pi(k,X’) A X #X’

i =1-m

We fust show that (21) can simplified to:

(27) @‘(k,x,x’) t GPi(k,x) /\ l.P,(k,x’) /\ x fx’
i=l...m, h=l...m except i

We give the proof in the Appendix. The main idea is
that, due to the key integrity constraint, P,(k,x) must not
hold and that the only way to get Poi(k,x) true, being
P,(k,x) false, is that 6P,(k,x) holds. Also due to the key
integrity constraint, Poh(k,x’) must not hold and the
only way to get PO,(k,x’) false, being P,(k,x’) true, is
that tP,(k,x’) holds.

Now, we show how to simplify rules (23). Replacing
in them Poi(k,x) by its equivalent definition given in
(11) we get:

(28) pPi(k,x,x’) t Poij(k,x) A Pi(k,x’) A x #x’

i = 1 . . . m, j = 1 . . . a

We can remove from (28) the rules corresponding to
j=l, which have the form given in (12), since Poi,l(k,x)
+ P,(k,x) and, due the key integrity constraint, P,(k,x)
+ -dx’Pi(k,x’) A x # x’. We can then reduce the set
(28) to:

(29) pPi(k,x,x’) t Po,&k,x) A Pi(k,x’) A x f X’

i = 1 . . . m, j = 2 . . . a

which can be rewritten as:

(30) pi(k,x,x’) t B(poij) A B(Pi)o A x #x’

i = 1 . . . m, j = 2 . . . a

where0 is the substitution {x’/x, z’/z}, z is the set of
variables in B(Pi) except k and x; and z’ are new
variables.

As in the deletion case, there are several simplifications
that can be applied to rules (29) above. All of them are
based on the analysis of the relationship between a literal
LJk,,u,) in B(Poij) and the corresponding literal in
B(P,)o. The result of this simplification can be either a
reduced form of the expression B(P,)o or a removal of the
rule.

Deletion of a positive literal
If &Q,,(k,,,u,J is a literal in B(Poij) and Qh(kh,v,,) is the
corresponding literal in B(Pi)o, then this rule can be
removed. Notice that u,,, v ,,can be null.

Proof: By (2), 6Qh(kh,u,,) + -3yC&(k,,y) and thus
Q,,(k,,, v ,,) is false. 0

Insertion of a negative literal

If tQl(k,,) is a literal in B(Poij) and 7Qh(kh) is the
corresponding literal in B(P,)cr, then this rule can be
removed.

If LQ&k,,u,) is a literal in B(POij) andL = 4&(kh,v,,)
is the corresponding literal in B(P,)o, then the expression
B(Pi)oCan be simplified to (B(PJoV. A u,, f v,,).

Proof: BY (11, LQ&,) -+ Q&J ad thus lQ&,) is
false. Also by (l), tQJk,,u,) + Qh(kh,u,,). Given that
k, is a key for Q,,, then 7Qh(kh,vh) is true only when
Uh fVh. 0

Modification of a literal

If j.~Q&,,u,,,u’,,) (resp., pQh(kh,u’,,,u,,)) is a literal in
B(poij) and L = Q,.Jk,,,v,,) (resp., L = -Q&k,,,v,,)) is the
corresponding literal in B(Pi)o, then the expression
B(P,)o can be simplified to (B(Pi)o\L A u’,,=v,,) (resp.,

(BPiWL A “,‘V,))*
Proof: We give the proof for the modification of a

positive literal. By (3), pQh(kh,u,,,u’,,) + Qh(kh,u’,,).
Given that k, is a key for Q, then Qh(kh,v,,) is true
only when u’,, = v,,. We prove similarly the
modification of a negative literal. @

Unchanged positive literal

If Qh(kh,uh) is a literal in B(Poij) andL=Q,(k,,v,) is
the corresponding literal in B(P,)o, then the expression
B(Pi)6 can be simplified to (B(P$d\L A u,,=v,J. Notice
that uh,v h~an be null.

Proof: Similar to the previous one. 0

Unchanged negative literal
If-Q&k,,) is a literal in B(Poij) and L = TQ,,(k,,) is the
corresponding literal in B(Pi)cr, then the expression
B(PJo can be simplified to (B(P,)d\L).

