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SUMMARY

A method for cognitive task analysis is described based on the notion of "generic

tasks". The method distinguishes three layers of analysis. At the first layer, the

task structure, top-level goals of a certain task are identified that have to be

fulfilled during task-execution. This task structure may also be viewed as the

global strategy to carry out the task. At the second layer of analysis, the local

strategies (procedures) are identified by means of which values are obtained for

goals in the task structure. The third layer of analysis consists of a description of

the underlying domain knowledge. After a general discussion of the potentialities

of the task model in predicting and diagnosing human cognitive behaviour,

implications of the model for applied areas such as the development of

knowledge-based systems and training, are discussed.
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Rap.nr. IZF 1992 B-5 Instituut voor Zintuigfysiologie TNO
Soesterb erg

Een methode voor cognitieve taakanalyse

A.M. Schaafstal en J.M.C. Schraagen

SAMENVAYI'NG

Een methode voor cognitieve taakanalyse wordt beschreven, gebaseerd op het
begrip "generieke taken"t . In de hier beschreven methode wordt eouz onderscheid
gemaakt tussen drie lagen van analyse. De eerste laag, de taakstructuur, bestaat
uit algemene doelen die moeten worden vervuld tijdens de taakuitvoering. Deze
taakstructuur kan ook worden opgevat als een globale strategie om de taak uit te
voeren. De tweede laag be-staat uit de relevante lokale strategie~n die worden
aangewend om de doelen zoals beschreven in de taakstructuur van een waarde
te voorzien. De derde laag van analyse bestaat uit een beschrijving van de
onderliggende domeinkennis. Na een algemene discussie over de mogelijkheden
van het taakmodel ten aanzien van het diagnostiseren en voorspellen van
menselijk gedrag worden de implicaties van het model voor toepassingsgebieden,
zoals de ontwikkeling van kennissystemen en vraagstukken op het gebied van
training besproken.
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1 INTRODUCTION

Task analysis is a frequently used method for determining the subtasks that

together constitute a particular task. Task analysis is often used as a step in the
development of selection and training systems, to develop knowledge-based

systems and decision-support systems, and to optimise human-machine interfaces.
Traditional methods for task analysis mostly yield a description of observable

behaviour. However, with the increasing automation and greater complexity of

computer systems the task of the humans working with those systems becomes
more "cognitive". In other words: task-relevant behaviour tends to become less

observable. Operators working with Command and Control systems, or with

systems in process industry, mainly process information. This information may be
present in the form of knowledge that the operator has, or may be presented on

computer screens or may come from colleagues. The traditional methods for task

analysis are insufficient for describing these new types of tasks.

This report describes a method for cognitive task analysis based on the notion of
"generic tasks". As will be described in more detail below, a key problem in
cognitive task analysis is the identification of the various types of knowledge and
strategies used in performing a particular task. Although this problem has not

been solved yet, a promising approach is the use of the concept of generic tasks

such as planning, diagnosis, and design. A generic task determines to a certain
extent the knowledge and strategies used in performing that task. Therefore,
classifying a particular task as an example of a more generic task helps the

analyst (the person performing the task analysis) in producing a task model, that

is a description of a particular task in terms of strategies and knowledge for
carrying out the task. System designers and cognitive psychologists may then use
the task model for developing knowledge-based systems or user interfaces.

This report will proceed as follows. Chapter 2 gives definitions of some of the

terminology used throughout this report. Chapter 3 describes and evaliates a
number of previous approaches for cognitive task analysis. Chapter 4 i:itroduces

a framework in which three types of knowledge are distinguished that are

important for carrying out complex tasks. Chapter 5 describes two generic tasks

in detail. Chapter 6 shows how to develop a task model based on the three types

of knowledge described in chapter 2. Chapter 7 indicateý where errors in

performance are likely to be observed. Chapter 8 and 9 are geared towards
applications of this method. Chapter 7 describes the application of task models

to the development of knowledge-based systems. Chapter 8 discusses training
issues from this viewpoint. In appendix 1, practical guidelines will be given for

carrying out protocol analyses.
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2 TERMINOLOGY

Below, working definitions of several terms used in this report will be given.

Strategy: specification of a set of goals to be accomplished when performing a
task; the order in which the goals need to be accomplished is not always a fixed
one, but may depend on specific task conditions.

Global strategy: specification of a set of task-specific goals; also: knowledge
about how to decompose a particular type of task into relevant goals or subtasks,
often learned through years of experience with carrying out that task. The
relevant subtasks are also called the 'task structure'.

Local strategy: specification of a set of procedures for accomplishing goals, or of
a set of subgoals for accomplishing goals.

Procedure: a pre-specified way of carrying out a specific task. Procedures, in
contrast to strategies, are supposed to be carried out in a fixed order.

Domain knowledge: the knowledge selected by a local strategy for accomplishing
a particular goal in a particular task; domain knowledge includes both factual or
declarative knowledge and procedural knowledge. Procedural knowledge is not
necessarily equivalent to knowledge of procedures. On the one hand, procedures
may be stored declaratively, particularly in the early stages of task performance.
On the other hand, procedural knowledge also includes heuristics, which are
highly task-specific short-cuts for selecting relevant declarative knowledge (e.g.,
given such and such symptoms, this particular cause is most likely). Hence,
heuristics are not procedures, for they select declarative knowledge and do not
specify ways of carrying out tasks (note that the term 'heuristic' is sometimes
used for denoting "an often successful way of carrying out a task"; this usage of
the term heuristic corresponds to our use of global or local strategy).

Weak method: a strategy that is applicable across specific domains and across
specific tasks, hence requires little domain knowledge for successful application
(e.g.,
means-ends analysis, reasoning by analogy, left-most depth-first search).

Strong method: a strategy that is applicable only in specific domains and specific
tasks, hence requires a lot of domain knowledge for successful application (e.g.,
heuristics are strong methods, because they are only applicable in specific tasks).

Task model: description of a particular task in terms of the strategies and
domain knowledge required for carrying out the task.

Generic task: a class of tasks that are carried out similarly across application
domains, e.g., in the diagnosis of circuits, cars, power plants, or diseases, signifi-
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cant elements are in common; specifically: the same strategies and the same type

of domain knowledge. This communality across domains makes diagnosis a

generic task.

3 PREVIOUS APPROACHES TO COGNITIVE TASK ANAIYSIS

At the outset it should be noted that we are here concerned with tasks involving

large cognitive components, for instance Command and Control planning tasks.

These types of tasks cannot be analyzed adequately by methods of task analysis

that use a vocabulary geared toward physical activities. We will therefore restrict

ourselves to methods for cognitive task analysis. For other methods for task

analysis the reader is referred to Drury, Paramore, Van Cott, Grey, and Corlett

(1987). Below, we will discuss two methods for cognitive task analysis: Hierarchi-

cal Task Analysis (HTA), and GOMS Task Analysis.

3.1 Hierarchical Task Analysis

Hierarchical Task Analysis (e.g., Shepherd, 1985) is a method for systematically

redescribing the overall task goal into a set of subordinate goals, together with a

plan which states how these subordinate goals must be carried out in order to

achieve the overall goal. For instance, the overall goal of operating an overhead

projector may be decomposed into the subordinate goals of:

1 Ensure standby equipment available

2 Set up projector

3 Show slides according to lecture schedule

4 Switch off projector

etc.

The subordinate goal of setting up the projector may in turn be decomposed

into:

1 Ensure projector is plugged in

2 Switch on projector to ensure it is working

3 Establish correct image

A plan may specify that the three subordinate goals should be carried out in the

order 1-2-3-EXIT.

