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Abstract. Digital images of the sky obtained using a total

sky imager (TSI) are classified pixel by pixel into clear sky,

optically thin and optically thick clouds. A new classification

algorithm was developed that compares the pixel red-blue ra-

tio (RBR) to the RBR of a clear sky library (CSL) generated

from images captured on clear days. The difference, rather

than the ratio, between pixel RBR and CSL RBR resulted in

more accurate cloud classification. High correlation between

TSI image RBR and aerosol optical depth (AOD) measured

by an AERONET photometer was observed and motivated

the addition of a haze correction factor (HCF) to the classi-

fication model to account for variations in AOD. Thresholds

for clear and thick clouds were chosen based on a training

image set and validated with set of manually annotated im-

ages. Misclassifications of clear and thick clouds into the op-

posite category were less than 1 %. Thin clouds were classi-

fied with an accuracy of 60 %. Accurate cloud detection and

opacity classification techniques will improve the accuracy

of short-term solar power forecasting.

1 Introduction

Clouds play an important role in Earth’s climate; however

there are still large uncertainties in the cloud-climate feed-

back (Solomon et al., 2007). Cloud reflection and in some

cases enhancement of incoming solar radiation is an active

research area (Cess et al., 1995; Kindel et al., 2011; Luoma

et al., 2012). For solar power applications cloud transmis-

sivity is the critical parameter and it is a function of cloud

characteristics such as vertical and horizontal extent, droplet

concentration and size distribution. Aerosols also affect the

radiation budget firstly by scattering and absorbing solar ra-

diation and secondly by acting as cloud condensation nuclei

thereby modifying the radiative properties of clouds (Twohy

et al., 2005; Kim and Ramanathan, 2008).

Cloud properties such as cloud optical depth and cloud

fraction can be estimated from satellite images (Rossow and

Schiffer, 1999; Zhao and Di Girolamo, 2006). Satellites sam-

ple on a global scale; however, their resolution is coarse at

1 km for the geostationary (GOES-12-15 series) satellites

and 250 m resolution with only 1–2 images taken per day

for the polar orbiting MODIS satellite. Another major short-

coming of satellite retrieved data, in the field of solar re-

source assessment, is the inability of satellites to determine

solar obstruction accurately for a specific site due to uncer-

tainties in cloud height and depth retrievals. Thus, ground

based sky imagers (henceforth, we will refer to all types of

ground based sky imagers as SIs) were developed in order

to address the need for atmospheric imaging at higher spa-

tial and temporal resolution. Since the first digital SIs were

developed at University of California, San Diego (Johnson et

al., 1989; Shields et al., 1993, Shields et al., 1998a; Shields

et al., 1998b; Shields et al., 2009), various groups have de-

signed different SIs. The most popular design consists of a

digital camera coupled with an upward looking fisheye-lens

to provide field of view (FOV) of about 180◦, (Seiz et al.,

2007; Souza-Echer et al., 2006; Calbó et al., 2008; Cazorla

et al., 2008b; Román et al., 2012). Another SI system design

uses a downward looking camera on top and a spherical mir-

ror (Pfister et al., 2003; Long et al., 2006; Neto et al., 2010;

Chow et al., 2011).
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Cloud detection using SIs is generally based on a

thresholding technique that utilizes the camera’s red-green-

blue (RGB) channel magnitudes to determine the red-blue ra-

tio (RBR) (Shields et al., 1993). The Shields et al. (1993) al-

gorithm uses fixed ratio thresholds to identify opaque clouds;

thin clouds are detected through a comparison with a clear

sky background RBR library as a function of solar angle,

look angle and site location. Souza-Echer et al. (2006) used

saturation in the hue, saturation and luminance (HSL) color-

space with fixed thresholds for cloud detection. Cazorla et

al. (2008b) classified clouds based on neural networks. Neto

et al. (2010) utilized the multidimensional Euclidean geo-

metric distance (EGD) and Bayesian methods to classify

image pixels based on cloud and sky patterns. Shields et

al. (2010) added an adaptive thresholding technique to ac-

count for variations in haze amount in real time. Finally,

Li et al. (2011) developed a hybrid thresholding technique

(HYTA) that is based on both fixed and adaptive threshold-

ing techniques for cloud detection.

SIs have also been used to detect aerosols (Cazorla et al.,

2008a, 2009; Huo and Lü, 2010). Cazorla et al. (2008a)

obtained Aerosol Optical Depth (AOD) at different wave-

lengths from pixel counts in the red and blue channels of

the SI input to a neural network. The presence of aerosols

modifies the ratio of red to blue scattered light and can ad-

versely impact the performance of cloud classification algo-

rithms. The main purpose of this paper is to create dynamic

thresholding techniques for cloud detection that account for

aerosol variations. Clear sky, optically thin and thick cloud

pixels are classified on a pixel by pixel basis for each image.

