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A method for closed loop automatic tuning of PID controllerst
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A simple method for the automatic tuning of PID controllers in closed loop is
proposed. A limit cycle is generated through a nonlinear feedback path from the
process output to the controller reference signal. The frequency of this oscillation is
above the crossover frequency and below the critical frequency of the loop transfer
function. The amplitude and frequency of the oscillation are estimated and the
control parameters are adjusted iteratively such that the closed loop transfer
function from the controller reference to the process output attains a specified
amplitude at the oscillation frequency.

1. Introduction

In recent years several ‘simple’ methods for the automatic tuning of PID controllers
have been proposed. A specific input to the process is usually generated automatically
and the PID-parameters are then determined directly from the response. Many of these
methods originate from the well known work of Ziegler and Nichols (1942, 1643). In
their step response method the controller design is based on a registration of the open-
loop step response of the process, which is characterized by two parameters. An
extension to the Ziegler—Nichols method is presented by Nishikawa et al. (1984). In this
method the parameters of simple process models are determined directly from the step
or pulse response. The model parameters are computed from certain areas related to
the response and the PID parameters are determined from these model parameters.
This transient response method is less sensitive to noise than the original siep response
method proposed by Ziegler and Nichols.

The Ziegler-Nichols frequency response method for tuning of PID controllers is
based on the determination of a single point on the Nyquist curve for the process
transfer function. This point is the intersection of the Nyquist curve with the negative
real axis, which is traditionally called the critical point. The control parameters are then
determined from the knowledge of the critical gain and the critical period. In the
original Ziegler-Nichols method the critical point is determined by increasing the gain
of a proportional controller until the control loop reaches the edge of stability. The
critical point is then defined by the period and the amplitude of the oscillation
generated in the control loop. This method is difficult to automate. Astrém and
Hagglund (1984a, 1984b) approximately determine the critical point by connecting a
relay in the feedback loop from the process output to the process input. Most processes
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will then oscillate in a limit cycle. The critical gain and the critical period are
determined from the amplitude and the frequency of this oscillation.

These and similar methods have been used by the process control industry for the
development of a wide range of ‘autotuning’ instruments that recently have appeared in
the market (Morris 1987). References to other approaches are given by Gawthrop and
Nomikos (1990).

The present method may be regarded as an extension of the Astrom and Hagglund
method to closed loop systems. A limit cycle is generated such that the control system
oscillates at a frequency that is crucial for determination of control system stability and
performance. The control parameters are adjusted iteratively such that the closed loop
transfer function from the controller reference to the process output attains a specified
amplitude at the oscillation frequency. It is assumed that a stable (and conservative)
controller is established prior to the tuning, and the purpose of the proposed method is
to improve the performance. For processes that are open-loop stable, conservative
controllers might often be established by simple transient response experiments.

The paper is organized as follows. In Section 2 the excitation method is described
under the assumptions that the PID parameters are constant and that a limit cycle is
actually generated in the control system. Section 3 describes an iterative method
for determination of the PID parameters. Simulation experiments are presented in
Section 4. The advantages and disadvantages of the proposed method compared to the
Astrom and Higglund open-loop autotuner are discussed in Section 5.

2. The excitation method

The system is excited by connecting a relay and a linear dynamic element in a
feedback path from the process output to the reference signal for the controller as
shown in Fig. 1. M,(s) is the closed loop transfer function from the controller reference,
¥,» to the process output, y. For most systems a limit cycle will be generated due to the
nonlinear characteristic of the relay. The linear block d(s) is used to influence the
frequency of this limit cycle oscillation. The reference signal will vary in steps between
yo—Ayand y,+Ay, where Ay is the amplitude of the relay function. The system will
oscillate at approximately the frequency w,,, where

Ld(jo )M, (jo)=—180" (1)

This follows from a describing function approximation of the relay characteristic.