HTA may be seen as a description of what needs to be achieved in the task, the

state which the environment should be in when the task is completed, that is the

task demands or task goals (Bainbridge, 1989). No description of the cognitive

processes used by the person doing the task is provided. For instance, the

subordinate goal of "Show slides according to lecture schedule" should make
reference to the knowledge structure that constitutes the lecture schedule. A
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lecture schedule is a knowledge structure that enables the lecturer not merely to
show the slides in a fixed order, but also to estimate the remaining time, and to
retrieve from long-term memory the contents of the lecture.

HTA provides no guidance on what to expect when analyzing a task. It is
assumed that the analyst starts from scratch each time a task is analyzed, except
that the analyst gets more experienced in HTA itself. This assumption may be
too weak, given what is known from other research areas. For instance, an
important assumption in expert systems development and modelling of expertise
is that certain types of tasks share certain goals and methods for attaining those
goals (Steels, 1990). Therefore, although HTA is a perfectly valid way of
describing a task's goal structure, more direction can be given to the analyst on
what goal structure to expect for a given type of task. This reduces the amount
of work involved considerably.

3.2 GOMS Task Analysis

The acronym GOMS stands for Goals, Operators, Methods, and Selection Rules.
The GOMS method is based on an information-processing model called the
"Model Human Processor" which can be described by 1) a set of memories and
processors together with 2) a set of principles, called the "principles of oper-
ation". The Model Human Processor can be divided into three interacting
subsystems: 1) the perceptual system, 2) the motor system, and 3) the cognitive
system, each with its own memories and processors. The perceptual system
consists of sensors and associated buffer memories, the most important buffer
memories being a Visual Image Store and an Auditory Image Store to hold the
output of the sensory system while it is being symbolically coded. The cognitive
system receives symbolically coded information from the sensory image stores in
its Working Memory and uses previously stored information in Long-Term
Memory to make decisions about how to respond. The motor system carries out
the response. The basic quantum for cognitive processing is the recognize-act
cycle, which may also be described as production rules. In this description, the
production rules reside in Long-Term Memory. On each cycle, the recognition
conditions of the rules are compared with the contents of Working Memory. The
rule with the best match fires and causes its associated action to occur, thereby
altering the contents of Working Memory. One of the interesting things of the
GOMS model is the association that has been made between the memories and
processors of the various subsystems and associated parameters which are used
for understanding and predicting human performance, such as the processor
cycle time, the memory capacity, memory decay rate, and the memory code type.
For more information about the Model Human Processor, the reader is referred
to Card, Moran, and Newell (1983).

A GOMS model, as proposed by Card, Moran, and Newell (1983), is a descrip-
tion of the knowledge a user must have in order to carry out tasks on a device or
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system. Briefly, a GOMS model consists of descriptions of the Methods needed
to accomplish specified Goals. The Methods are a series of steps consisting of
Operators that the user performs. A Method may call for sub-Goals to be
accomplished, so the Methods have a hierarchical structure. If there is more than
one Method to accomplish a Goal, then the GOMS model includes Selection
Rules that choose the appropriate Method depending on the context.

Below, an example Method will be given for a file manipulation task in

Macintosh Finder (from Kieras, 1991):

Method for accomplishing goal of deleting a file

Step 1 Accomplish goal of dragging file to trash

Step 2 Return with goal accomplished

In addition to the specific deleting method, there is a general submethod

corresponding to the drag operation: this is the basic method used in most of the
Macintosh Finder file manipulations. It is called like a subroutine by the above

methods.

Method for accomplishing goal of dragging item to destination

Step 1 Locate icon for item on screen

Step 2 Move cursor to item icon location
Step 3 Hold mouse button down

Step 4 Locate destination icon on screen
Step 5 Move cursor to destination icon

Step 6 Verify that destination icon is reverse-video

Step 7 Release mouse button
Step 8 Return with goal accomplished

Method descriptions such as described in the example above can be very useful

for comparing systems. For example, Kieras (1991) compared the number and
length of methods of the Macintosh Finder and PC-DOS. He concluded that to

accomplish the same user goals in PC-DOS required four times as many steps as
in the Macintosh Finder. The Method descriptions can be used to derive
predictions of learning and execution time, since the user must learn these
step-by-step methods in order to learn how to perform these tasks. According to
research results (Bovair, Kieras, & Polson, 1990), the learning time is linear with

the number of steps.

One of the advantages of the GOMS approach to task analysis is that the user's
procedural knowledge is specified to such an extent that computer simulation
models can be developed that can actually execute the same tasks as the user. In

this way, proposed interface designs can be evaluated with simulation techniques
rather than actual human user testing. Aspects of the design which are not

directly related to the procedures entailed by the design, such as screen layout or
system functionality, would involve additional user testing, and almost certainly
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require another kind of modelling than GOMS (Olson & Olson, 1990). It would
seem, therefore, that the GOMS approach is more suitable for modelling routine

expert behaviour rather than novice or less routine expert behaviour (Olson &

Olson, 1990). This is because routine expert behaviour can be described to a
large extent in terms of procedural knowledge (Anderson, 1987). In contrast,

nonskilled users spend considerable time engaged in problem-solving activities,

rather than simply retrieving and executing plans. Other important aspects of
human-computer interaction which are currently beyond the scope of GOMS are

the impact of fatigue on performance, user acceptance, and an assessment of

how computers fit into the larger picture of work and organizational roles (Olson

& Olson, 1990).

Conceptually, GOMS task analysis is very similar to HTA. However, whereas
HTA primarily gives a description of the task goals, GOMS gives a description
of the procedural knowledge required for performing a task. GOMS includes the

cognitive processes used by the person doing the task, HTA does not. Thus,

GOMS task analysis starts where traditional task analysis stops. The amount of

analytic detail involved is considerable, making the construction of GOMS
models a lengthy and effortful task. The major difficulty for the analyst is to

specify the user's goals, operators, methods, and selection rules. Kieras (1991)
does not provide more guidance than that the analysts should use their own

intuition about how users perform tasks, resulting in so-called "judgment calls" or
intuitive assessments. However, Kieras (1991) argues that these judgment calls,

since they are based on a careful consideration from the user's point of view, can

do no more harm and should lead to better results, than the designer's assump-

tions that usually ignore the user's point of view.

In conclusion, GOMS is a useful method for task analysis for repetitive and

stylized computer-based interactions and a restricted set of people (proficient

users) performing those tasks. It has primarily been applied to analyze rather
simple and routine word processing tasks such as deleting, moving, and copying

text. In these kinds of tasks the approach is very powerful. Predictions about
performance can be made for designs without having to build prototype systems
and having to run extensive, time-consuming user tests. User tests can, of course,

reveal other things such as errors, problem solving, and initial learning and

representation difficulties; however, cognitive models can screen out certain

classes of poor designs for these kinds of tasks. It is doubtful whether GOMS

can be applied to higher cognitive processes such as planning, diagnosis, and
design, since these tasks involve more types of knowledge than just procedural

knowledge.

3.3 Conclusion

The discussion of two well-known methods for task analysis has revealed two

limitations:
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1 More types of knowledge are usually involved in higher cognitive processes

than merely procedural, how-it-works, knowledge. This is particularly true in
novel task situations, where even experts will use domain principles, and a

range of weaker problem solving strategies, as indicated by recent cognitive
research (see Holyoak, 1990, for a review). GOMS, with its heavy emphasis

on procedural knowledge, will be difficult to apply to, for instance, Command

and Control planning tasks.

2 Both HTA and GOMS do not provide the analyst much guidance in specifying
what goals, operators and methods are involved in particular tasks. More

guidance can be given if we accept the notion of generic tasks, that is, classes
of tasks that share particular goal and subgoal structures and methods.

We will take up these two limitations in the next two chapters. First, chapter 4

will present a framework in which several types of knowledge, not just pro-

cedural knowledge, can fit. Second, chapter 5 will present two generic tasks that

together cover a wide range of tasks frequently encountered.

