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ABSTRACT

Spherical microphone and circular microphone arrays are useful for
sampling sound fields that may be resynthesized with loudspeaker
arrays. Spherical microphone arrays are desirable because of their
ability to capture three-dimensional sound fields, however it is of-
ten more practical to construct loudspeaker arrays in the form of a
closed circle located in the horizontal plane. This leads to a spatial
undersampling as such a circular sampling can only yield a perfect
representation of a height-invariant sound field. This paper investi-
gates the consequences of such spatial undersampling by converting
between cylindrical and spherical harmonic decompositions of solu-
tions to the wave equation. We show analytically and via numerical
simulations that 1) the result of the spatial undersampling is a purely
horizontally propagating sound field, and 2) the ratio of travelling
and standing components in the undersampled sound field varies de-
pending on the incidence colatitude. The conversion is also used in a
beamforming scenario and shows that the beamformer response be-
comes increasingly omnidirectional as the source moves away from
the horizontal plane.

Index Terms— Cylindrical harmonics, spherical harmonics,
Ambisonics, microphone arrays, loudspeaker arrays.

1. INTRODUCTION

It has been shown in the context of Ambisonics that orthogonal de-
compositions are powerful tools that enable the storage and trans-
mission of captured sound fields [1]. This process is termed spatial
encoding. The encoded fields can be re-synthesized (decoded), for
example, using loudspeaker arrays of various geometries [2, 3]. Sur-
face spherical harmonics are a convenient orthogonal basis for three-
dimensional sound fields. Expansion coefficients can be obtained for
real fields by processing a spherical microphone array recording [4].

Circular microphone arrays are not capable of capturing three-
dimensional information but they provide a number of advantages
over spherical ones: 1) Their physical construction is less cumber-
some, 2) the required number of microphones for a given azimuthal
resolution is significantly lower, and 3) the processing of the cap-
tured microphone signals is more convenient because no Associated
Legendre Polynomials or factorials of relatively high numbers need
to be evaluated. Circular microphone arrays are often implemented
using a cylindrical scattering object and are therefore termed cylin-
drical arrays [5, 6].

Most large-scale loudspeaker arrays are limited to horizontal-
only sound field synthesis, which has not shown to be a substantial
limitation in most situations. This suggests that horizontal circular
microphone arrays might be sufficient for recording content for such

loudspeaker setups. The performance of circular microphone arrays
has been treated in the literature in [7, 6, 8, 9, 10, 11]. Some of the
literature considers only height-invariant sound fields [8, 9]. The re-
maining works [6, 10, 11] analyze the limitations of circular arrays
capturing 3D fields only from an overall error point-of-view but do
not reveal the detailed properties of resulting orthogonal decompo-
sitions.

In this paper we consider the more general problem of obtaining
a cylindrical harmonic representation of a sound field from a given
spherical harmonic representation. We identify what information is
lost and analyze the properties of the sound fields that are recon-
structed from the undersampled decomposition. A perfect estimate
of the plane wave coefficients is assumed in order to reveal some
fundamental properties. In practice, several considerations on the
distribution of microphones and the treatment of acoustic scattering
are required in order to accurately estimate these plane wave coeffi-
cients [4].

The remainder of the paper is organized as follows. The prob-
lem is formulated and background theory is given in Section 2, con-
versions between cylindrical and spherical representations are dis-
cussed in Section 3, experimentation with cylindrical representations
of sources outside the horizontal plane is presented in Section 4 and
conclusions are given in Section 5.