Compared to other algorithms in the literature, our method

provides an accurate mean to classify the pixels of a sky im-

age captured by a commercially produced sky imager into

three different classes as it takes aerosol conditions into ac-

count. Section 2 presents the experimental set up. Section 3

outlines the method by which the images are classified and

Sect. 4 presents the results and discussion of the classifica-

tion. Finally, Sect. 5 provides concluding remarks.

2 Experimental setup

2.1 Sky camera setup and environment

The University of California, San Diego (UCSD) is located

0.5 km from the Pacific Ocean in a temperate climate averag-

ing 5 kWh m−2 day−1 of global horizontal irradiation. Mar-

itime shallow cumulus clouds are the most common form of

clouds, however during the summer mornings, marine layer

stratus overcast clouds are prevalent. Maritime aerosols such

as sea salt are dominant, but also urban-industrial aerosols

originating locally and sometimes from the Los Angeles

metropolitan area impact the San Diego atmosphere (Ault

et al., 2009). In the absence of clouds, the AOD at 500 nm

averages about 0.1 and typically ranges from 0.02 to 0.3.

A Total Sky Imager 440A (TSI Yankee Environmental

Systems) was installed on the UCSD campus (32.885◦ N,

117.240◦ W, and 124 m m.s.l.) in August 2009. The TSI con-

sists of a camera that looks down on a spherical mirror re-

flecting the sky. The mirror contains a dull black rubber shad-

owband which tracks the sun in order to reduce the dynamic

range of the sampled sky signal, thus increasing radiometric

resolution in the portion of the sky which is of interest. Im-

ages are taken by the TSI every 30 s. Sky images on selected

days between January and July 2011 were used, representing

a range of cloud and atmospheric conditions.

The TSI outputs 24-bit (8 bit for each RGB channel) JPEG

images with a resolution of 640 by 480 pixels, of which the

mirror occupies 420 by 420 pixels. A small loss of infor-

mation occurs due to JPEG compression. Pixels of the im-

age corresponding to the shadowband and the camera arm

are identified automatically and excluded. Pixels at a FOV

> 140◦ are also excluded due to distortion.

2.2 Image metrics for cloud and aerosol

characterization

Compared to the clean cloudless atmosphere, both clouds

and aerosols enhance red versus blue intensity increasing the

RBR (Shields et al., 1993) and the red-blue difference (RBD,

Heinle et al., 2010).

RBR =
R

B
= 1 +

R − B

B
(1)

RBD = R − B (2)

Both RBR and RBD take into account the chrominance

(CrCb), reflected by the difference (R − B); RBR is also a

function of the intensity or luminosity (Y ) of the image due

to normalization by B while RBD is not a function of Y .

Images captured by the TSI are automatically compressed to

JPEG with a downsampling ratio of 4 : 2 : 0, in which CrCb

are sampled on each alternate line and Y is not subsampled.

As a result of this downsampling, chrominance has lower res-

olution than luminosity and RBR will have a higher resolu-

tion (i.e. more unique values) than RBD.

Another parameter proposed by Yamashita et al. (2005)

and Li et al. (2011) is the normalized red-blue ratio:

NBR =
B − R

B + R
= 1 −

2
B
R

+ 1
. (3)

Equation (3) shows that NRBR can be written as a nonlin-

ear monotonically decreasing function of RBR. For our cloud

decision algorithm, we will be using an offset to a clear sky

pixel RBR magnitude for cloud detection and opacity classi-

fication thus there will be no difference in accuracy between

RBR and NRBR. Finally, for this paper we will use the RBR

parameter as it has a higher resolution than the RBD and will

provide similar results to NRBR in our cloud detection and

opacity classification (CDOC) algorithm.
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2.3 Effect of atmospheric properties on spectral

features

In a clean, cloudless atmosphere, Rayleigh scattering of in-

coming solar radiation dominates. Since the magnitude of

Rayleigh scattering is inversely proportional to the fourth

power of the wavelength, visible light in the blue spectrum

is predominately scattered. Consequently, in a clear atmo-

sphere and outside the circumsolar region, Rayleigh scatter-

ing causes the input to the blue channel of the TSI camera

to be higher than that of the red and green channels. In a

cloudless atmosphere with high AOD, incoming solar radi-

ation is scattered due to both Mie and Rayleigh scattering.