4 TYPES OF KNOWLEDGE: A THEORETICAL FRAMEWORK

Many researchers make a distinction between declarative and procedural
knowledge (e.g. Anderson, 1983; 1987). Declarative knowledge may be conceived

as a collection of stored facts and is also called system or device knowledge in
the domain of technical systems. Examples of this are knowledge about normal
values of certain parameters, or knowledge about the function of the system.

Procedural knowledge (knowledge about how-to-do-it) can be regarded as a

collection of actions or procedures that an intelligent system can carry out. It

also contains knowledge of the procedures with which one investigates a device
to make diagnoses about its functioning, for example the use of the oscilloscope
to test certain functions of a system. Procedural knowledge is content-specific

and thus only applicable in a limited domain.

In addition to the declarative-procedural distinction, a distinction can be made

between domain-specific knowledge and strategic or metacognitive knowledge.
This strategic or metacognitive knowledge (knowledge about how-to-decide-what-

to-do-and-when) is applicable across specific content domains, but remains

geared towards one task (e.g. diagnosis). For example, in diagnosis, regardless of
the domain, one would first identify and interpret symptoms, followed by an

investigation of possible reasons, which will be tested, before one will apply a

certain repair or remedy.

At a very general level, problem-solving strategies may be identified which have

to do with very general thinking and reasoning skills, such as means-ends
analysis, reasoning by analogy, or working backwards. These general problem-
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solving strategies, or weak methods as they are sometimes called, are applicable

across specific domains and across specific tasks.

With this decomposition, it is assumed that procedural and device knowledge are

organized and deployed by goals, plans and decision rules that comprise strategic
knowledge. Thus, strategic knowledge can be said to have a control function to

enable dynamic, flexible reasoning. As described in Gott (1989), support for the
concept of strategic control knowledge comes from a number of academic
domains such as geometry (Greeno, 1978), text editing (Card, Moran, & Newell,
1983), computer programming (Anderson, Boyle, Farrell, & Reiser, 1984), simple
device operation (Kieras & Bovair, 1984) and electronic troubleshooting (Gott &

Pokorny, 1987). The question is though, whether this strategic knowledge, b,.ing

general in nature, can be transferred to tasks in related fields, ir. this manner

enabling intelligent systems to generalize across domains. An example of a
recent attempt to build a system that is able to generalize across domains, and in
which the interaction ',etween domain specific and domain independent strategic

knowledge is explored, is FERMI, an expert system that reasons about natural
science domains (Larkin, Reif, Carbonell, & Gugliotta, 1988). In FERMI,

domain specific knowledge of scientific principles and strategic problem solving
knowledge are encoded in separate but related semantic hierarchies. This allows

the system to apply common problem solving principles of invariance and

decomposition as encoded in the strategic problem solving knowledge base to a
variety of problem domains such as fluid statics, DC-circuits, and centroid

location. Similarly, in the knowledge based tutoring system Guidon for a medical

domain (Clancey, 1987), it turned out to be very important to separate tutoring
knowledge, and knowledge about general strategies, from specific domain

knowledge. Processes of acquiring strategic knowledge have been addressed in

analyses by Anzai and Simon (1979) on the Tower of Hanoi and by Anderson,
Farrell, and Sauers (1984) on the acquisition of knowledge needed to learn Lisp.

As stated in Greeno and Simon (1988), both studies showed that important

factors in acquiring strategic knowledge are the activation of a problem goal that

can be achieved by a sequence of actions and the acquisition of productions in
which the action of setting the goal is associated with appropriate conditions in

the problem situation. The importance of strategic knowledge has been shown by

Greeno (1978). He conducted an experiment on the acquisition of high school
geometry knowledge. As thlc resulting computational model PERDIX of problem

solving behaviour showed, strategic knowledge is needed for setting goals that

organize problem-solving activity. One of the students in Greeno's study knew
the problem-solving operators and the geometric patterns to achieve them, but
was unable to solve the problem. This result can be explained by the hypothesis

that the student lacked knowledge about the problem solving strategy needed in

this problem. Schoenfeld (1979) showed that students who were given explicit
instruction in the use of heuristic strategies in the domain of college mathe-

matics, showed superior performance compared to students who had not
received this training.
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A difference exists between strategic knowledge as implemented in PERDIX or

as trained in Schoenfeld's study, and strategies as used by, for example, GPS

(Ernst & Newell, 1969) or Soar (Laird, Newell, & Rosenbloom, 1987). In GPS

and Soar, only very general problem-solving strategies, or so-called weak
methods such as means-ends analysis, have been implemented. These weak
methods, as stated before, do not contain any domain-specificity. In PERDIX

and in Schoenfeld's study the emphasis is put upon a generic strategy for a class

of problems, such as diagnosis or geometry problems. Thus, the strategies as
researched in PERDIX and by Schoenfeld are weak in the sense that they do

not contain domain-specific knowledge. However, they are stronger than weak
methods such as means-ends analysis, in the sense that they are task-specific.

Thus, if the above results are put together, the following framework emerges. At

the top-level strategic knowledge is employed, consisting of several goals that
have to be fulfilled during task execution. Examples of these goals in the

diagnostic task may be "Identify symptoms", "Determine possible causes", and

"Identify repair". As the reader may have noticed, these goals may also be
viewed as various subtasks of the diagnostic task. This layer of knowledge is

called knowledge about the task structure, or the global strategy (Wognum, 1990).
The order in which those goals are fulfilled is often flexible, and depends on the

specific task-situation at hand. Each goal, however, only defines what intermedi-
ate conclusion has to be deduced, not how the intermediate conclusion has to be

deduced. The knowledge about how to perform a (sub)task is called the local

strategy, and may consist of either procedures with a fixed order (how to test a

certain part), or may consist of a more flexible sequence of steps: a strategy. The
local strategy of a subtask in turn selects the domain knowledge necessary to

achieve the goal of the task. If a person becomes very experienced with the task

at hand, he may use heuristic shortcuts in his reasoning process to obtain values
for the various goals determined at the task level. For example: if that symptom

occurs, it is rather likely that it is caused by that fault. The heuristics are bound

to the task at hand: a person very experienced in one domain, which may turn
him into -in efficient problem-solver regarding that domain, does not necessarily

show that same proficiency in other domains. On the other hand, if a person has

no experience at all with the task at hand, he is bound to use very general

reasoning methods: weak methods.

In a cognitive task analysis all three levels of knowledge, the global strategy or
task structure, the local strategies, and the domain knowledge, have to be filled

in for a specific domain. These three types together constitute the task model of

a task in a given domain.

The information-processing model underlying this framework is taken from a

production system model, such as ACT* (Anderson, 1983, 1987). Important

features of ACT* in this context are the following:
- Productions form the units of knowledge. Productions define the steps in which

a problem is solved and are the units in which knowledge is acquired.
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- Hierarchical goal structure. The ACT* production system specifies a hierarchi-

cal goal structure that organizes problem solving. The hierarchical goal

structure closely reflects the hierarchical structure of the problem. Goals are
also important in structuring the learning by knowledge compilation. They

serve to indicate which parts of the problem solution belong together and can

be compiled into a new production.
- Initial use of weak methods. The use of weak methods, such as analogy or

means-ends analysis, plays a critical role in getting initial performance of the

ground.
- Knowledge compilation. All knowledge in the ACT* theory starts out in

declarative form and must be converted into a procedural format. This

declarative knowledge can be encodings of instructions, encodings of general
properties of objects, and so on.

- Limited working memory. Working memory is limited in the sense that it can

only hold a limited amount of information at a particular point in time.

The implications of this information-processing model in relation to the
described method for cognitive task analysis are put forward in chapter 7.