Proof: Straightforward. CD

231

Applying the above simplifications to the rules
corresponding to pYoung@,a,a’) and pStudent@,a,a’)
given in Example 3, we get:

(E.32) pYoung(p,a,a’) t l.tPerson@,a,a’) A ac2OA a’<20
(E.33) pStudent@,a,a’) t /.tYoung(p,a,a’) A 7ubrks@)

A 7 GWorks@)

4.3 Simplification of Insertion Internal
Events Rules

Insertion internal events rules of predicate Pi were defined
in (15) as:

tPJk,x) t P,(k,x) A 7 jyP”,(k,y) i =l...m

replacing P’,(k,y) by its equivalent definition given in
(11) wegec

(31) tP,(k,x) t P,(k,x) A 7 3yPOJk,y) A . . . A

~‘Y~i,~(k,Y) i = 1 . . . m

which can be rewritten as:

(32) tP,(k,x) t B(P,) A 7 3y(Bpi,+) A . . . A

7 3 (B(POi,a)@ i=l . . . m

where cs is the substitution {y/x, z’lz}, z is the set of
variables in B(Poi,J except k and x; and z’ are new
variables.

Assume B(P,) has n ordinary literals, and let L, =
[Qh(kh,u,,) I -Qh(kh,uh)l be one of them. It is not
difficult to see that in (32) an l.Pi fact can only be induced
by an insertion, deletion or modification event of some
L. In fact, we prove in [urpgla] that each rule (32) is
equivalent to the set of rules:

(33) tPi(k,x) + B(Pi)V,
A [Q(k,,,U,,) I ~Q,,(k,,,q,)l
A 7 3Y @(PO,,1 NJ A ***A 7 3Y (BFi,p)@

i=l . . . m, h = 1 . . . n

(34) Lpi&,X) + B(Pi)&

i=l . . . m, h = 1 . . . n

As in the previous case, there are several
simplifications that can be applied to rules (33) and (34)
above. Again, these simplifications are based on the
analysis of the relationship between a literal in B(P,)\&,
or Q, SQ,, pQh literals and the corresponding literal in
each B(Poij)o, where j = l...a. The result of this
simplification can be either a reduced form of the
expressions 13yB(P”,$~ or the removal of whole rule.

Insertion of a positive literal

If K&(k,,u,) is a literal in (33) and the key of the
corresponding literals of some B(Poi,)o is k,, then the
expression 7 !ly(B(POij)c$ can be removed from (33).
Notice that u,, can be null.

Proof: The corresponding literals of LQ&k,,u,) in
B(Poij)o have one of the formQ,(k,,v,) A 7 1Q,,(k,,,v,,)
A 1 &&-&,v’,,,v,,) or Q,(kh,vh) or ~Qh(kh9vh7v’,,).
Assume the first form. Then, by (l), LQJk,,u,,) +
Q&k,,,u,,). Given that k, is a key for Qh, then Qh(kh,vh)
is true only when u,,=v,,. But in this case, +Qh(kh,vh)
is false.

For the orther two forms, we have d&(k,,u,) +

-WQ,(k,,y) and tQ&,,u,) + -Jw’~Q~(k,,,y,f).
0

Deletion of a negative literal

If 6Q,(k,) is a literal in (33) and TQh(kh) A 7 6C&(k,) or
tC&,(k,,) is the corresponding literal in some B(PoiJ)o,
then the expression -, 3y (B(poij)o) can be removed from

(33).
If 6Qh(kh,u,,) is a literal in (33) and LQl(k,,v,) or

pQh(kh,v’,,,vh) is the corresponding literal in some
B(Poij)o, then the expression 7 3y(B(Poij)o) can be
removed from (33).

If ZQ,(k,,u,) is a literal in (33) and L= TQh(kh,vh) A

7 ~Qh(khv v ,,) A 1 ~Qh(kh,v,,,v’,,) is the corresponding
literal in some B(PoiJ)cr, then the expression
+ly(B~ij)o) can be simplified to 7 3yfJ3(poij)o\L A

Uh #V,). Uh #V,).