2. PROBLEM FORMULATION

Consider an interior 3D sound field [12] S(θ′, φ′, r, ω) in a spheri-
cal coordinate system at angular frequency ω, where (θ′, φ′, r) are
colatitude angle, azimuth angle and radius respectively. This may be
expanded into a continuum of propagating plane waves with respect
to the surface of a notional unit sphere as

S(θ′, φ′, r, ω) =

∫ 2π

0

∫ π

0

S̄(θ, φ, ω)ei
ω
c
r cos Θ sin θdθdφ, (1)

where S̄(θ, φ, ω) is termed the signature function [13] describing the
amplitude of propagating plane waves with incidence angles (θ, φ),
and Θ is the solid angle between (θ′, φ′) and (θ, φ). It is often con-
venient to expand S̄(θ, φ, ω) in terms of the spherical basis functions
Y mn (θ, φ):

S̄(θ, φ, ω) '
N∑
n=0

n∑
m=−n

S̆mn (ω)Y mn (θ, φ), (2)

where S̆mn (ω) are the coefficients of expansion of order m =
{−N . . .N} and degree n = {0 . . . N}, and Y mn (θ, φ) are
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Fig. 1. 3D plane waves synthesized with cylindrical harmonic coefficients (17) and (7) for colatitude θs = {π/2, 3π/8, 0}. As θs moves
away from the horizontal plane, the travelling component decreases in magnitude and spatial support, leaving only a radial standing wave
component when θs = {0, π}.

the spherical harmonics

Y mn (θ, φ) = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ. (3)

The equality (2) becomes exact when N = ∞. A general sound
field is expanded on the spherical harmonics as [13]

S(θ′, φ′, r, ω) =

∞∑
n=0

n∑
m=−n

4πinjn
(ω
c
r
)
S̆mn (ω)Y mn (θ′, φ′),

(4)
where jn(x) is a spherical Bessel function describing the radial
dependence of the field. In the special case where S̆mn (ω) =
Y −mn (θs, φs), (4) represents plane wave with incidence angle
(θs, φs).

Let us now consider a 2D (height-invariant) field. The 2D analog
of the signature function in (1) is

S(φ′, r, ω) =
1

2π

∫ 2π

0

S̄(φ, ω)ei
ω
c
r cos(φ′−φ)dφ, (5)

where eimφ are the cylindrical harmonics. The cylindrical form of
the harmonic expansion (2) is

S̄(φ, ω) '
N∑

m=−N

S̊m(ω)eimφ, (6)

where S̊m(ω) are the cylindrical expansion coefficients that are a
function of m = {−N . . .N} only, and the equality is again exact
when N = ∞. A height-invariant sound field is reconstructed from
its cylindrical harmonic coefficients

S(φ′, r, ω) =

N∑
m=−N

imJm
(ω
c
r
)
S̊m(ω)eimφ

′
, (7)

where Jm(x) is a cylindrical Bessel function. In the special case
where S̊m(ω) = e−imφs , (7) forms the Jacobi-Anger Expansion for
a plane wave [13] with incidence azimuth θs.

The remainder of this paper will consider the case when a 3D
sound field is to be represented with a 2D decomposition, such as
when a sound field captured with a spherical microphone array is
to be reproduced with a horizontal-only loudspeaker arrangement.

Estimating a cylindrical harmonic representation from a spherical
harmonic encoded field inherently produces sound fields that prop-
agate parallel to the horizontal plane. In order to convert S̆mn (ω)(
(N + 1)2 terms

)
to S̊m(ω) (2N + 1 terms) it is necessary to dis-

card some information. The aim is to define a method for performing
such a conversion and to understand some of its properties.

3. CONVERSIONS BETWEEN REPRESENTATIONS

3.1. Method

We will begin by deriving the spherical coefficients in terms of the
cylindrical coefficients. The cylindrical and spherical spatial Fourier
transforms are defined respectively for a field propagating in the hor-
izontal plane as

S̊m(θs, ω) =
1

2π

∫ 2π

0

S̄(π/2, φ, ω)e−imφdφ (8)

S̆mn (ω) =

∫ 2π

0

∫ π

0

S̄(π/2, φ, ω)Y −mn (θ, φ) sin θdθdφ. (9)

The colatitude angle θs = π/2 is the only angle for which the inte-
gration contours over azimuth angle in (8) and (9) are mutually com-
patible. While information is inevitably lost when deriving S̊m(ω)

from S̆mn (ω), it is desirable to exploit this compatibility to ensure
no loss of information for components propagating in the horizontal
plane. The behaviour of the conversion for fields outside this plane
is considered in Section 3.2.