5 MODELS FOR GENERIC TASKS

The notion of generic tasks first arose in the context of developing an engineer-
ing methodology to build expert systems based on a task analysis. Several

researchers observed that tasks fall into major classes. These tasks are called

generic tasks (Chandrasekaran, 1983). In specific fields of expertise, tasks are
instances of these generic tasks. Typical generic tasks are classification, interpre-

tation, diagnosis, and construction (including planning and design). The way in
which generic tasks are executed shows many similarities across application

domains: In the diagnosis of circuits, cars, power plants, or diseases, significant

elements are in common, specifically, the same problem-solving methods and the

same type of domain models (Steels, 1990). A task is characterized in terms of
the problem that needs to be solved. This characterization is based on properties

of the input, the expected output, and the nature of the operation taking place to
map input to output. For example, if the input consists of observed symptoms,

and the output is an explanation of how the symptoms came about, then we

characterize the task as diagnosis (Steels, 1990).

There are now several descriptions of generic tasks available. We will summarize
what is known about two generic tasks: diagnosis and construction (including

planning and design). For a description of the generic task of interpretation, the

reader is referred to Steels (1990).
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5.1 Diagnosis

Of all generic tasks, diagnosis has probably been studied most extensively, both
from an Artificial Intelligence (AI) and a psychological point of view. The AI

perspective has focused on how diagnosis should be carried out in order to

accomplish particular task goals, whereas the psychological perspective has
focused on how people actually carry out diagnostic reasoning. When analyzing a

particular task, it is very often a good strategy to first start with a normative task
description, and later note the way people deviate from this description. How-

ever, the normative task description itself is very often based on human (expert)

task performance, so the distinction between the normative and descriptive

approaches is not as absolute in practice as it is in theory. Still, we will first
describe the diagnostic task in a normative way, before turning to psychological
deviations from the norm.

At the highest level, diagnosis consists of the following three tasks (Wognum,

1990):

1 Generate hypotheses

2 Refine hypothesis

3 Pursue hypothesis

In diagnosis, the first task is to associate observed symptoms with possible

hypotheses that may explain those symptoms. The second task is to refine each

of these hypotheses further, if necessary. This is particularly likely when hypoth-
eses are stated at a rather abstract level, so that various more specific hypotheses
may be distinguished. The third task is to test each hypothesis until all hypoth-

eses have been considered. A hypothesis that has been rejected is not considered

any further, whereas when a hypothesis has been confirmed it needs to be

refined until the lowest level in a taxonomy has been reached.

Each task is performed by local strategies that select particular domain knowl-

edge. For instance, the task Generate hypotheses takes as input patient findings
(in the case of medical diagnosis). A local strategy then selects knowledge which

associates findings with diseases. The task Refine hypothesis takes a disease as
input. A local strategy then selects knowledge that finds subcases for the disease

in the disease taxonomy. For instance, the hypothesis heart disease is refined in

this way into myocardial infarction and infection of the heart muscle. The task
Pursue hypothesis tests a particular hypothesis by using knowledge that associ-

ates diseases with their causes and with characteristic findings indicative for the

hypothesis.

Of course, other types of knowledge than the ones mentioned above may be
used as well. For instance, geometric knowledge representing the spatial rela-
tions between components is often used in technical domains. Knowledge about

test procedures, about normal or reference values, about the frequency of

hypotheses, and about how to control an installation may all be used in diag-
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nosis. These types of knowledge need not be confined to diagnosis alone,

however. An architect designing a building may also use geometric knowledge.

Psychological evidence (e.g., Schaafstal, 1991) has shown that diagnosis in

real-life tasks is more complex than the AI-models often assume. The following

global strategy for diagnosis is proposed by Schaafstal (1991):

1 Identification of symptoms

2 Judgment: How serious is the problem
3 Determination of possible faults

4 Ordering of faults according to likelihood

5 Testing

6 Determination of remedies or repairs
7 Determination of the consequences of the application of repairs
8 Evaluation: Has the situation improved?

Schaafstal (1991) has shown that expert operators follow the steps in the model
very much in the order as described above. Novice operators, on the other hand,

do not make judgments about the seriousness of the problem, do not determine
the consequences of the application of repairs, and do not evaluate their

diagnostic reasoning. Also, novices jump much more quickly to repairs, without

testing whether a certain repair is actually right for a certain situation.

An important extension of Schaafstal's model to traditional Al-models is the

inclusion of repair as an integral part of diagnosis. Previous approaches to

diagnosis have often limited diagnosis to fault localization. However, in real-life

tasks determination of repairs is an important part of diagnosis.

5.2 Construction

Construction includes both planning and design. Planning and design differ in

that planning is more concerned with the organization of actions in time,
whereas design is more concerned with the organization of actions in space.

Independent AI-research in various domains has found that construction tasks

are often decomposed into the following subtasks (Brown & Chandrasekaran,

1986; Malhotra, Thomas, Carroll, & Miller, 1980; Marcus, Stout, & McDermott,

1987; Mittal, Dym, & Morjaria, 1986):

1 Test specifications for incompleteness or inconsistency

2 Generate or extend a partial solution

3 Test the adequacy of the solution by matching it with constraints

4 Refine the solution by resolving violated constraints

Hence, the input to construction is a set of specifications. The output is an object

that conforms to these specifications. By means of the subtasks mentioned above,

the input is mapped to the output. Some of the pragmatic problems (Steels,
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1990) associated with construction tasks are the incompleteness of the specifica-

tions, the large number of partial solutions possible, and the limited memory
available for storing structure. These pragmatic problems determine to a large
extent the strategies and types of domain knowledge used by problem solvers.
For instance, the incompleteness of the specifications forces the problem solver

to test the specifications by validating the data, broadening or restricting the
context, classifying the data, or deducing additional features based on class

membership. The large number of partial solutions possible implies a structuring

of solutions in terms of typical features and not in terms of necessary and

sufficient conditions. The limited memory available forces the problem solver to

progressively deepen the solution.

Empirical studies (e.g., Goel & Pirolli, 1989; Hamel, 1990; Schraagen, 1990)

have confirmed some of the pragmatic problems hypothesized by Steels (1990).

Hamel (1990) has studied a prototypical construction task: architectural design.
Based on think aloud protocols of practising architects, the following model of

the cognitive activities in the architectural design process was put forward:

1 Gathering information

2 Separating the problem into parts (decomposition)

3 Solving partial problems
4 Synthesizing partial solutions

5 Moulding the result into a design based on aesthetic and professional values

The model proved to be a good description of the architectural design process in

terms of the cognitive activities it comprises, and the sequence of the activities in

the design process. The model differs from the AI-models discussed above in
that it puts more emphasis on the synthesis of partial solutions and on aesthetic

and professional values. Otherwise, the models are very similar. Hamel (1990)

argues that designing may be regarded as a skill, which can be distinguished
from other skills in that it entails an intricate organization of activities, an

extensive decomposition of the problem, and a synthesis of partial solutions into

a solution for the problem as a whole.

Experts in particular spend a great deal of time testing design specifications

before generating a partial solution. Moreover, the partial solutions often come

in the form of "skeletal plans" (Friedland & Iwasaki, 1985), or hierarchically
organized prototypes. However, these prototypes also appear to play a role in

diagnostic and planning tasks, so that they do not constitute a distinguishing

characteristic of construction tasks.

Essens and McCann (1991) studied a typical planning task: deciding in what

order grocery items should be put into a shopping basket. They described the
following efficient procedure for executing their planning task:

I Preplan

2 Orient

3 Adopt strategy
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4 Create partial plan
5 Evaluate partial plan
6 Postplan (consolidate plan parts and review entire plan)

The steps 2 to 5 in the procedure are executed iteratively until the plan is
sufficiently detailed in that it matches all constraints. In their model, this results
in three levels of plan creation: a very rough plan, a rough plan, and a detailed
plan.

The Essens and McCann (1991) model is very similar to the other construction
models we have discussed above. The only element that is markedly different at
first sight is 'Adopt strategy". This process deduces plan characteristics appropri-
ate for each level of plan creation. It sets the stage, so to speak, for the subse-
quent creation of a partial plan. Hamel (1990) described a similar process in his
model, which we left out above for reasons of clarity and brevity. In Hamel's
model, for instance, the synthesis of partial solutions is under the control of an
analysis schema that solves the partial problems. This control is similar to what
Essens and McCann (1991) referred to as 'Adopt strategy".