In a PID controller the derivative action is normally applied to the measurement
signal only, not to the reference signal. The controller transfer function from reference
to controller output is then

1
C.(s)=K,(1+ T ‘s-) 2)
and the transfer function from measurement signal to controller output is
1 T,
—Cfs)=—K [ 14+ —+— 3
wo=—r (17 +1+(Tdif)s) N

where K, is the proportional gain, T; is the integral time constant, and T is the
derivative time constant. It is assumed that the derivative part is filtered by a first order
lag with time constant T,/N . The total controller output is

u(s)= C,(5)y,(s)— C,(s) 1) 4
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Figure 1. Block diagram showing the relay feedback path from the process measurement, y, to
the reference signal for the controller, y,.

The complementary sensitivity for the control loop is defined as

MO={Yom  GO=HECH )

G{(s) is the loop transfer function and H(s) is the transfer function for the process. The
closed loop transfer function from controller reference to process output is

W) _ HOCH) _ Cls)
¥s) 1T+H(@)C(s) Cyls)

M,(s)= M(s) (6)

The filter d(s) is chosen to be

_GH)
a0=20) )
Equations (6) and (7) are inserted in (1):
Ld(jo )M, (o)=L “"(f)—':"" — _180° ®)

Hence, the frequency of the limit cycle, o, is determined by
L M(jo,)=—90° ©

The frequency of this oscillation is above the crossover frequency (gain equal one) and
below the critical frequency (phase equal — 180°) for the loop transfer function. This
can be seen from the Nichols chart in Fig. 2. The oscillation frequency is in the
frequency range that is most crucial for the determination of stability and transient
properties for the control system.

Some theoretical questions regarding existence and uniqueness of relay oscillations
and accuracy of the describing function approximation are analysed by Astrém and
Hagglund (1984a) and Tsypkin (1984).

3. Determination of PID parameters

In the previous section the excitation method is described under the assumption
that the control parameters are constant and that a stable limit cycle is generated in the
control system. In the proposed tuning method the amplitude and frequency of this
oscillation are determined by simple peak and zero-crossing detection of the signal e (t)
in Fig. 1.

The PID control parameters are updated iteratively from the following simple
scheme. The amplitude of M(jw,,) is specified to be m,. The corresponding amplitude,
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Figure 2. Nichols chart for determination of the complementary sensitivity function. Only the
curves for [M|=1-1 and £ M=—90° are shown on the chart. The frequency and the
amplitude of the limit cycle oscillation are determined by the intersection of the loop
transfer function G(jw) and the curve for £ M= —90"

g, of the loop transfer function, G(jw,.), is determined from equation (5) and (9). At time
t, the oscillation frequency is estimated to be &;, and the amplitude of G(j&;) is
estimated to be g; =I;i|C,. {j&;), where h; is the estimated process gain at the oscillation
frequency. C, ,(s)is the transfer function for the controller from timet;_, tot;. Now, the
integral time constant, T}, and the derivative time constant, T,, are sct proportional to
@, !, and the proportional gain, K, is determined such.that hC,. i1 (0N =95
C,.;+1(5) is the transfer function for the controller with the new parameter set. The
tuning is terminated when the relative change in control parameters are below certain
values.

The number of oscillations used for estimation of @, and |G(jw,/)| is a compromise
between stability of the autotuner and the duration of the tuning experiment.
Simulations indicate that the control parameters might be updated once for each
oscillation period. f;_, and t; then correspond to two zero-crossings of e(t), with one
oscillation period in between. The tuning algorithm might be made more robust
against spurious disturbances by limiting the relative change in control parameters at
each updating time.

In order to obtain the best possible tuning for a wide range of process
characteristics, the autotuner has four modes. The ‘tuning rules’ below are determined
through extensive simulation experiments with a wide range of process models.