Proof: By (2), &Q&k,,,u,,) + 7 3yQ,(k,,y). Given Proof: By (2), &Q&k,,,u,,) + 7 3yQ,(k,,y). Given
that k, is a key for Q,$hen 7 &Qh(kh,v,,) is true only that k, is a key for Q,$hen 7 &Qh(kh,v,,) is true only
when u,, fv,,. Finally, &Qh(kh,u,,) + 7 3yLQ,(k,,y) when u,, fv,,. Finally, &Qh(kh,u,,) + 7 3yLQ,(k,,y)
~d6Q,(k,,u,,) + ~d6Q,(k,,u,,) + 1 %v’~Qh&,,y,y’). @ 1 %v’~Qh&,,y,y’). @

Modification of a positive literal

If pQ,,(k,,,u’,,,u,,) is a literal in (34) and Qh(kh,v,,) A

-Q(k,,v,) A 7 CLQh(kh9v’h9vh) or 6Qh(kh9v,,) is

the corresponding literal in some B(P’, .)o, then the
expression 7 3y(B(poij)o) can be removed !rom (34).

If N&,(k,,,u’,,,u,,) is a literal in (34) and L =
p~(k,,,v,,,v’,,) is the corresponding literal in some
B(Poij)o, then the expression ~3 Y(B(PO~,~)C$ can be
simplified to 7 3y(B(P”$O\L A u’,,=v,, A u,,=v’&.

Proof: By (3), pQh(kh,u’,,,uh) + Q,,(kh,uh). Given
that k, is a key for Q, then Qh(kh,v,,) is true only when
u,,=v,,. But in this case, 7 pQh(kh,v’,,,v,,) is false.
Furthermore, pQh(kh,u’h,uh) + -, 3y@,(k,,y).

On the other hand, given that k, is a key for Qhr then
pQh(kh,vh,v’,,) is true ody when u’,,=v,, A u,,=v’,,. 0

Modification of a negative literal
If lQh(kh,u,,,u’,,) is a literal in (34) and tQl(k,,v,) is
the corresponding literal in some B(P”, .)cJ, then the
expression 7 3y(B(Poij)o) can be removed #ram (34).

232

If pQh(kh,u,,,u’,,) is a literal in (34) and L =

-Q&,,v,) A ‘-1 Q,(k,,,v,,) A 1 pQ&,,v,,,v’,,) (rev.,
L = pQ&k,,,v’,,, v,)) is the corresponding literal in some
Bpij)q then the expression T 3~(B(p”,,~)o) can be

simplified to 7 3y(B(poij)o\L A uth#vh A u,#v,)

(rev., 7 3y(B(POij)o\L A U,,=V’,, A u’,,=V,,).

Proof: Similar to previous one. 0

Unchanged positive literal
If Qh(kh,uh) is a literal in (33) (or (34)) and 6Qh(kh,vh)
is the corresponding literal in some B(Poij)cs, then the
expression T 3y(B(Fij)o) can be removed from (33)
(from (34)).

If Qh(kh,uh) is a literal in (33) (or (34)) and L=
Qh&,,vh) A 7 Q,(k,,v,J A 7 ~Qh(kh,v’,,9vh) (rev.,
L=pQ,(k,, v,,,v’,,)) is the corresponding literal in some
B(Po@, then the expression -, ~y(B(P“i,j)cr) can be
simplified to 1 3Y (B(P”i,j!aL A uh=vh) (resp.,
-dy(B(poi,j)o A u,,=v’,,). Nohce that u,,,v,, can be null.

Proof: We prove the first case. By the sake of a
contradiction, if %&(k,,,v,,) was true, then, by (2),
-FlyQ&k,,,y). But, since Qh(kh,uh) is a literal in (33)
(or (34)), we have a contradiction. 0

Unchanged negative literal
IfTQh(kh) is a literal in (33) (or (34)) and tC&(k,,) is the
corresponding literal in some B(Poi$ then the
expression T 3y(B(poij)cs) can be removed from (33)
(from (34)).