5.3 Conclusion

The discussion of two generic tasks has shown that Al-models often prove good
starting points for constructing a model of the task structure or the global
strategy. However, empirical research in the form of protocol analyses is often
required in order to make the model more realistic psychologically. Psychological
realism is required when the model is to be applied for purposes of developing
knowledge-based systems or successful user interfaces. Else, the user would be
confronted with systems that do not take the user's task representation into
account. This could lead to errors or suboptimal task performance.

The important point about generic tasks for the purpose of cognitive task
analysis, is that they provide the analyst guidance in specifying the global strategy
that people use when performing certain types of tasks. This is a major advan-
tage in comparison with existing methods for task analysis, that often leave the
analyst empty-handed as far as specifying task goals is concerned (see Grant &
Mayes, 1991, for a recent review).

6 DEVELOPMENT OF A TASK MODEL

Chapter 4 discussed the notion of task model comprising the global strategy to
carry out a task, the local strategies and the domain knowledge. In chapter 5
several models for the generic tasks diagnosis and construction were discussed,
since the method for cognitive task analysis proposed in this report relies heavily



21

on the notion of generic tasks as one of the important starting points for the

development of a task model for a specific task. This raises the question how
one would actually develop a task model for a given task. Not surprisingly, the

development of the task model consists of the development of a submodel for
each of the three types of knowledge. Therefore, they will each be discussed in

turn.

6.1 Development of a model of the task structure: the global strategy

The development of a model for the task structure of a given task can take two
forms: either a model for the generic task is available already, which can be used

as a starting point for the development of a model for current task, or there is

no such model available, and one has to start from scratch.

Adaptation of an existing model for a generic task

If one has to adapt an existing model to the current situation, one of the first

things to do is to conclude for oneself where and in what way the current task

differs from the generic task. Are there subtasks in the generic task that seem-

ingly do not play a role in the task at hand, or, the other way around, is the
current task richer in nature, in the sense that more subtasks may be identified.

This global analysis may be carried out in a variety of ways: by means of

introspection (if possible): how would I carry out this task, but a better way of

doing this would be to collect some preliminary verbal protocols of subjects
carrying out the target task. It results in an adapted model of the task structure

geared towards the task of interest.

Once the model of the task structure has been adapted this way, one should test

it before using it in some application. The test of the task structure is an

empirical one: do people follow the global strategy as defined by the task

structure, or do they differ in some respect? Since we are concerned with the
identification of strategies, the analysis of verbal protocols taken from people

during task execution seem a feasible way of measuring this. A broad outline for

doing a protocol analysis is given in appendix 1. What one should especially look

for in the protocols is whether the different steps are taken (or subtasks carried

out) and whether they are taken in the proposed ordering. Another thing that is

of importance concerns the interpretability of the protocols in terms of the
proposed model of the task structure: do people perform subtasks that cannot be

interpreted with the model? The outcome of this test leads, if necessary, to an

adaptation of the model, which might need testing again, depending on the

number and severity of the changes made.
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Development of a model of the task structure from scratch

The procedure for developing a model for the task structure if no generic task

model is available is not very different from the procedure of the adaptation of

an existing model, apart from the fact that one lacks a firm starting point. The

question is how to find a starting point for a model of the task structure. As

already described above, there are several ways of doing this. One could, by

means of introspection (or by taking a verbal protocol from oneself), investigate

the strategy used, and use that as a starting point for a further, and more

rigorous, analysis of the hypothesized task structure. However, a better way of

developing a first hypothesis would be to run some pilot subjects and take verbal

protocols while they are doing the task. If available, one could obviously always

try to find literature about a comparable task, but often this is hard to find.

Once an initial model for the task structure has been developed, the testing of it

proceeds in the same manner as described above.

6.2 Development of a model for the local strategies

Once a model for the task structure has been developed by means of a protocol

analysis, one should investigate which local strategies are used for each of the

defined subtasks. The previously acquired protocols may become of use in this

stage as well. The question posed would be "How is a certain defined subtask

accomplished, by means of which procedures?" Since there are no real firm

insights into generic local strategies or procedures to carry out a certain subtask,

except for diagnosis, this is a more exploratory question rather than a firm test

of a previously defined hypothesis. This implies that, to obtain a rather complete

range of the local strategies used by different people, one needs to run more

different subjects on different trials than during the testing phase of the hypothe-

sized task structure.

Another way of obtaining relevant local strategies may be an analysis of hand-

books, workprocedures and so on. Although handbooks and workprocedures

almost never contain useful information regarding the task structure, they may

be quite useful in terms of the identification of local strategies (for example: how

to carry out a certain test).

Going back to diagnosis, for example in technical environments, several local

strategies have been described. For the task of the identification of possible

causes (an element of the task structure, as described before), successful local

strategies described are topographic search (e.g. Rasmussen, 1986), in which an

association between symptoms and underlying possible causes is made based on

knowledge about the structure or functioning of the system, and the use of

heuristics, by means of which, often based on experience, a direct connection is

made between a symptom and its possible underlying fault. For the task of

testing, another element of the task structure, split-half strategies by means of
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which the number of tests to localize the fault are minimized, are rather success-

ful.

Search strategies may be different in different situations, and may also depend

on the level of expertise the person has. Since heuristics are mostly developed

through practical experience and are tied to specific situations, they may become

increasingly available with increasing levels of expertise. As demonstrated by

Rasmussen (1986), topographic search, although not in all situations

informationally economic, may be preferred by technicians in domains such as

electronic troubleshooting.

Some of the search strategies that have been described in the literature may be

considered more powerful strategies than others. Obviously, heuristics belong to
the most powerful local strategies a person may have, although they are only

applicable in a narrow domain, and have no wider generality than this domain.

Therefore, they are likely to fail in any new situation. Less powerful, but still
leading to conclusions rather efficiently, are search strategies such as topographic

search, geared towards diagnosis in technical domains, but more widely appli-

cable than heuristic search. At the next level of generality are search strategies

such as split-half approaches. At the lowest level of specificity are problem

solving methods, such as means-ends analysis and generate and test, as described

by Newell and Simon (1972).

6.3 Development of a model for the applicable domain knowledge

Now that we have addressed how to develop a model of the task structure and

the local strategies of a given task, the question remains how the relevant

underlying domain knowledge may be identified. Early work on expert systems

seemed to imply that there was only one underlying model of domain knowledge.
Work along this line gave rise to the model-based approach, which postulates

that expert system building should start with an encoding of the first principles of

a domain, for example in diagnosis, qualitative or quantitative models of the

behaviour of the device to be diagnosed (Davis, 1984; DeKleer, 1984). In most

of the cases, this work concentrates on models about the structure and behaviour

of the device. However, as described in Steels (1990), it is possible to think of a

variety of models, each focusing on different aspects of the problem domain. For

diagnosis, for example, one could think of a structural model describing part-
whole relationships between components and subsystems, a causal model

representing the cause-effect relationships between properties of components, a

functional or behavioral model representing how the function of the whole

follows from the function of the parts, a fault model representing possible faults

and components for each function that might be responsible for the fault, and an

associational model relating observed properties with states of the system. Which

of these models would be the one to use? Clearly, all these models are useful.

Simmons (1988), cited in Steels (1990), for example, describes a system that
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translates causal models into associational models and shows how they have

complementary utility in problem solving. Thus, the question is not what model

to use exclusively, but what type of model or type of domain knowledge at what

level of abstractness is appropriate in certain stages of a reasoning process.

