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ABSTRACT This paper presents three frequency estimation algorithms, one based on extended Kalman

filtering, another on quadrature phase-locked loop and an adaptive notch filter. The paper proposes using

some internal signals of these algorithms as an inverse reliability metric to determine the quality of the

frequency estimate. The paper presents an algorithm to correct frequency estimates using these inverse

reliability metrics. The algorithm is tested with signals with phase jumps and severe distortions. Accurate

frequency estimates are of particular importance in real-time control applications. This paper shows the

value of the proposed frequency correction algorithm in synthetic inertia (SI) control. It shows that for a test

power system the corrector algorithm is critical in preventing the SI controller from erroneously injecting

power that can exacerbate system faults.

INDEX TERMS Adaptive notch filtering, controllable power injections, frequency corrector, frequency

estimation, Kalman filter, point-on-wave data, synthetic inertia, low inertia system, phase-locked loop

I. INTRODUCTION

I
NCREASING penetration of converter interfaced gen-

erators (CIGs) is creating unprecedented challenges for

inertial response and primary frequency regulation of power

systems. This is primarily due to reductions in the amount

of available inertia [1], [2]. Enabling CIGs to respond to fre-

quency fluctuations has been identified as a potential solution

to the inertia reduction problem [3], [4]. These controllers

that help with the inertial response of the system are termed

synthetic or virtual inertia controllers and simply intend to

emulate the swing equation of conventional generators. In

this type of control, the power injection of the CIG is modu-

lated proportionally to the derivative of a frequency estimate

(where the frequency estimate plays the role of machine

speed for conventional generators). These type of controllers

are heavily reliant on accurate frequency estimates which are

typically obtained from local voltage measurements.

Frequency estimation of power system signals is a prob-

lem that has been constantly studied. A popular family of

algorithms for frequency estimation are those based on the

discrete Fourier transform (DFT) [5], [6] as these are also the

ones typically used by phasor measurement units (PMUs) [7],

[8]. Phase-locked loops [9] are another algorithm often

used to synchronize power electronic converters to the grid.

In addition to those, other estimation algorithms based on

Kalman filters [10]–[12], H∞ filters [13], [14], nonlinear

least squares [15], and adaptive notch filters (ANF) have been

proposed [16]–[18].

In addition to the issue with inertia reduction, integration

of CIGs is affecting the power quality of the system. Lower

power quality is reflected in power system signals (voltages

and currents) that contain more noise and harmonics and that

are prone to heavy distortions when power system distur-

bances occur. Estimating frequency for these signals is chal-

lenging and faulty estimates can lead to faulty decisions. Er-

rors in frequency and rate of change of frequency (ROCOF)

estimates have caused false trips in loss of mains relays [19].

The Blue Cut fire event in Southern California where 700

MW of solar power was interrupted was partly due to er-

roneous frequency estimates of distorted waveforms caused

by line-to-line and line-to-ground faults [20]. To prevent

such an error from occurring again, NERC recommended

delaying protection decisions from frequency measurement.

Even though this is a valid solution in certain scenarios it

is not an optimal solution in real-time control applications

such as synthetic inertia (SI) where the action derived from

a frequency measurement is needed almost immediately. Be-

cause estimating frequency of heavily distorted signals yields
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faulty results no matter the algorithm used, recent work has

proposed methods to detect distortions or transient events in

the input signal and use that information to enhance the fre-

quency estimate. Ref. [21] presents a frequency estimation al-

gorithm that uses a transient detector to inform an intelligent

frequency estimator to adapt its frequency estimate. In [19]

frequency and ROCOF estimates are indirectly corrected by

changing the input to the frequency estimation device (in that

case a PMU) whenever the input signal is determined to have

a phase jump.

A related approach for solving the issue of frequency esti-

mation of distorted signals is to have an estimation algorithm

that yields a metric for reliability along with the frequency

estimate. The frequency estimate can then be corrected when

it is deemed not reliable. This idea was advanced in [10]

with a Kalman filter based frequency estimation approach.