Ifd&(k,) is a literal in (33) (or (34)) and L = -Qh(kh)
A T 6Q,(k,) is the corresponding literal in some
B(Poi,$r, then the expression -3y(B(POij)cr) can be
simphfied to 7 3y(B(P”@L).

Proof: Similar to the previous one. 0

Applying the above simplifications to the rules
corresponding to tYoung(p,a) and tStudent@,a) given in
Example 3, we obtain:

(E.34) tYoung@,a) t tPerson@,a) A ac20
(E.35) tYoung(p,a) c pPerson&a’,a) A ac20 A la’<20
(E.36) LStudent@,a) t LYoung@,a) A l%rks@)
(E.37) LStu&nt(g,a) t Young&a) A SWorks(E)

5 Change Computation

We present in this Section a method for the definition and
computation of changes in deductive databases. Efficient
change computation is essential in a wide range of
applications in deductive databases, including integrity
constraints checking, view materialization and condition
monitoring. The common pattern in all these
applications consists of:

a) The definition of one or more changes to be
monitored.

b) The computation of the changes induced by a
database update.

c) The execution of some action when some of the
defined changes has been induced

We will show frst that our internal event concept can
be used to define the changes to be monitored. Assume
that Ic is an inconsistency predicate, such as, for
example:

I&C) + wOIkS~:,C) A 7cOmpaIIy&)

meaning that employees must work in companies. Then,
insertion internal events ~1c will represent violations of
the corresponding integrity constraint. If an update to
base predicates induces some dc fact then the update must
be rejected. Deletion and modification internal events are
not defined for inconsistency predicates, since we assume
that the database is consistent before the update and,
therefore, predicate Ic is false.

Now, assume that Em is a derived predicate
corresponding to a materialized view, such as, for
example:

Em(a,manager)t u,dept) A Dmamanager)

In this case, internal events em, 6Em and pm
correspond to the insertion, deletion or modification of
facts in the extension of Em. Thus, for instance, if the
update induces an tEm(E,M) fact, then Em(E,M) will be
inserted into the extension of the materialized view Em.

General conditions can also be represented as insertion,
deletion or modification internal events of a derived
predicate. Assume, for example, that we want to monitor
changes of employees earning more than 1000. We may
define a predicate C:

C(g?.Q,salary) t Sal(w,salary) A salary > 1000

and then tC(e,s) can be used to define a change meaning
that e is an employee earning more than 1000 after the
update, but not before; GC(e,s) for a change meaning that
employee e ceases to earn more than 1000; and pC(e,s,s’)
for a change meaning that the salary of employee e has
been modified from s to s’, both greater than 1000.
Appropriate actions could be associated to each, or some,
of the above changes.

Thus, we see that the single concept of internal event
may serve for defining relevant changes in a variety of
applications in deductive databases.

5.1 Our Method

We now describe our method for change computation.
The method can be entirely based on the use of standard
SLDNF resolution. Let D be a deductive database and let

233

us to denote by A@) the augmented database consisting
of the database D and its transition and events rules. Let
T be a transaction consisting of a set of external events.
If T induces a change in a derived predicate P(k,x), then
some of the G’(k,x), GP(k,x) or p(k,x,x’) facts will
be true in the transition. Using the SLDNF proof
procedure, T induces an internal event tP (or 6P or p) if
the goal t tP(k,x) succeeds from input set A(D) u T. If
every branch of the SLDNF search space for A(D) u T u
{t ~ P(k,x)} is a failure branch, then T does not induce
an tP fact.

Assume the database given in Example 1, and let the
transaction be T = {pPerson(Ann,l5,16)}, that is, we
change Ann’s age from 15 to 16. The following
refutation shows that T induces pStudent(Ann,l5,16):

+ plIiludenl(PPP1

(E.33)

t ,u.Young(pp,a’j A 7Works@ A AWorks@

(E.32)

t ,uPenon(p,ap’) ha<20 A a’40 A yWorks@) A dWorks6?)