The principal way to get a first indication of the applied domain knowledge is an
analysis of protocols collected in task situations with respect to the underlying
knowledge used. The pieces of knowledge collected this way are at least

guaranteed to be used during problem solving, otherwise they would not have
shown up in the verbal protocols. Another way of identifying relevant domain
knowledge would be an investigation into training and educational material used.
However, not all of this material is completely geared to the task at hand.

Sometimes training materials and handbooks (partly) consist of pieces of
knowledge that are supposed to be useful for trainees, but which in practice are

never used anymore, and therefore should not be included in the task model.

Moreover, technical documentation has not been written for educational

purposes, and apart from including types of knowledge that will never be used in

problem-solving situations, it is not unlikely that certain types of knowledge (for
example knowledge at a higher level of abstraction) are not included in manuals

or technical documentation.

Based on this type of analysis, it is possible to identify for each part of the task

structure which pieces of knowledge play a role, resulting in tables such as the
following (adapted from Schaafstal, 1991 (diagnosis in the domain of paper
making)).

Table I Relation between phases of the task structure and used
domain knowledge.
I = Symptoms, 2 = Judgment, 3 = Possible faults, 4 = Ordering of
faults, 5 = Testing, 6 = Determination, of repairs, 7 = Consequences
of application of repairs, 8 = Evaluation. Topogr. location = knowl-
edge about the topographical location of a component. Function
comp. = knowledge about the function of a certain component.
Functioning comp. = knowledge about how the component (internal-
ly) works.

1 2 3 4 5 6 7 8

Process flow * *

Topogr. location
Controls * * * * *

Function comp. * * * * *
Paper making * * * * * *

Normal values * * * *
Process dynamics * * * *

Functioning comp. *
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7 USE OF THE TASK MODEL FOR DIAGNOSING AND PREDICTING
HUMAN COGNITIVE BEHAVIOUR

Since the framework underlying the task model is closely related to ACT*, it

should enable us to diagnose and predict human cognitive behaviour. One of the
main sources for error in human behaviour stems from an overload of the
working memory system. In the task model outlined above a working memory

overload may show up in various locations. First, since the model is of a hier-

archical nature, especially novices may have difficulties in keeping track of all
the various subgoals that they have to set up in a specific situation. For example
in diagnosis, when having to test a certain hypothesis, novices may not know

exactly how to perform this test, having to set up a separate subgoal for finding

this in the documentation. After they have found out how to perform a certain
test, the second problem (next subgoal at a deeper level) may consist of finding

the reference values that they should look for, and finally, at the deepest level,

they may have to set a subgoal for the search of applicable domain knowledge.
Therefore, it is not unlikely that, due to this extensive subgoaling which may lead

to a working memory overload, novices will have difficulties keeping on track

during problem solving.

A second problem that may occur, already included in the previous, is when

domain knowledge is not available in a format usable during problem solving.
Thus, one would predict that when the right domain knowledge is unavailable,

problem solving will eventually fail. Novices may also lack the relevant global
and local strategies (see Chapter 4 above), in which case their behaviour, com-
pared to expert behaviour, may look rather unsystematic. However, unavailability

of the good strategies could also lead to novices getting stuck in a very early

phase of problem solving: they may not know how to get started on the task.

The model enables an analysis of expert-novice differences in terms of differ-

ences in strategy applied, procedures used, and domain knowledge used. By
means of this difference it is possible to analyze misconceptions that novices may
have about the domain as well as buggy procedures.

The model predicts that experts behave according to what the model describes:
they will basically follow the strategy steps in the prescribed order. Since experts

will have compiled parts of their knowledge it may be that the domain knowl-

edge used is not always stated very clearly, but has to inferred from (verbal)

behaviour.
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8 USE OF THE TASK MODEL FOR THE DEVELOPMENT OF

KNOWLEDGE-BASED SYSTEMS

An important part of the development of knowledge-based systems is the
knowledge gathering and knowledge structuring process. In this phase, the
knowledge available about a certain type of problem is gathered and structured,
in such a way that it can be efficiently implemented afterwards. The knowledge
gathered may come from several sources: handbooks, (training)manuals, docu-
mentation, and obviously, human experts, and a frequently heard problem in this
respect is the problem of the integration of the various knowledge sources.
Therefore, one needs a good interpretation scheme, which will serve as a
guideline for the knowledge gathering and structuring process, thus enabling the
interpretation and structuring of the acquired knowledge.

As stated above, knowledge structuring is dependent on a good interpretation
scheme that will serve as a guideline for the structuring process. These interpre-
tation schemes are focused at the task level. Knowledge at the task level con-
cerns knowledge about the global steps taken by a person when he/she is doing
the task. This is often referred to as the "global strategy" followed in performing
the task, the task structure as it was defined before. Knowledge at the domain
level concerns knowledge about the domain at hand needed to obtain informa-
tion for carrying out the steps defined at the task level. For example, in diagnos-
tic tasks, two steps at the task level are "identify symptoms", and "determine
possible faults for this (set of) symptom(s)". At domain level, for example in the
paper industry, the identification of symptoms may be accomplished by looking
at the paper, by reading off alarms, by messages from other people, and so on.
The determination of possible faults for a set of symptoms is accomplished by a
search process through the machine (or memory), leading to a list of possibil-
ities. Holes in the paper (a symptom), for example, may be caused by a number
of underlying faults in the paper making process, such as slight damages to parts
of the installation, wrong settings and so on (determination of underlying faults).

The model for the generic task of diagnosis as proposed by Schaafstal (1991) has

been used as interpretation scheme for the development of various knowledge-
based systems for diagnosis in technical environments (Schaafstal & Bogers,
1990; Schaafstal & Bogers, 1991). From the projects carried out it turned out
that this task level description of diagnosis proved to be a fruitful framework for
structuring and interpreting the knowledge we obtained, since it makes it
possible to classify the different knowledge fragments experts come up with. This
is especially important in the not exceptional situation that experts do not bring
their knowledge to bear in a very systematic way.

However, the framework cannot only be used as a tool for knowledge gathering,
it also provides support in deciding whether the information gathered may be
considered complete and supports the developer in keeping track of progression
made. It may also serve as the basic structuring tool in the implementation
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process, resulting in systems that are easier to understand and to maintain.

Therefore, we strongly recommend using a framework such as this in knowledge-

based system development, since it greatly enhances the efficiency of develop-

ment, and thus reduces the costs.

Another way of using a previously developed task model in the development of
knowledge-based systems would be an analysis of the difficulties people of

different levels of expertise have with the task. In this situation, a match is made

between elements of the task model at all three levels and the gaps that may be

identified in someone's knowledge and use of strategies in a certain task. By
means of this analysis a more principled analysis of the needs of a user is

possible, resulting in knowledge-based systems doing a better job in supporting
people than some of the ones built in a less principled way.

Finally, a task model opens the possibilities to develop a knowledge-based

system based on various types of knowledge that have previously been identified

as playing an important role in the task. One of the issues in the development in

so-called "second-generation expert systems" concerns the incorporation of
models of domain knowledge into the system, thus resulting in less brittle

systems able to reason not only with rather superficial rules, but also with the

underlying domain knowledge. In most cases the incorporated domain knowledge

concerns knowledge about the structure and behaviour of the system, and one
may wonder whether it would not be beneficial to incorporate many different

types of knowledge that play a role in the domain.

9 USE OF THE TASK MODEL FOR TRAINING ISSUES

An interesting issue with respect to the task model is the question whether it can

be used for training of complex cognitive tasks, such as diagnosis. Before this
point will be addressed, it is worth mentioning some comments about the present

way of training complex cognitive tasks. An important feature of many of the

current training programs is the heavy emphasis on the acquisition of domain or

system knowledge. However, this is too often approached using theoretical

principles or formal scientific laws that define the domain. Results of several

studies, as summarized in Morris and Rouse (1985) indicate that instruction in

theoretical principles is not an effective way to produce good troubleshooters.