In that work, the residual of the Kalman filter is used as

the inverse reliability metric and a frequency corrector stage

was proposed. This paper continues the research in [10] on

the use of a frequency correction algorithm to obtain better

frequency estimates for distorted signals. In particular, the

main contributions of this work are:

• Showing how internal signals of an extended Kalman

filter (EKF), quadrature PLL (QPLL), and ANF fre-

quency estimation algorithms can be used as inverse

reliability metrics (IRMs) for frequency estimates. The

suitability of these signals as IRMs was demonstrated

for input signals in the presence of phase jumps and

severe distortions. Their performance was also validated

under noise conditions.

• Extending the frequency corrector algorithm in [10] by

introducing a ramp limit to the frequency corrector.

The ramp limit smooths the transition from a corrected

value of frequency to a value that is deemed correct.

The efficacy of the proposed correction algorithm was

demonstrated for the three different estimation algo-

rithm mentioned above.

• Demonstrating the importance of a frequency corrector

stage in a SI application. This was done for a power

system with a CIG that provides about a quarter of

its total load and that has a SI controller enabled. The

results presented in this paper show that frequency

correction is crucial to prevent a SI controller from

affecting the system when a nearby line-to-line or line-

to-ground fault occurs.

This paper is organized as follows. Section II presents the

fundamentals of frequency estimation in power systems with

three different estimation algorithms and proposes an IRM

for the frequency estimate. Section III proposes a frequency

correction algorithm that uses the IRM. Section IV introduces

the test power system used in this work and presents results

on the effectiveness of the frequency corrector in a SI appli-

cation. Finally, Section V presents the concluding remarks

and future directions of research for this work.

II. FREQUENCY ESTIMATION IN POWER SYSTEMS

A. SIGNAL MODEL

Typical power system signals can be represented by

z(t) = A cos(ωt+ φ(t)) (1)

where ω is the nominal frequency of the system in rad/s, that

is ω = 2πf0, with f0 as the nominal frequency in Hz. The

sampled version of (1) is described by,

zk = A cos(ωtk + φ(tk)) k = 1, . . . , N (2)

where tk = kTs. Relationship (2) can be rewritten, with the

help of Euler’s formula, as

zk =
A

2

(

ej(ωtk+φ(tk)) + e−j(ωtk+φ(tk))
)

(3)

By using the following signals as states

x1,k = ejωTs x3,k = e−jωTs (4)

x2,k = Aej(ωkTs+φ(tk)) x4,k = Ae−j(ωkTs+φ(tk)) (5)

a discrete-time state space representation of the sampled

sinusoidal waveform in (2) can be found as

xk+1 =









x1,k+1

x2,k+1

x3,k+1

x4,k+1









=









x1,k

x2,k · x1,k

x3,k

x4,k · x3,k









= f(xk) (6)

Note that the signal in (3) can be obtained from the states

in (6) as

zk =
[

0 1
2 0 1

2

]

xk (7)

B. EXTENDED KALMAN FILTER

The Kalman Filter is an estimation technique widely used for

tracking and data prediction. It was initially proposed in 1960

for linear systems [22]. Since then a series of developments

have allowed it to be used in nonlinear systems. This paper

uses the Extended Kalman Filter (EKF) used in [10]–[12]

for frequency estimation. Due to space limitations other

techniques like the Unscented Kalman Filter (UKF) were

evaluated but not included here. The EKF is used for a system

of the form

xk+1 = f(xk) +wk (8)

zk = h(xk) + νk (9)

where (8) and (9) are, respectively, the system and measure-

ment equations. xk ∈ R
n and zk ∈ R

m are the system and

measurement state vectors at the kth step, respectively. The

process noise wk and the measurement noise νk ∈ R
m are

described by

E[wk] = 0 E[wkw
⊤

k ] = Qk E[wkw
⊤

j ] = 0 for k 6= j
(10)

E[vk] = 0 E[vkv
⊤

k ] = Rk E[vkv
⊤

j ] = 0 for k 6= j
(11)

E[wkv
⊤

j ] = 0 for all k for all j (12)

Qk = Q and Rk = R ∀ k (13)
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Algorithm 1 Extended Kalman Filter