Since Mie scattering is less dependent on wavelength, more

light at larger wavelengths is scattered. This in turn causes

the magnitude of the red and green channels to increase rel-

ative to the blue channel, especially near the circumsolar re-

gion as the forward lobe Mie scattering is dominant. Near

and inside the circumsolar region, the RGB channels of the

image saturate due to the high intensity of the direct solar

beam and forward scattering of aerosols.

Thin clouds are challenging to detect as their RBR is sim-

ilar to clear sky especially in haze (atmosphere with high

AOD). Optically thick clouds, on the other hand result in sim-

ilar signals across the RGB wavelengths. Since thick clouds

have a RBR of around one, they can be easily identified in

a clear atmosphere (RBR ∼ 0.5) even under high AOD. It

should be noted that the measured RBRs are also affected by

camera specifications such as spectral responsitivity of the

sensing device. Thus, the RBR will vary between different

SI instruments.

3 Methods

3.1 Effect of aerosol optical depth on clear sky red

blue ratio

In order to determine the effect of AOD variation on the

channel magnitudes of the TSI, we compared the RBR of

the TSI images with the Aerosol Optical Depth (AOD) mea-

surement taken at 500 nm by an Aerosol Robotic NETwork

(AERONET; Holben et al., 1998; Smirnov et al., 2000) sun

photometer located less than 3 km away, at the Scripps Insti-

tution of Oceanography, UCSD. Cloudless sky condition im-

ages on 35 days between January and June 2011 with solar

zenith angles (SZAs) less than 70◦ were considered. Absence

of clouds on these days was confirmed using visual inspec-

tion of the images. While TSI images are taken every 30 s,

AERONET timesteps are irregular at 0.25 air mass intervals

for SZA < 70◦. To generate a representative RBR value for

an image, an average was taken from all the pixels that lie

in a circular band between the 35◦ and 45◦ scattering angles.

The mean RBR of the pixels is then compared with the near-

est AOD measurement (no more than 5 min time difference,

Fig. 1. Scatter graph of RBR from a total sky imager versus AOD

from AERONET for data on 35 clear days in January–June 2011

(dots), RBR is extracted from sun-pixel (scattering) angles of 35◦

to 45◦. The line is a linear regression fit (Eq. 4).

depending on SZA; Ghonima, 2011). There is a strong cor-

relation between RBR and 500 nm AOD (τ500) with a coeffi-

cient of determination (COD) of 0.797 for a linear regression

of

RBR = 0.87τ500 + 0.40. (4)

The direct relationship can be explained by the fact that in-

creasing AOD in the atmosphere increases Mie scattering. As

a result of the increased Mie scattering, light will be scattered

more evenly across the spectrum hereby increasing the RBR.

The correlation was higher for the RBR versus τ500 correla-

tion was higher for the RBRthan it was for the red channel

versus τ500, because normalizing the red channel by the blue

channel helps to remove variations caused by SZA and im-

age zenith angles (IZA) dependence, resulting in a more sta-

ble metric for comparison. Figure 1 demonstrates that AOD

affects the RBR and furthermore that the AOD can be deter-

mined from the RBR of a TSI, enabling haze corrections to

the CDOC algorithm thresholds.

3.2 Cloud detection and opacity classification algorithm

In our algorithm, pixels in the images collected by the TSI are

classified into three classes (clear, thin or thick) based on the

difference between a pixel’s actual RBR and the correspond-

ing expected RBR if the pixel were clear. A haze correction

factor (HCF) is added to account for the effects of variations

in AOD on RBR.

3.2.1 Clear sky library

In a clear sky, the RBR is largest near the sun and decreases

with increasing sun-pixel angle (SPA, Figs. 2, 4c). The RBR

also increases near the horizon (large IZAs) due to increased

www.atmos-meas-tech.net/5/2881/2012/ Atmos. Meas. Tech., 5, 2881–2892, 2012
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Fig. 2. Spherical mirror of the TSI and solar geometry. The thick

black line shows the TSI’s spherical mirror. The square on the left

shows a particular pixel for illustration purposes. The sun-pixel an-

gle is the angle between the solar direct beam and the pixel. The

thin black circle is drawn through the pixel and denotes a line of

constant Image Zenith Angle (IZA). IZA is the angle between the

pixel and a vertical line through the center of the imager.

optical path and larger aerosol concentrations near the sur-

face (Gueymard and Thevenard, 2009). Consequently, for

cloud detection these dependencies should be removed. A

clear sky library (CSL, Shields et al., 1993) provides refer-

ence RBR for each pixel and time from historical clear day

images. In our CSL the RGB intensities for each pixel is

stored in a matrix as a function of IZA (Fig. 2), SPA, and

solar zenith angle (SZA) from historical images on a clear

day (Fig 3a). Given the large sun–earth distance, the SPA is

nearly identical to the scattering angle that the photon expe-

riences at the scattering molecule or particle.