Explicit training in theories, fundamentals or principles fails to enhance and

sometimes actually degrades diagnostic performance (Brigham & Laios, 1975;

Crossman & Cooke, 1974; Kragt & Landeweerd, 1974; Morris & Rouse, 1985;
Mayer & Greeno, 1972; Mayer, Stiehl, & Greeno, 1975). However, one cannot

carry out a task without having system knowledge at all, but the types of system
knowledge trained should be geared towards the job, which implies that domain

knowledge should be represented in such a way that it facilitates problem solving

(more levels of abstraction, better differentiation (see table 1)). Despite the
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importance of efficient strategies for good task performance, not much effort is

put into explicit training of good strategies at all. This may partly be due to the
misconception that training in system knowledge will automatically result in good

task performance, since the two are closely linked. It may also stem from the

idea that good strategies will automatically evolve with increasing experience on-

the-job, and therefore explicit training will not help all that much. In itself, this
idea is valid: increasing experience with a certain task most of the times leads to

a better performance. However, the question is whether training as a whole can

be speeded up and be made more efficient if strategy training is taken into

account. A final reason for the absence of strategy training is the fact that good
strategy training appears difficult to accomplish, which makes it hard to incorpor-

ate strategy training in regular operator training courses.

Having discussed some of the issues in many current training programs for

complex cognitive skills, we will continue with a discussion about the topic
whether the task structure can be used for strategy training. The task structure

basically consists of a goal structure, in which every step or subtask as defined

can be regarded a goal. Thus, the model offers a guideline and opportunities for

training explicit goal structures. This is especially interesting since, although

importance of strategic control knowledge in the form of goal structures has

been shown in a number of domains (Greeno, 1978; Card, Moran, & Newell,
1983; Anderson, Farrell, & Sauers, 1984; Kieras, 1987; Gott & Pokorny, 1987), it
happens that in instructional materials a number of times gaps have been

identified with respect to goal structures (Greeno, 1978; Anderson et al., 1984;

Kieras, 1987). The emphasis on the importance of training people how to use

strategic knowledge is also one of the most important outcomes of the Guidon
project (Clancey, 1987). Training of explicit goal structures is not impossible,

though, since it has already been accomplished a number of times, for example

in some of the intelligent tutoring systems, such as Proust, a knowledge-based

cognitive diagnosis program that identifies programming bugs with an emphasis

on bugs regarding the abstract program plan (Soloway & Johnson, 1984), Bridge,

a tutorial learning environment that concentrates on the planning knowledge
required early in programming skill acquisition (Bonar, 1985), and the Lisp tutor

(Anderson & Reiser, 1985). For Proust, it has been shown that its effectiveness

in diagnosing programming errors on simple Pascal problems is comparable to
that of human teaching assistants, that is, about 75% correct. The Lisp tutor has

been evaluated involving comparisons of various instructional alternatives to
learning Lisp, including traditional classroom instruction, a private human tutor

and independent self-study. In these studies, the Lisp tutor is not far behind
human tutors in effectiveness. The self-study alternative was much worse,

particularly as the instructional material became more difficult. When a group of
students used the Lisp tutor for problem exercises to supplement standard

lectures, they spent 30% less time on the problems than students working on

their own, but scored 43% better on the post-test (Anderson, Boyle, & Reiser,
1985). Pirolli and Anderson (1985) examined the particular effectiveness of

teaching a Lisp goal structure as a strategy for learning recursive functions as
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compared to "process" instructions that explained how recursive functions work,

but did not teach specific steps in writing them. The "structure" group was 32%

faster than the "process" group in correctly generating an initial set of functions.

Anderson (1987) argues that instruction in a skill is most effective when it

directly provides information needed in a production-system model of that skill.
This information includes the goal structure as well as procedural steps. The

results regarding these computer tutors may be considered promising with

respect to strategy training.

With respect to training troubleshooting procedures, the second level of the task

model, quite some research has been carried out on the effect of proceduralized

training. Proceduralized training represents an extreme form of rule-based

troubleshooting instruction. The student is provided with exact step-by-step
procedures at a very concrete level to learn and practice during training sessions.

The theory of performance that underlies this approach is problem solving as

"the rote execution of procedural steps". Learning is assumed to occur via rote

practice and general physical familiarity with the system. Potter and Thomas

(1976), in a study regarding troubleshooting performance in a technical domain,

showed that fully proceduralized job aids resulted in superior performance
compared to technical orders or logical troubleshooting aids. This effect was

strongest for simpler fault isolation tasks and for less experienced technicians.
This suggests the same kind of instructional applicability as seen in the Lisp

tutor (Pirolli & Anderson, 1985) where a complete prespecification of steps

appears feasible and effective on easier tasks in the initial stages of learning, but
may loose effectiveness for more difficult tasks. This result may be explained by

the absence of an explicit goal structure in proceduralized training, while an

explicit hierarchically organized goal structure is one of the characteristics of
highly efficient expert behaviour, which will especially be called upon in more

complex situations. A pragmatic limitation to the proceduralization approach is

the fact that one can seldom anticipate all events or combinations of events that
may occur in a particular system. Thus, operators will inevitably encounter

events for which there is no such procedure, or events in which it is unclear
which procedure, if any, should be used. In such situations, proceduralized

training is of no use (Rouse, 1982). Morris and Rouse (1985) therefore conclude

their review of research in troubleshooting with the recommendation that the

most promising instructional approach worthy of further research is one where
procedures for approaching fault isolation problems are combined with instruc-

tion in how to use system knowledge in deciding exactly what to do.

Translating this to the training of complex cognitive skills leaves us with the

following recommendations. First, domain knowledge to be trained should be

geared towards job contents, and thus, a thorough analysis of job contents is of

crucial importance. This implies that, for example, the domain knowledge taught

to technicians and operators may be rather different in nature. For operators, it

is especially important to know aspects such as the function that certain process

components have on the paper making process, but they should not be bothered
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with too many technical details. Technicians on the other hand, need a thorough
understanding of components at a technical level, and their knowledge about the
influence of components on paper making may be more superficial. Second,
much more effort should be put into training of explicit task-level strategies,
since such an efficient goal structure appears to be almost completely lacking in
novice behaviour (Schaafstal, 1991).
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APPENDIX 1 Practical guidelines for carrying out protocol analysis

A protocol analysis is particularly useful for identifying the global and local
strategies that are important in carrying out particular tasks. Identification of
relevant domain knowledge is also possible. However, if one wants to study the
structure of the domain knowledge in more detail, other techniques than
protocol analysis should be used.

When carrying out a protocol analysis, it is important to remember that the
analyst should interpret the verbal data obtained, not the subject who performed
the task . hbile thinking aloud. The subject's verbalizations should be considered
as data, just as reaction times or percentage correct. And just as reaction times
need a theoretical framework in order to be interpreted, so verbal data need a
framework in order to be interpretable. It is the analyst's task to provide that
framework. Bearing this in mind, the following steps may be distinguished in
order to arrive at a framework in which verbal data can be interpreted:
1 Normative or rational task analysis
2 Descriptive psychological model
3 Coding scheme

The first step is called a normative or rational task analysis because it specifies
the task goals that are required for optimal, normative, task performance. These
goals may be derived from various sources: intuition, handbooks, interviews with
expert practitioners, or by examining how similar types of tasks are carried out
(in other words, by studying generic tasks). The results of this step are very
similar to what we have discussed above under the heading of AI-approaches to
generic tasks.

The second step specifies the human capacities and limitations pertaining to the
task. By taking these capacities and limitations into account, the output of the
rational task analysis is modified. When studying experts, these modifications are
often slight, since experts are not bounded as much by limitations as novices are.
As a first approximation, it is often sufficient to use the normative task goals and
put a particular ordering on them. In this way, a model is specified that posits a
number of activities that are carried out in a particular order.