(T,@Ann, a/15, a’i16)

t L5c20 A 16 Qf? A 7Works(Ann)~ y bWorks(Am)

1

(15~20~ 1640)

t ~Workr(Ann ,T dSVorks(Am)

J

t Works(Ann) fails

t--r orks(Ann)

t Gworks(Ann) fails

[I

It can be shown that all derivations with root goals {t
Gtudent@,a)} and {t 6StudenQa)) fail finitely and,
thus, T does not induce any Gtudent or &Student fact.

A number of optimization techniques can be naturally
incorporated into our method. The most important is the
partial evaluation cLlS91] of the transition rules, internal
events rules and a given transaction with respect to the
relevant internal events. Partial evaluation produces, at
compilation time, a set of equivalent rules which which
can be evaluated more efficiently at execution time.

Examnle 8

In our example, partial evaluation of the transition rules
and internal events rules and transaction T =

&.Person(P,A,A’)}, where P, A and A’ are parameters,
with respect to literals ttStudent@,a), t6StudenQa)
and tfltudent@,a,a’), produces the program:

(E.38) pStudent(F’,A,A’) t A<20 AA’RO A 7Works(P)
(E.39) LStudent(P,A) t A’<20 A -A&O A TMbrks(P)
(E.40) GStudentp,A) t A<20 A --A’<20 A -Works(P)

which can be evaluated efficiently at execution time, with
a single access to the database (Works(P)).

We can also take into account some details of a given
application of change computation. Thus, in view
materialization we have available the old state of the
view, or in integrity constraints checking we know that
the old state is consistent. In such cases, we can easily
adapt our rules to take advantage of this knowledge.

6 Comparison with other Methods

In this section we compare our method for change
computation in deductive databases with some of the
methods mentioned in the introduction. We discuss the
method proposed by Rosenthal, Chakravarthy, Blaustein
and Blakeley lJXB+89] for condition monitoring, and
the method proposed by Ceri and Widom [CeW91] for
incremental view maintenance. See [Oligl] for a
comparison of a variant of our method with integrity
checking methods.

6.1 Rosenthal et al.‘s Method

One of the problems addressed in the HiPAC project
[CBB+89] is condition monitoring in active database
systems lRCB+89]. Rosenthal, Chakravarthy, Blaustein
and Blakeley study the expression and evaluation of a
single situation. A situation describes a logical condition
to be evaluated when one or more set of pre-defined
events occur. The condition part of a situation is defined
using a relational expression.

They consider not only insertion and deletions changes
of a monitored condition, but also modification changes.
Each tuple of a relation has a special attribute that
provides a unique immutable identifier, so that a tuple is
modified if some of its attributes changes. The method
derives an algebraic expression for computing induced
changes.

In general, when the expression that defines the view is
a select, project, join or an arbitrary expression with a
unary operator as a root of the expression, we obtain
similar results. However, the main advantage of our
method is that it allows more expressiveness in the
definition of derived predicates that can be handled in
incremental form: we can apply our method to more
general derived predicates. As an example, we can have
derived predicates defined with the negation operator and

234

with more than one rule (with the binary union operator
as a root of the expression).

Furthermore, our rules incorporate the knowledge of
keys of predicates. This allow us to obtain a more
simplified set of rules that fit to each particular situation.
As an example, consider the derived predicate Youngba),
defined in the example 1 as: Young(&a) t Person
A a<20. We have shown that rules E.26, E.27, E.32,
E.34 and E.36 compute changes to that predicate in
incremental form. Assuming now that our knowledge of
keys changes: Young&$ t Person&$ A ac20,
applying our method we obtain the following simple
events rules:

tYoung&Q t tPerson(@ A a<20
&Young@& t GPerson(p& A a<20

For a more detailed comparison see lUrp9 1 b] .

6.2 Ceri and Widom’s Method

This method derives automatically production rules for
incremental maintenance of materialized views. The rules
are executable using the rule language of the Starburst
database system [WCL91]. Views are specified using a
standard query language, and arbitrary database updates
(insertions, deletions an&or modifications) are considered.
The method defines insertion and deletion changes of a
materialized view. These changes are computed once base
relations have been updated. Using the definition of a
view and information about keys of the view’s base
tables, the method determines whether efficient view
maintenance production rules [WiF90, WCLBl] for
updates on each base table can be generated.