Mode 1: T‘=3'—0, T¢=&?E, m,=1-1
Wy, Wy,
3
Mode 2: Ti=_0’ Tﬂ'=0’ ms=l'1
Wy
10 > (10)
Mode 3: T,.=—, T,=0, m,=09
Wy
60
MOdc 4: T‘= ] Td=0, m_,= 1'3
Ie
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Mode 1 and mode 2 are for PID and PI control with a medium value of the integral
time constant. These modes work well for most processes. The third mode is for
processes with very dominant non-minimum phase behaviour. The integral time
constant should be chosen relatively short for these processes. The last mode is for
control of integrating processes (e.g. level control). These processes should be
controlled with a long integral time constant in order to obtain sufficient phase margin
for the control loop.

4. Simulation examples
A PID controller is first tuned for the process model

H(s)= exp(—15s) (11)

1
(1430s)1 +15s)
Figure 3 and 4 show the tuning experiment for a situation with no disturbances or
measurement noise. The initial part of the tuning takes a relatively long time due to the
very conservative initial control parameters. The open-loop transfer function G(jw)
after the tuning is shown in the Nichols diagram in Fig. 2. Now, the same model is
simulated with white measurement noise and a periodic disturbance added to the
process output. The standard deviation for the measurement noise is 1% and the
disturbance is a sine wave with a period of 20 seconds and amplitude 1-5%. A PI
controller is tuned as shown in Fig. 5 and Fig. 6.

Other simulation experiments showing the performance of this method for various
linear and nonlinear process models and for various disturbances are presented in
Schei (1991).

5. Conclusions

A simple method for the automatic tuning of PID controllers has been proposed.
The method is mainly investigated through extensive simulations with process models

0 : . Control ._variabk
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seconds

Figure3. Autotuning of PID controller. The tuning is terminated after about 850 seconds. After
1000 seconds there is a step in the reference signal for the controller.
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Figure4. Proportional gain, integral time constant and derivative time constant (dashed line)
during tuning of PID controller in Fig. 3. Initially the controller has only proportional
action (T;=o0 and T,=0).
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Figure 5. Autotuning of PI controller for process with measurement noise and periodic
disturbance.
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Figure 6. Proportional gain and integral time constant during tuning of PI controller in Fig. 5.

that are typical for the processes encountered in the process industry, and with different
kinds of disturbances and measurement noise. The conclusion from these simulations is
that the method performs very well if the tuning modes are reasonably chosen. Even for
very difficult processes, where a PID controller is inferior to more advanced control
methods, the controller tuning is often close to the ‘best’ that can be achieved within the
limitations of a PID controller.

Compared to the Astrém and Higglund open-loop autotuner the proposed
method is supposed to have the following properties. The oscillation frequency is
reasonably chosen with respect to obtaining sufficient gain and phase margins for the
control loop. With the Astrém -Hagglund autotuner the process is excited at a
frequency where the phase of the process transfer function is approximately — 180°.
Often in process control it is not desirable to use derivative action in the controller.
With a PI controller the phase lag of the loop transfer function then has to be more
negative than — 180°. Hence, the oscillation frequency is above the critical frequency
for the total control loop. In this situation it is assumed that the Kstrém—Hégglund
autotuner has to be more conservative than the present method in order to ensure
sufficient phase margin for the control loop.

The proposed method is also assumed to be less sensitive both to disturbances well
above and well below the oscillation frequency compared to the Astrém -Hagglund
method. The former is due to the low pass character of the filter d(s). The latter is due to
the closed loop approach. In the Astrﬁm—Hﬁgglund autotuner the processinput vary in
steps between two constant values. The step size then has to be chosen large enough to
account for drift during the tuning.

The main disadvantage of the proposed method is assumed to be the duration of the
tuning experiment. The proposed method is assumed to take longer time than the
Astrom-Hagglund method for two reasons. First, the excitation frequency is lower,
especially if the initial controller tuning is very conservative. Second, the number of
oscillation periods are probably higher due to the iterative updating of the control
parameters.
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