Time Update (or Predictor Update)

1. Predict the state:

x̂−

k = f(x̂k−1)

2. Linearize the system:

Fk−1 =
∂f(x)

∂x

∣

∣

∣

∣

x=x̂k−1

3. Predict the covariance:

P−

k = Fk−1Pk−1F
⊤

k−1 +Q

Measurement update (or filter update)

4. Linearize the measurement:

Hk =
∂hk(x)

∂x

∣

∣

∣

∣

x=x̂
−

k

5. Measurement residual:

ek = zk − h(x̂−

k )

6. Measurement covariance:

Sk = HkP
−

k H
⊤

k +R

7. Compute the Kalman Gain:

Kk = P−

k H
⊤

k S
−1
k

8. Update the state:

x̂k = x̂−

k +Kkek

9. Update the covariance:

Pk = (I−KkHk)P
−

k

Algorithm 1 presents the step-by-step EKF procedure.

The EKF frequency estimator tracks a sinusoidal wave-

form with a certain amplitude, frequency and phase. The

information on frequency is in states x1,k and x3,k. The

frequency estimate, f̂k, can be obtained from these states as1

f̂k =
fs
2π

cos−1

(

x1,k + x3,k

2

)

(14)

where fs = 1/Ts is the sampling frequency. The magnitude

of the residual can be used as an IRM for the frequency

estimate. That is,

rk = |ek|

where rk represents the IRM at time step k.

C. QUADRATURE PLL

The quadrature phased-locked loop (QPLL) is a control

system similar to the traditional PLL but that differs from

it in the mechanism for phase detection. The QPLL is an

1An alternative approach to compute the frequency is: fk =
fs
2π

∣

∣Im
[

log(x1,k)
]∣

∣

effective mechanism for frequency estimation. The structure

of the QPLL used in this work is presented in [23] and is

described by

dks(t)

dt
= k̇s(t) = 2µse(t) sin(φ(t)) (15)

dkc(t)

dt
= k̇c(t) = 2µce(t) cos(φ(t)) (16)

∆ω(t)

dt
= ∆ω̇(t) = 2µfe(t) [ks cos(φ(t))− kc sin(φ(t))]

(17)

dφ(t)

dt
= φ̇(t) = ∆ω(t) + ω0 (18)

y(t) = ks sin(φ(t)) + kc cos(φ(t)) (19)

e(t) = z(t)− y(t) (20)

The block diagram of the QPLL is presented in Fig. 1. Note

that z(t) in (20) is the signal defined in (1).
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FIGURE 1. Block diagram of the QPLL.

For the QPLL algorithm a valid IRM is

r(t) =

∣

∣

∣

∣

d

dt

√

k2s(t) + k2c (t)

∣

∣

∣

∣

(21)

The value in
√

k2s(t) + k2c (t) is the estimated amplitude

of the signal which is constant for clean sinusoidals. In

contrast, every time distortion is present in the input signal

the amplitude presents an erratic behavior. The derivative

of this value is then higher for signals with distortion and

close to zero for those without it. This derivative is the value

presented in (21). It is important to note that the intrinsic error

function in (19) is not suitable as an IRM because it has an

oscillatory behavior in steady state. For further information

on this frequency estimation technique, the interested reader

is referred to [23] .

D. ADAPTIVE NOTCH FILTER

Another frequency estimation algorithm is the ANF [16]–

[18]. Notch filters are band-stop filters that ideally only stop

one frequency: the so-called notch frequency. Notch filters

can then estimate the frequency of a given sinusoidal input

provided it remains constant. The ANF is able to track

changes in freuqency of an input signal by simply adjust-

ing its notch frequency. Several ANF structures have been
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proposed. The particular ANF structure used in this work is

defined by the following differential equations ANF [17]

dν1
dt

= ν̇1 = ν2 (22)

dν2
dt

= ν̇2 = 2ζ(z − ν2)ν3 − ν1ν
2
3 (23)

dν3
dt

= ν̇3 = −γI(z − ν2)ν1ν3 (24)

where ν3 is the estimated frequency of the input signal z(t)
(as defined in (1)). The ANF above has 3 states: ν1, ν2, ν3 and

one input z. The error signal of the ANF can be expressed as

e(t) = r(t) = |z(t)− ν2(t)| (25)

and can be used as an IRM for the frequency estimate.