The CSL is updated on every clear day throughout the year

because changing solar position and its projection on the TSI

mirror and aerosol climatology affects RGB magnitudes and

RBR. For example, the variation in RBR of the CSL com-

puted on different days is highest near the solar region (small

SPA) with a standard deviation of 0.1 versus magnitudes of

∼ 0.5 in Fig. 3b). Therefore, when the cloud decision algo-

rithm is applied for a certain day it utilizes the CSL generated

on the closest date.

3.2.2 Cloud detection and opacity classification metrics

An example sky image from 20 February 2011 and RBR im-

age are shown in Figs. 4a and b, respectively. For each in-

teger SZA, the RBR from the CSL is obtained as a function

of SPA and IZA for each pixel (Fig. 4c). A pixel is classified

as a thick cloud if the difference (Diff Fig. 4d) between the

pixel RBR and CSL

Diff = RBR − CSL (5)

is greater than the thick cloud threshold (see Sect. 3.3).

Fig. 3. (a) CSL’s RBR generated on 27 January at SZA = 56◦ (b)

Standard Deviation of RBR (color bar, unitless) between CSLs gen-

erated on 27 January, 12 February, 27 April and 4 May 2011 at

SZA = 56◦.

Fig. 4. (a) True-color image captured by the TSI on 12:10 PST,

20 February 2011 (b) RBR of the image for FOV < 140◦ (c) Clear

Sky RBR generated from the CSL on 12 February 2011. (d) RBR

difference (Diff) between image RBR and CSL RBR.

Figure 4c shows the CSL extracted from 12 February for

SZA = 43◦. Consistent with Fig. 3a, the CSL is fairly ho-

mogeneous across the image with the exception of the solar

region (small SPAs, large RBR) and large SPAs and IZAs

Atmos. Meas. Tech., 5, 2881–2892, 2012 www.atmos-meas-tech.net/5/2881/2012/
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Fig. 5. Flow chart for determining HCF which is executed pixel-by-pixel. The first box represents the initialization of HCF, RBR, and CSL.

Since the selection of clear pixels also depends on HCF (see 3rd box from the top), the HCF must be obtained iteratively. (i, j ) denote the

pixel number in the image.

(small RBR). Once the CSL is subtracted, Fig. 4d shows that

all clear areas assume a similar Diff value and opaque clouds

in all areas of the image can now be clearly distinguished

from clear sky. Consequently, Diff allows the use of a uni-

form threshold for comparison of all clouds with respect to

the clear sky ratio across all pixels.

Figure 1 showed that AOD significantly affects the RBR,

but this is not accounted for in the CSL. By dynamically cor-

recting the CSL for aerosol content, more consistent thresh-

olds can be chosen to distinguish between clear pixels and

thin clouds. For example, if the CSL was generated on a day

with small AOD and was applied to a clear day with large

AOD, Diff would be positive throughout the image, which

may lead to false overcast cloud detection. Thus, a haze cor-

rection factor (HCF, Shields et al., 2010) to the CSL is in-

troduced to account for variation of AOD. A single HCF is

used across each CSL as Shields et al. (2010) found that the

change in RBR with AOD is approximately independent of

SPA and IZA, except for a small dependence in the solar au-

reole and near the horizon.

HCF is determined iteratively at each time step (Fig. 5).

First, the CSL is initialized and HCF is set to 1 (first box).

The 3rd box (decision diamond) describes how clear pixels

are selected based on Diff and the “yes” branch shows how

clear sky RBR is obtained from these clear pixels. Pixels are

determined to be clear with 96 % confidence if Diff is below

a threshold which is calculated based on the probability den-

sity function (PDF) of clear pixels (see Sect. 3.3). Next, HCF

is calculated by dividing the mean of the clear pixels’ RBR

by the corresponding CSL’s mean RBR. The CSL is then

multiplied by the HCF to obtain the aerosol-corrected CSL

(CSLHCF). Depending on the difference in AOD between the

day under consideration and the day when the CSL was gen-

erated, HCF can either be greater or less than one. The iter-

ation continues until convergence below an error threshold.

If no clear pixels can be identified (e.g. for overcast skies) or

if the correction is too large (more than 20 %) then HCF = 1.