The third step is to convert the psychological model into a coding scheme. This
is necessary in order to be able to classify actual protocol statements. For
instance, subjects will often comment on the task's difficulty or on their own
progress or thought processes. These comments are outside the scope of the
psychological model, but should be incorporated in the coding scheme. In other
words, the coding scheme adds non-taskspecific statements to the psychological
model. The aim should be a coding scheme that is sufficiently rich so as to
capture all possible verbal statements. However, the coding scheme should not
be so detailed that statements are difficult to assign to the various categories.
The optimal number of categories that a coding scheme should contain is
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difficult to determine. This depends on one's purposes and on the particular task

involved. However, based on our own experience, somewhere between 3 and 15

categories seems appropriate.

It is appropriate at this stage to collect a number of protocols in a pilot study,

and try to assign protocol statements to the various categories. Give a few

examples from a protocol for each category. This aids in the coding of later

protocols.

It is sometimes possible by using 'key words' appearing in protocol statements to

assign statements to categories by means of these key words. For instance, if a

subject says: "I will now try to add these numbers", the use of the word "will"

indicates the setting of a goal, namely to add numbers. Using key words adds to

the objectivity and reliability of scoring.

Once one has developed a coding scheme, the psychological model can be tested

against empirical data. Questions that may be answered by the data are the

following:

I Are cognitive activities missing in the model?
2 Are cognitive activities superfluous in the model?
3 Do the data support the order of the activities in the model?

The actual process of testing the model against the data involves the following

steps:

1 Select empirical data
1.1 Justify use of verbal protocols

1.2 Instruct subjects appropriately

1.3 Collect verbal protocols

2 Carry out exploratory protocol analysis

2.1 Randomly select a small number of protocols

2.2 Transcribe protocols

2.3 Segment protocols

2.4 Assign protocol segments to categories

2.5 Revise model, if necessary

3 Test model

3.1 Transcribe remaining protocols

3.2 Segment protocols

3.3 Randomize protocol segments

3.4 Select naive coders (at least 2)

3.5 Assign protocol segments to categories

3.6 Determine inter-rater reliability

Below, the steps will be discussed in more detail.
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1 Select empirical data

1.1 Justify use of verbal protocols

Verbal protocols are not appropriate when:

a information in working memory is difficult to verbalize (e.g., when the task

is highly visual)

b the task is highly practiced

c subjects have a low verbal intelligence

d subjects have to work under time pressure

1.2 Instruct subjects appropriately

a the appropriate kernel instruction is: "Please think aloud while you are

carrying out your task"; do NOT give the following instruction: "Please tell

me what you think while you are carrying out your task". This invites

theorizing on the part of the subject and reflection on their own thought
processes. Remember this is part of the analyst's task, not the subject's.

b let subjects practice with thinking aloud; give them a few practice problems

as suggested by Ericsson and Simon (1984).

1.3 Collect verbal protocols

a use cassette recorder to record subject's verbalizations; obtain subject's per-

mission to record their verbalizations.

b make sure the cassette recorder works.

c give subjects a written problem; have them read the problem aloud.

d make sure subjects understand both the problem and their task of thinking

aloud.

e when subjects fall silent for more than 10 s during problem solving, prompt

them by saying: "Please think aloud". Do NOT prompt them by saying:

"Please tell me what you are thinking now".

f code each cassette so as to be able to retrieve the appropriate subject and

the appropriate problem; i.e., write down subject's name (or a code for the

name if anonymity is required), the problem number and counter indication

(e.g., problem 1: 000-678; problem 2: 679-973), the date and time of day,

the experimenter's name (if necessary), the experimental condition (if

appropriate).
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2 Carry out exploratory protocol analysis

a the goal of the exploratory protocol analysis is to check the sufficiency of

the coding scheme

b this goal should always be accomplished by using a separate set of proto-

cols, either from a pilot study or from a small number of protocols from

the final study; if protocols from the final study are used, they cannot be

used again.

2.1 Randomly select a small number of protocols

2.2 Transcribe protocols

a protocols should be transcribed literally from the audiotapes; pauses are
just as important as speech; indicate pauses by dots (e.g., one dot for every

5 s of pause).

b if video and audio are separately used, make sure both traces are synchron-

ized in one running protocol.

2.3 Segment protocols

a a frequently used method for segmenting protocols is the one based on

pauses in speech, i.e., after each pause, a new segment starts.

b number each protocol segment.

2.4 Assign protocol segments to categories

a assign each numbered protocol segment to a category from the coding

scheme; if possible, use the example protocol statements and the key words
given with each category.

2.5 Revise model, if necessary

a check what protocol segments cannot be assigned to any category; add cate-

gories, if necessary

b check what categories are superfluous; delete categories, if necessary

c construct a mathematical model that predicts the number of transitions

among categories, and test the model via parameter estimation techniques

against the number of observed transitions; if the predicted and observed

frequencies significantly differ, as indicated by a Chi-square value, revise

the model.
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3 Test model

3.1 Transcribe remaining protocols

- as described in 2.2 above

3.2 Segment protocols

- as described in 2.3 above

3.3 Randomize protocol segments

a randomization is required in order to assign each segment independent of
another segment to a category; in practice, however, the meaning of state-
ments is often only apparent from the context in which they appear, so that
randomization would be counterproductive; therefore, the analysts should
use their own judgment whether to randomize or not;

b randomize by using a series of random numbers and match the protocol
numbers to the random numbers

3.4 Select naive coders (at least 2)

a 'naive' coders are coders who are unaware of the hypotheses that are
tested, but are sufficiently familiar with the domain under consideration;

b train coders on the protocols selected for exploratory protocol analysis

3.5 Assign protocol segments to categories

- as described in 2.4 above

3.6 Determine inter-rater reliability

a assess, for each category, the number of times raters agree on assignment
of segments to categories, and the number of times they disagree.

b calculate the percentage agreement between raters (should be higher than
80%), or calculate Cohen's Kappa (should be higher than .70).



REPORT DOCUMENTATION PACE

1. DEFENCE REPORT NUMBER (MOO-NL) 2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT

NUMBER

TO 92-2278 IZF 1992 8-5

4. PROJECT/TASK/WORK UNIT NO. 5. CONTRACT NUMBER 6. REPORT DATE

788.3 B92-34 July 24, 1992

7. NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES

COVERED

38 44 Final

10. TITLE AND SUBTITLE

A method for cognitive task analysis

11. AUTHOR(S)

A.M. Schaafstal and J.M.C. Schraagen

12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TNO Institute for Perception

Kampneg 5

3769 DE SOESTERSERG

13. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

TWO Defence Research

Schoemakerstraat 97

2628 VK Delft

14. SUPPLEMENTARY NOTES

15. ABSTRACT (MAXIMUM 200 WORDS, 1044 BYTE)

A method for cognitive task analysis is described based on the notion of "generic tasks". The method

distinguishes three layers of analysis. At the first Layer, the task structure, top-level goals of a certain

task are identified that have to be fulfilled during task-execution. This task structure may also be viewed

as the global strategy to carry out the task. At the second Layer of analysis, the local strategies

(procedures) are identified by means of which values are obtained for goats in the task structure. The third

layer of analysis consists of a description of the underlying domain knowledge. After a general discussion

of the potentialities of the task model in predicting and diagnosing human cognitive behaviour, implications

of the model for applied areas such as the development of knowledge-based systems and training, are

discussed.

16. DESCRIPTORS IDENTIFIERS

Problem solving Cognitive Task Analysis
Knowledge

Strategies

17a. SECURITY CLASSIFICATION 17b. SECURITY CLASSIFICATION 17c. SECURITY CLASSIFICATION

(OF REPORT)• (OF PAGE) (OF ABSTRACT)

18. DISTRIBUTION/AVAILABILITY STATEMENT 17d. SECURITY CLASSIFICATION

(OF TITLES)

Unlimited availability