If a base table reference in a view definition is slgce
[CeW91], incremental view maintenance rules can be
generated. However, if a base table reference is Unscgce,
some of the updates on this table cannot be handled in
incremental form and a rule that rematerializes the view
in such cases is defined

Once the rules have been generated, they must be
ordered using a pec& clause so that all rules performing
deletions precede all rules performing insertions. The
rematerialization rule of a view (if exists) has precedence
over all rules of that view.

In general, using our method, we obtain similar results
when a base table reference is x&. But there are two
main differences. The first is that we can induce not only
insertion and deletion changes of a materialized view, but
also modification changes. To see the importance of this
extension consider the derived predicate Young(p,a) given
in the Example 1 and assume that Young is a
materialized view. Using our method, we get the
following simplified events rules that handle
modifications events of base predicate Person:

(E.27) &Young(p,a) t J.LPeISOn@,a,a’) A a<20 A +i’<20

(E.32) pYOUng@,a,a’) tperSOn&a,a’) A a<20 A a’<20

(E.35) tYoung(g,a) t pPerson(p,a’,a) A a<20 A ,a’<20

The first rule can induce deletion changes of predicate
young; the second one, modification changes and the
third one, insertion changes. Instead, rules generated
using Ceri and Widom’s method handle case E.32 in a
more inefficient way: as deletions of tuples Young&a)
followed by insertions of tuples Young&a’).

A second difference is that rules generated using Ceri
and Widom’s method do unnecessary work when the base
table attributes that are irrelevant to the view definition
are modified. As an example, consider the derived
predicate Employee@), defined as Employee(c) t
Works&c). Applying our method we get the simplified
events rules:

t.Employee~) c tWorks&,c)
GEmployee@ t GMrks(e,c)

Notice that, since a modification of the company in
which an employee works cannot induce insertion or
deletion changes on Employee, our rules do not take
those modifications into account. However, rules
generated using Ceri and Widom’s method do unnecessary
work since such modifications will be handled as a
deletion of tuple Employee&) followed by an insertion of
the same tuple.

As we mentioned previously, using Ceri and Widom’s
method, when a base table reference in a view definition
is ZUIS@, some of the updates on that table cannot be
supported efficiently. In this case, the main advantage of
our method relies on the fact that we can handle those
updates in incremental form. As an example, consider the
derived predicate Tenant@,h), defined as Tenant&h) t
Lives(p,h) A Owns&h). Since Owns&h) is UnsrgCe, if a
tuple is modified or deleted from this table, the view
Tenant&h) will be rematerialized. Instead, applying our
method we get the following set of simplified rules that
handle deletions from Owns&h) in incremental form:

STenant@,h) t Lives@,h) A T t.Lives&h)
A T pLives(p,h’,h) A &Owns&h)
A TOwns@‘,h)

GTenant@,h) t GLives(p,h) A sOwns&,h)
GTenant@,h) t l,tLives@,h,h’) A 6Owns&,h)

A ~Owns~,h’)
l.tTenant@,h,h’) t pLives@,h,h’) A Khvns~,h)

A Ownsc,h’)

Similar rules are obtained for modifications of
Owns&h).

Finally, we point out that our rules are generated using
a simple procedure, while Ceri and Widom’s rules are
generated using a complex procedure, that needs to take
into account the potentially complex syntactic structure
of the view definition.

235

7 Conclusions

In this paper, we have presented a formal method to
derive a set of transition and internal events rules for a
deductive database. Given an update, the transition rules
relate the old state to the new state and the events induced
by the update. The internal events rules define explicitly
the changes (insertions, deletions and modifications)
induced by the update on the derived predicates.

We have then presented a method that use the above
rules for computing the changes induced by an update in
a deductive database. The method deals with allowed,
stratified databases. Updates considered are sets of
insertions, deletions and/or modifications of base facts.
Our method is based on the use of the standard SLDNF
procedure and, in this way, it can be implemented directly
in Prolog. However, other proof procedures could be used
as well. Some optimization techniques, including partial
evaluation, can be easily incorporated into our method.

We have also compared our method with some other
well-known methods, and we have shown how we
improve their efficiency.