The cylindrical decomposition in (8) can be formulated as a
spherical decomposition by applying the sifting property of the Dirac
delta function [14] and noting that Y −mn (θs, φ) = Y mn (θs, 0)e−imφ:

S̆mn (ω)

=

∫ 2π

0

∫ π

0

δ(θ − π/2)S̄(π/2, φ, ω)Y −mn (θ, φ) sin θdθdφ

(10)

= 2πS̊m(π/2, ω)Y mn (π/2, 0). (11)

This represents a spatial undersampling in θ as only the values of
S̄(θ, φ, ω) for θ = π/2 are considered. Eq. (11) can be rearranged
for S̊m(π/2, ω):

S̊m(π/2, ω) =
S̆mn (ω)

2πY mn (π/2, 0)
. (12)
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Fig. 2. Cross-section through Fig. 1 along the direction of propaga-
tion for differing incidence colatitude.

Here an ambiguity arises as n only appears on the right hand side.
In order to derive S̊m(ω) from S̆mn (ω), consider again the case
of a plane wave arriving in the plane θs = π/2. There is a
wide choice of coefficients in S̆mn (ω) from which to derive S̊m(ω)
as (11) reveals that several terms differ only by a scaling factor
Y mn (π/2, 0)/Y mn′ (π/2, 0). One possible solution is obtained (let-
ting S̊m(ω) ≡ S̊m(θs, ω) for simplicity),

S̊m(ω) =
S̆m|m|(ω)

2πY m|m|(π/2, 0)
. (13)

The motivation for this choice of coefficients is twofold: 1) the
spherical harmonics Y m|m|(θ, φ) are the sectoral harmonics [13],
which have no zero crossings in colatitude, and 2) the terms
Y m|m|(π/2, 0) are also necessarily nonzero for all values of m; con-
versely, all terms Y m|m|(θ, φ) for which n+ |m| is odd are necessarily
0 for plane waves propagating in θs = π/2 [3]. Several other choices
exist but are outside the scope of this paper.

3.2. Analysis

Generalizing to arbitrary angles of arrival (θs, φs), the plane-wave
spherical harmonic coefficients become

S̆mn (ω) = Y −mn (θs, φs), (14)

which, combining with (13), produces

S̊m(ω) =
Y −m|m| (θs, φs)

2πY m|m|(π/2, 0)
. (15)

It is natural to ask how this relation varies as a function of arrival
angle θs. Using the identity [13]

Pnn (cos θ) = (−1)n(2n− 1)!! sinn θ, (16)

and recalling (3) and (15), it is straightforward to show that

S̊m(ω) =
sin|m|(θs)e

−imφs

2π
. (17)

Qualitatively, the orders are weighted with a sinusoidal envelope that
is a function of the colatitude angle of arrival. Plane waves incident
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Fig. 3. Cross-section through Fig. 1 perpendicular to the direction of
propagation for differing incidence colatitude.

on θs = π/2 are unaffected. Plane waves incident in θs = {0, π}
only have a component in m = 0, thereby losing all angular depen-
dence. Recalling (7), a standing wave is produced

S(φ′, r, ω) = J0

(ω
c
r
)

when θs = 0, (18)

since the result is purely real.

4. EXPERIMENTATION

The cylindrical coefficients of a 1 kHz plane wave propagating with
incidence angle (θs, 0) were simulated with order N = 60 us-
ing (17) and evaluated with (7).

Fig. 1 shows the real part of the reconstructed field on the hor-
izontal plane for incidence colatitude θs = {π/2, 3π/8, 0}. As θs

moves away from the horizontal plane, the energy becomes concen-
trated in a corridor along the direction of propagation. As θs moves
further towards the pole, the travelling plane wave components be-
come progressively less pronounced until only a standing cylindrical
wave remains at θs = 0 or θs = π.