Now the difference between the image and the CSL corrected

by the HCF can be calculated as

DiffHCF
= RBR − (CSL × HCF). (6)

Another method to control for the AOD effect on RBR

proposed by Shields et al. (2010) is the perturbation ratio,

which is the ratio of the current pixel RBR to the CSL pixel

RBR.

Prt = RBR/CSL (7)

PrtHCF
= RBR/(CSL × HCF) (8)

www.atmos-meas-tech.net/5/2881/2012/ Atmos. Meas. Tech., 5, 2881–2892, 2012
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Fig. 6. Flowchart of the CDOC algorithm which is executed pixel-by-pixel. Note that thick clouds are determined based on the Diff in Eq. (5)

while the distinction between clear sky and thin clouds is based on the DiffHCF in Eq. (6). A similar process is applied for the perturbation

ratio (Eqs. 7 and 8).

There are other differences however. In the Shields et

al. (2010) algorithm, the perturbation ratio was used only for

thin clouds, and not for thick clouds; also the spatial vari-

ance in this perturbation ratio was used to help distinguish

between heavy haze and thin cloud (Shields et al., 2010, per-

sonal communication, 2011). In Sect. 4.1, we will compare

the performance of the CDOC algorithm based on Diff and

Prt.

3.3 Training data and threshold determination

We generated a training set that consisted of 60 images col-

lected on 5 different days between January and June 2011.

Twelve images were sampled from each day spaced at 5 min

intervals to avoid excessive overlaps in the clouds sampled.

The days were chosen to represent the different cloud and

atmospheric conditions encountered in coastal southern Cal-

ifornia. Images with completely clear skies were excluded

from the training set. Each pixel in the image was manually

classified into clear, thin, and thick (opaque) clouds by draw-

ing polygons on the image.

The training set of manually annotated images was uti-

lized to determine the thick cloud and clear sky Diff thresh-

old values through trial and error. The objective was to max-

imize the overall accuracies for all 3 classes subject to the

constraint (refer to Sect. 4.1) that the clear sky and thick

cloud accuracy is greater than 80 %. For photovoltaic so-

lar power generation, attenuation of solar radiation by thick

cloud causes the most significant impact while thin clouds

have a relatively small effect. As a result, the clear sky and

thick cloud thresholds are chosen to maximize thick cloud

and clear sky accuracy rather than thin cloud accuracy.

The CDOC algorithm is as follows: first, the image RBR

and CSL RBR are input (Fig. 6). Second, the HCF is deter-

mined as outlined in Sect. 3.2. Next, the Diff, DiffHCF or Prt,

PrtHCF are computed. Finally, based on the thick cloud and

clear sky thresholds pixels are classified into clear sky, thin

cloud and thick cloud classes.

4 Results and discussion

4.1 Training set

In order to understand the potential accuracies for the differ-

ent methods, based on the training set of manually annotated

images, a PDF was generated for clear, thin, and thick cloudy

pixels using the metrics of Diff and Prt with the HCF applied

for the clear and thin cloud pixels (Fig. 7). For the metrics

to be selective one would expect distinct and sharp peaks

with little overlap in the distributions. All PDFs of DiffHCF

and PrtHCF for the different classes followed a near Gaussian

Atmos. Meas. Tech., 5, 2881–2892, 2012 www.atmos-meas-tech.net/5/2881/2012/
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Fig. 7. PDF of the training set for each class with HCF applied for

(a) DiffHCF (Eq. 6); (b) PrtHCF (Eq. 8).

distribution. If the HCF is not applied (Fig. 8), there is more

variance in the clear sky PDF and a second peak appears due

to the variations in aerosol content within the training set.

The thick clouds have a distinct PDF with a much larger RBR

than clear sky or thin clouds. The Prt metric results in greater

overlap between the clear sky and thin cloud pixel distribu-

tions causing more misclassifications.

Visual inspection revealed that the algorithm sometimes

misclassified thick clouds in the circumsolar region on over-

cast days. The reason for the misclassification is that pixels in

the circumsolar region saturate on clear days. Consequently,

the RBR in the CSL is close to 1, which is similar to the RBR

of thick clouds. Hence the small difference or ratio between

CSL the thick cloud RBR and the CSL results in clouds being

misclassified as clear or thin. In order to correct the misclas-

sification, we decreased the thick cloud threshold value in the

circumsolar region (0◦ < SPA < 35◦).