We plan to further simplify our transition and internal
events rules by taking into account the complete set of
integrity constraints of the database, including alternate
keys.

Acknowledgements

We would like to thank D. Costal, E. Mayol, J.A.
Pastor, C. Quer, M.R. Sancho, J.Sistac and E. Teniente
for many useful comments and discussions.
This work has been partially supported by the CICYT

PRONTIC program project TIC 680.

Appendix

Proof of (27): We prove this simplification in two
steps. Firstly, we prove that, due to the key integrity
constraint, P,(k,x) must not hold and that the only way
to get P”,(k,x) true, being P,(k,x) false, is that
&P,(k,x) holds. Secondly, we prove that, due to the key
integrity constraint, Poh(k,x’) must not hold and the
only way to get Poh(k,x’) false, being P,(k,x’) true, is
that tP,(k,x’) holds.

First step.
Replacing PO,(k,x) by its definition given in (4) we

rewrite (21) into the set of rules:
(P-1) CIP(k,X,X’) t Pi(k,X) A ~ ~i(k,X)

A 7 pPi(k,x”,x) A P,,(k,x’) A x f X’
(P-2) pP(k,x,x’) t GPi(k,x) A P,(k,x’) A x f x’

(P-3) ~(k,X,X’) t ~i(k,X,X”) A Ph(k,x’) A x fx’
where i = 1 . . . m, h = 1 . . . m except i.

Rules (p.l) above can be removed since that, by the

key integrity constraint, Pi(k,X) + -Elx’P,(k,x’) A x

#X’.

Since, by (3), pPi(k,x,x”) + Pi(k,x”) and given that
k is a key for P, then x” = x’ and thus rules (P.3) above
can be removed since they are subsumed by (22).

Second step.
Let us consider rules (P.2). Since we assume that key

integrity constraints hold before and after the update, we
can rewrite rules (p.2) as:

(p.4) ji.P(k,x,x’) t &P,(k,x) A P,(k,x’) A x f x’

A -,pi(k,x) A PO,(k,x’) A X #X’)

and given that, by (2), GPi(k,x) + Poi(k,x), we can
rewrite (p.4) as:

(p.5) /A’(k,x,x’) t GPi(k,x) A P,(k,x’) A x fx’

A TP’,,(k,x’).
Replacing qoh(k,x’) by its definition given in (5) we

transform (P.5) into the set of rules:
(P.6) pP(k,x,x’) t GPi(k,x) A P,,(k,x’) A x+x’

A TPJk,x’) A --J GP,(k,x’) A 7 /siPh(k,x’,x”)
(P.7) p(k,x,x’) t GPi(k,x) A P,(k,x’) A x f x’

A *#W)
(P.8) pP(k,x,x’) t &P,(k,x) A P,(k,x’) A x f x’

A Phtk,x”,x’)
where i = 1 . . . m, h = 1 . . . m except i.

Rules (P.6) above can be removed since P,(k,x’) A
-Qh(k,x’) can not hold.

Given that, by (l), tPh(k,x’) + P,(k,x’) we
transform rules (F.7) in (30).

Since, by (2), ~Pitk,X)+~itk,X), by (3),
pPh(k,x”,x’)+pOh(k,x”) and given that k is key for P,
then x=x” and thus rules (P.8) can also be removed
since they are subsumed by (22). 0

References

[ABWSS] Apt,K.R.;Blair,H.A.;Walker,A. “Towards a
theory of declarative knowledge”. In Minlcer,
J (Ed.) “Foundations of deductive databases
and logic programming”, Morgan Kaufmann
Pub., 1988, pp 89-148.

[BaR86] Bancilhom,F; Ramakrishan,R. “An amateur’s
introduction to recursive query processing
strategies”, Proc. ACM SIGMOD conf. on
Management of data. Washington D.C., May
1986, pp. 16-52.

[BCL89] Blakeley,J.A.; Cobum,N.; Larson,P. “Updating
derived relations: Detecting irrelevant and
autonomously computable updates”, ACM
TODS, Vol. 14, No.3, September 1989, pp.
369-400.