Fig. 2 shows the magnitude of the field in Fig. 1 through a cross-
section along the direction of incidence, revealing that the magnitude
of the field is a) unity when θs = π/2 and, b) a 0th order Bessel
function when θs = 0 as predicted in (18).

Fig. 3 shows the magnitude of the field in Fig. 1 through a cross-
section perpendicular to the direction of incidence. This shows simi-
lar behaviour for sources on the horizontal plane and at the pole, but
with more rapid decrease in magnitude as the source moves away
from the horizontal plane. Similar phenomena are seen with the
order-limited reconstruction of plane waves [15]; here there is a soft
limitation caused by the coefficient extraction (13) that leads to a si-
nusoidal weighting (17), which may be interpreted as spatial aliasing
in this context due to spatial undersampling in colatitude. The con-
sequence of this order limitation is the aforementioned concentration
of energy.

Further insight into the asymptotic behaviour between unit mag-
nitude and the 0th order Bessel function is given by evaluating the
ratio

ζ(θs) = 10 log10

(
|S̊0(ω|θs)|2∑

m 6=0 |S̊m(ω|θs)|2

)
. (19)

This gives a quantitative measure of the energy in the 0th order
component (the standing wave component) and the energy in the

4758



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0

20

40

60

80

100

θs/π

ζ
(θ

0
)
(d
B
)

N = 1
N =∞

Fig. 4. Log ratio of the 0th order component to the remaining com-
ponents (19) as a function of source colatitude. As θs tends to one of
the poles, the energy becomes increasingly concentrated in the 0th
order component.

non-zeroth order components. Fig. 4 shows ζ(θs) for N = 1 and
N = ∞. In the latter case, this measure necessarily asymptotes
to ∞ as θs tends to one of the poles and to −∞ as θs → π/2
(curves for all other values of N lie between those for N = 1 and
N = ∞). Qualitatively, as the source moves towards the pole the
order of the field is effectively limited, leading to the phenomena
depicted in Figs 1–3.

4.1. Beamforming Example

An additional practical use of the spherical to cylindrical conversion
is in the field of modal beamforming [4]. The output of a cylindrical
phase mode beamformer is given by

y(φ) =
1

2N + 1

N∑
m=−N

S̊me
imφ. (20)

Note that spectral independence is assumed and recall that S̊m are
plane wave cylindrical coefficients. The 1st order (N = 1) cylindri-
cal coefficients of a 1 kHz plane wave propagating with incidence
angle (θs, 0) were simulated. The beamformer directivity pattern
|y(φ)| is shown in Fig. 5. When θs = π/2, the result is a clas-
sic 1st order hypercardioid. As θs moves away from the horizon-
tal plane the response becomes increasingly omnidirectional as the
magnitudes of the components corresponding tom 6= 0 are reduced.
With the exception of a scaling factor, this process is identical to the
synthesis of the 1st order directivity patters (cardioid, hypercardioid
etc.) [16]. As N → ∞, the beamformer response tends to 0 for all
but θs = π/2 due to the normalization factor 1/(N + 1).

5. CONCLUSIONS

The conversion between cylindrical and spherical basis expansions
of 3D sound fields has been investigated. Converting from a spheri-
cal representation to a cylindrical representation inevitably involves
a loss of information if the direction of arrival is outside the horizon-
tal plane. An analysis reveals that the chosen approach leads to si-
nusoidally weighting the components as a function of the colatitude
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Fig. 5. Azimuth-only phase mode beamformer directivity pat-
terns (20) as a function of source incidence colatitude. As θs tends
to one of the poles, the response tends to omnidirectional.

angle of incidence. This effectively produces an order-limited sound
field and is manifest as increased spatial concentration of energy and
the reduced energy of propagating components with increasing inci-
dence angle from the horizontal plane.
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