In order to evaluate the performance of the CDOC algo-

rithm, we use a confusion matrix (Kohavi and Provost, 1998)

for the three classes (1): clear pixels, (2): thin cloud pix-

els, and (3): thick cloud pixels, thus there are nine possi-

ble outcomes for the CDOC algorithm (Table 1). Kohavi and

Provost (1998) define accuracy as the sum of correct classi-

fication made by the algorithm, i.e. (TC11 + TC22 + TC33)

divided by the sum of all categories. This metric is indepen-

Fig. 8. PDF of the training set for each class without HCF applied

for (a) Diff (Eq. 5); (b) Prt (Eq. 7).

dent of the number of clear, thin, or thick clouds observed

and will be used for evaluating the performance of our algo-

rithm and to determine the threshold values. For the CDOC

algorithms based on Diff and Prt, we generated confusion

matrices with and without the application of the HCF (Ta-

bles 2, 3).

The cloud decision algorithm based on Diff outperforms

the algorithm based on Prt. The Diff algorithm has a high ac-

curacy in classifying thick cloud and clear sky pixels. How-

ever, the accuracy is smaller for pixels with thin clouds. The

HCF improved the Diff thin pixel accuracy by 5 points (Ta-

ble 2). Especially noteworthy is the very low likelihood of

Diff clear/thick cloud confusion; less than 2 % of clear pix-

els were classified as thick clouds and less than 3 % of thick

clouds were classified as clear. The low accuracy for thin

clouds is at least partly related to the biases in the manual

classification due to human error by the observer; visually it

is hard to delineate the “cloud edges” of thin clouds. More-

over, thin clouds usually have gaps of clear skies and do not

have uniform textures. This is reflected in the overlap in Diff

and Prt values between the classes that is evident in the PDFs

(Figs. 7, 8). Thus, with a fixed threshold we are bound to mis-

classify pixels that lie in the overlap region. We will base our

cloud decision algorithm on DiffHCF as it has yielded more

accurate results.

www.atmos-meas-tech.net/5/2881/2012/ Atmos. Meas. Tech., 5, 2881–2892, 2012
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Table 1. Confusion matrix for CDOC. For example, true class 11

(TC11) denotes the percentage of clear pixels that were correctly

classified as clear pixels, false class 12 (FC12) denotes the percent-

age of clear pixels that were classified as thin cloud pixels, false

class 13 (FC13) denotes the percentage of clear pixels that were

classified as thick cloud pixels, false class 21 (FC21) denotes the

percentage of thin cloud pixels that were classified as clear pixels,

and so on.

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Clear (1) TC11 FC12 FC13

Thin (2) FC21 TC22 FC23

Thick (3) FC31 FC32 TC33

Table 2. Confusion matrix for CDOC of training set based on the

Diff and DiffHCF metric (Eq. 5, 6 respectively) All values are in

[%].

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Diff DiffHCF Diff DiffHCF Diff DiffHCF

Clear (1) 81.4 80.1 16.8 18.1 1.8 1.8

Thin (2) 22.5 17.3 59.8 65.0 17.7 17.7

Thick (3) 2.0 2.3 17.6 17.3 80.4 80.4

While the results in Tables 2, 3 were obtained for challeng-

ing conditions with a mixture of cloud types, the CDOC al-

gorithm has high accuracies for classifying clear sky images

as will be shown in the next section (however, note that much

of the more challenging circumsolar region is not considered

due to the shadowband, Fig. 4). Thus, manual inspection is

only required for one or two clear days to initialize the CSL.

Afterwards, days during which no clouds are detected by the

algorithm can readily be added to the CSL.

4.2 Validation set

In order to evaluate the performance of the CDOC algorithm,

an “out-of-sample” set of 30 manually annotated images was

chosen. To avoid biasing the selection of images towards

particular sky conditions, we used images collected within

30 min of solar noon for 12 to 16 February and 16 to 20 April.

These periods were chosen because – at this site – they repre-

sented a large range in aerosol content from 0.1–0.13 in the

April set compared to the 0.017–0.059 in the February set.

Reviewing the algorithm’s classification accuracies at differ-

ent SZAs (39–65◦) in the training set at a different site (not

shown), there was no considerable change in accuracy with

SZA. Thus, images captured around solar noon were chosen

for the validation set.

Table 4 shows the CDOC performance metrics by image

and certain images from the set are illustrated in Fig. 9. For

Table 3. Confusion matrix for CDOC of training set based on the

Prt metric (Eqs. 7, 8 respectively). All values are in [%].