236

[BrD88] Bry,F; Decker,H. “Preserver l’integrite dune
base de donnees deductive: une methode et son
implementation”. In compte-rendu des 4emes
Journ&es Base de Dorm&s Avan&es, Mai 1988,
B&-u&t, France (in french).

[BDM88] Bry.F; Decker,H; Manthey,R. “A uniform
approach to constraint satisfaction and
constraint satisfiability in deductive
databases”, Proc of Extending Database
Technology, Venice, 1988, pp. 488-505.

[BMM90] Bry,F.; Manthey,R.; Martens,B. “Integrity
verification in knowledge bases”, ECRC
report D.2.l.a, April 1990, Munich,
Germany.

[BuC79] Buneman,O.P.; Clemons,E.K. “Efficiently
monitoring relational databases”, ACM
TODS, Vol.4,No.3,September 1979, pp. 368-
382.

[CBB+89] Chakravarthy, S.; Blaustein,B.; Buchmann,A.
et al. “Hipac: A research project in Active,
time-constrained database management”, Final
Project Report, XAIT, 1989.

[CeW9 11

IDaflU

paw891

[Kow78]

[Kiic91]

[Llo87]

Ceri,S.;Widom,J. “Deriving production rules
for incremental view maintenance”, Proc. of
the 17th. VLDB Conf, Barcelona, 1991, pp
577-589.

Date,C.J. “Relational database. Writings
1985-1989”, Addison-Wesley Publishing
company, Inc.

Das,S.;Williams,H. “A path finding method
for constraint checking in deductive
databases”, Data & Knowledge Engineering,
1989, No 4, pp. 223-224,

Kowalski, R. “Logic for data description”, In
Galla.ire,H.; Minker,J.(Eds.) “Logic and Data
Bases”, Plenum Press, New York, 1978, pp.
77-103.

Ktichenhoff,V. “On the efficient computation
of the difference between consecutive database
states”, Proc. DOOD’9 1, Springer-Verlag,
Munich, December 1991, pp. 478-502.

Lloyd, J.W. “Foundations of logic
programming”, 2nd. Ed. Springer-Verlag,
1987.

lLlT84]

&lS911

[Oli89]

[Oli9 11

Lloyd, S.W.;Topor,R.W. “Making prolog
more expresive”, Journal of Logic
programming, 1984, n* 3, pp 225-240.

L1oydJ.W.; Shepherdson,J .C.“Partial
evaluation in logic programmming”, Journal
of Logic programming, 1991, n* 11, pp 217-
247.

OlivC,A. “On the design and implementation
of intormation systems from deductive
conceptual models”, Proc. of the 15th VLDB
Conf., Amsterdam, 1989, pp. 3-l 1.

OlivC,A. ” Integrity constraints checking in
deductives databases”, Proc. of the 17th.
VLDB Conf., Barcelona, 1991, pp. 513-523.

lRCB+89] Rosen&LA.; Chakravarthy,S.; Blaustein,B;
Blakeley,J, “Situation monitoring for active
databases”, Proc. of the 15th VLDB Conf.,
Amsterdam, 1989, pp. 455-464.

[SaK88] Sadri,F; Kowalski,R. “Atheorem-proving
approach to database integrity”. In Minker, J
(Ed.) 11 Foundations of deductive databases and
logic programming”, Morgan Kaufmann
Pub.,1988, pp. 313-362.

lUrp9la] Urpi, T. “An approach to monitoring changes
in deductive databases”. Technical Report LSI-
91-23, Universitat Politecnica de Catalunya,
1991.

lUrp9lb] Urpi, T. “An approach to monitoring changes
in deductive databases”, Proc. of the Second
International Workshop on the Deductive
Approach to Information Systems and
Databases, Aiguablava (Catalonia), September
1991, pp. 87-113.

wiF90] Widom,F.; Finkelstein,S.J. “Set-oriented
production rules in relational database
systems”, ACM SIGMOD Conf., May 1990,
pp. 259-270.

[WCL91] Widom,J.; Cochrane,R.J.; Lindsay,B.G
“Implementing set-oriented production rules as
an extension to Starburst”, Proc. of the 17th
VLDB, Barcelona, 1991, pp. 275-285.

237