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Prt PrtHCF Prt PrtHCF Prt PrtHCF

Clear (1) 65.0 66.1 31.4 30.2 3.6 3.7

Thin (2) 11.3 7.2 49.6 53.7 39.1 39.1

Thick (3) 2.8 2.8 16.6 16.6 80.6 80.6

overcast skies (100 % thick, Table 4, Images 7–10, 13–15,

25, 29; Fig. 9a, b), the CDOC algorithm accurately classified

more than 95 % of the pixels. However, in some cases even

after the lower thick cloud threshold was applied in the solar

region (Sect. 3.3), thick cloud pixels were incorrectly classi-

fied as thin clouds due to the high RBR of the CSL (Fig. 4c).

In the case of clear skies, the algorithm was on average over

99 % accurate (Table 4, Images 1–6, 16–18, 22; Fig. 9c, d),

but a few pixels were misclassified as thin clouds due to ob-

jects or corrosion present on the mirror, especially in the solar

region.

For the case of skies with few thin clouds (Table 4, Im-

age 12; Fig. 9e, f), 91 % of pixels were correctly classified.

Discrepancies between visual and automated classification

can be explained by inaccuracies of the visual classifier. For

broken skies with a mixture of thick and thin clouds (Fig. 9g,

h, i, j) the algorithm performed close to that of manual clas-

sification (Table 4, Images 19, 24).

A confusion matrix was generated to determine the perfor-

mance of the algorithm for the validation set (Table 5). We

note that the accuracy for clear sky pixel identification and

thick cloud pixel identification is higher than that of the test

sample (Table 2) because for randomly chosen images there

are more cases of completely or predominantly clear or over-

cast images which simplify CDOC (Table 4). Thin clouds

pixels have a lower classification accuracy compared to the

other classes as their DiffHCF value falls into a transition re-

gion between clear sky and thick cloud pixels which create

difficulties as discussed in Sect. 4.1.

4.3 Comparison to fixed thresholding technique

We compared the CDOC algorithm against classifying the

RBR image based on fixed uniform thresholds used in the

original TSI algorithm (Long et al., 2006). The TSI algo-

rithms now shipped with the instrument fit a predetermined

function to vary the clear/think/thick RBR thresholds across

the image depending on the sun-pixel distance. To apply the

technique, we first used the training set to determine the op-

timal RBR thresholds to yield the highest accuracies for the

three classes (Table 6). Then, we applied these thresholds to

the validation set (Table 7).

Comparing both methods, we see that the CDOC method

is superior to the fixed threshold method as higher accuracies

Atmos. Meas. Tech., 5, 2881–2892, 2012 www.atmos-meas-tech.net/5/2881/2012/



M. S. Ghonima et al.: A method for cloud detection and opacity classification 2889

Table 4. Results of manual classification and CDOC algorithm for the validation images as well as AOD measurements at 500 nm averaged

during the time period of the sky images. Note that for overcast skies (18–20 April) there are no AOD measurements.

Date in 2011 AOD 500 nm Image #
Manual Classification CDOC Algorithm

Clear (%) Thin (%) Thick (%) Clear (%) Thin (%) Thick (%)

16 Apr 0.10

1 100.0 0.0 0.0 98.3 1.4 0.3

2 100.0 0.0 0.0 99.5 0.2 0.3

3 100.0 0.0 0.0 99.7 0.2 0.1

17 Apr 0.13

4 100.0 0.0 0.0 99.2 0.6 0.3

5 100.0 0.0 0.0 95.3 4.4 0.3

6 100.0 0.0 0.0 99.2 0.5 0.3

18 Apr –

7 0.0 0.0 100.0 0.0 3.6 96.4

8 0.0 0.0 100.0 0.0 6.8 93.2

9 0.0 0.0 100.0 0.0 2.9 97.1

19 Apr –

10 0.0 0.6 99.5 0.0 1.7 98.3

11 5.1 10.5 88.7 0.0 11.4 88.6

12 94.3 5.6 0.7 84.7 14.3 1.0

20 Apr –

13 0.0 0.0 100.0 0.0 2.6 97.4

14 0.0 0.0 100.0 0.0 0.1 99.9

15 0.0 0.0 100.0 0.0 0.6 99.4

12 Feb 0.017

16 100.0 0.0 0.0 100.0 0.0 0.0

17 100.0 0.0 0.0 100.0 0.0 0.0

18 100.0 0.0 0.0 100.0 0.0 0.0

13 Feb 0.031

19 27.1 28.6 44.7 29.4 26.9 43.7

20 64.3 8.4 27.4 61.4 16.7 21.9

21 12.4 16.8 71.7 5.3 19.6 75.1

14 Feb 0.065

22 100.0 0.0 0.0 99.9 0.0 0.0

23 41.0 39.9 19.8 44.7 31.9 23.3

24 20.6 25.7 54.0 21.2 33.8 45.0

15 Feb 0.059

25 0.0 0.0 100.0 0.0 0.0 100.0

26 13.9 1.0 85.2 15.0 9.6 75.4

27 96.2 1.3 2.5 97.8 1.6 0.6

16 Feb 0.057

28 4.0 6.4 90.6 0.0 6.8 93.2

29 0.0 2.9 98.9 0.0 0.6 99.4

30 2.4 30.9 72.4 0.0 18.3 81.7

were obtained for all three classes for both the training

and validation set. That is, in the validation for clear, thin,

and thick cloud, respectively, the CDOC algorithm provided

96.0 %, 60.0 %, and 96.3 % accuracy, as compared with

89.3 %, 56.1 %, and 91.5 %, even though we had optimized

the fixed RBR thresholds. One of the short comings of the

fixed thresholds method is that the threshold values need to

be modified throughout the year to account for changes in

AOD and degradation and/or soiling of the mirror. Also, the

classification accuracy is sensitive to the thresholds chosen.

Our CDOC algorithm, on the other hand, classifies pixels by

comparing them to a CSL that is modified through the year

to account for changes in aerosol content, solar position and

instrument degradation.

Table 5. Confusion matrix for CDOC of validation set based on the

DiffHCF metric (Eq. 6). All values are in [%] and add up to 100 %

across rows.

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Clear (1) 96.0 3.1 0.9

Thin (2) 11.6 60.0 28.4

Thick (3) 0.3 3.4 96.3
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Fig. 9. Total sky image (a, c, e, g, i) and CDOC (b, d, f, h, j) for: (1)

overcast skies (a, b) taken on 20 April 2011 and corresponding to

image 15 in Table 4; (2) clear skies (c, d) taken on 12 February 2011

and corresponding to image 16 in Table 4; (3) few thin clouds (e, f)

taken on 19 April 2011, and corresponding to image 12 in Table 4;

(4) partly cloudy skies (g, h), (i, j) taken on 13 February 2011, and

14 February 2011, and corresponding to images 19 and 24 in Ta-

ble 4, respectively. For the classification images, a value of 3 on the

color scale represents thick clouds, 2 represents thin clouds, and 1

represents clear skies.

5 Conclusions

The purpose of this study was to develop a methodology to

automatically classify clear skies, thin cloud, and thick cloud

image pixels obtained from a ground-based sky imager. This

method was applied to Total Sky Imager (TSI) imagery. The

red-blue ratio (RBR) on cloudless days was shown to be

well-correlated to aerosol optical depth (AOD). As a result,

a haze correction factor (HCF) was introduced to account for

Table 6. Confusion matrix for CDOC of training set based on fixed

RBR thresholds. All values are in [%] and add up to 100 % across

rows.

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Clear (1) 80.7 16.7 2.6

Thin (2) 41.8 45.0 13.2

Thick (3) 1.6 17.5 80.9

Table 7. Confusion matrix for CDOC of validation set based on

fixed RBR thresholds. All values are in [%] and add up to 100 %

across rows.

Manual Algorithm Classification

Classification Clear (1) Thin (2) Thick (3)

Clear (1) 89.3 9.5 1.2

Thin (2) 34.9 56.1 9.0

Thick (3) 0.6 7.9 91.5

AOD effects on the RBR. By applying the correction fac-

tor we were able to better distinguish between haze and thin

clouds in the atmosphere. In order to classify the images we

compared each pixel’s RBR to the corresponding clear sky’s

RBR that was auto-calibrated using the HCF. CDOC was

found to be more accurate when based on the difference in

RBR from a clear sky RBR rather than the ratio of RBR

to clear sky RBR. Comparing automated and visually clas-

sified images, the algorithm was found to be very accurate

in classifying thick cloud and clear sky pixel in a variety of

sky conditions. Thin cloud pixel classification accuracy was

lower, due to a small range of Diff values over which it was

classified as well as difficulties in marking and defining thin

cloud boundaries.

The method developed provides a significant improvement

over the TSI’s original software in pixel classification accu-

racy. The haze correction factor method avoids the need to

constantly adjust the threshold values for cloud classification.

This paper introduces a method of applying some aspects of

the HCF method developed by Shields et al. (1993, 2010)

in a manner that can be applied with a TSI instruments. We

also found that with our algorithm we got better results using

the difference between the image RBR and the CSL’s RBR

to identify the pixels as thick, thin or clear, rather than the

ratios.

The CDOC algorithm will be implemented to improve

short-term solar forecast accuracy by improving cloud detec-

tion as well providing the added information of cloud opac-

ity.
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