III. FREQUENCY CORRECTION

A. INVERSE RELIABILITY METRICS

This section shows how the IRMs of the three frequency

estimation algorithms outlined in Section II are affected by

distortions (or disturbances) of the input signal.

Fig. 2 shows a sinusoidal waveform with a phase step of -

40◦ occurring at approximately 6 seconds. Fig. 3 shows how

the IRM of the EKF, QPLL, and ANF respond to the phase

step. Because these IRMs come from different frequency

estimation algorithms they are generally not at the same

scale; hence, the results in Fig. 3 show a normalized version.

That is, the maximum value for each IRM was set to 1.

The normalization allows comparison of the different IRMs.

The results in Fig. 3 show that the IRM for all estimation

algorithms responds similarly following the event. In partic-

ular this figure shows: (i) for all cases the IRM reaches its

maximum value immediately after the distortion; (ii) before

the event the metric is almost zero for all cases and it returns

to zero after about 0.18 seconds; (ii) following the event the

IRM has a decaying oscillatory behavior with a frequency of

∼120 Hz in the case of the EKF and ANF and almost twice

that value in the case of the QPLL.

5.99 5.995 6 6.005 6.01 6.015 6.02 6.025 6.03

-150

-100

-50

0

50

100

150

FIGURE 2. Sinusoidal waveform with a phase step of -40◦.

Fig. 4 shows the estimated frequency obtained with the

EKF, QPLL, and ANF methods for the signal with the phase

step in Fig. 2. For comparison, this figure also shows the

5.95 6 6.05 6.1 6.15 6.2 6.25 6.3 6.35
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0.2

0.4

0.6

0.8

1

FIGURE 3. IRM of the EKF, QPLL, and ANF frequency estimation algorithms

for the signal with the phase step in Fig. 2.
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FIGURE 4. Estimated frequency with the EKF, QPLL, and ANF for the signal

in Fig. 2.

estimated frequency with a DFT based method (the spe-

cific configuration used has the same structure as the one

recommended in [8] for PMUs but some differences in the

filtering). The figure shows that the phase step distortion

causes a drop in the estimated frequency for all the meth-

ods under consideration. In particular, the three estimation

algorithms presented in Section II produce very similar fre-

quency estimates with a drop of around 1.5 Hz while the

drop experienced by the frequency estimate of the PMU-like

algorithm is higher and reaches about 2.9 Hz. This deviation

in frequency lasts for about 0.2 for the EKF, QPLL, and ANF

and only 0.1 Hz for the DFT estimation method. We note the

responses observed by the EKF, QPLL, and ANF algorithms

are dependent on the specific parameter of each method.

Fig. 5 shows the IRM of the EKF, QPLL, and ANF

when the input signal in Fig. 2 has a signal to noise ratio

(SNR) of 40 dB. This noise level was selected because it has

been reported this is a conservative for typical point-on-wave

data. This result was also verified experimentally with actual

recordings from digital fault recorders (DFRs). The results

are normalized just as those in Fig. 3 when the signal has no

noise. These results show that the noise does not significantly

affect how the IRM respond to the severe distortion. The

primary difference is that in steady-state instead of being

almost zero the IRM has an average value of 0.009 with

frequency maximum values around 0.05.
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FIGURE 5. IRM of the EKF, QPLL, and ANF frequency estimation algorithms

for the signal with the phase step in Fig. 2 with an SNR of 40dB.

B. CORRECTION ALGORITHM

Frequency estimation from signals that can be accurately

described by (1) is a relatively simple procedure. Frequency

can be successfully estimated by several techniques such as

those presented in Section II. However, for signals that are

not accurately represented by (1), frequency estimation may

pose challenges. This is particularly true for signals that are

not periodic and for which the very definition of frequency

is an open question. In power systems, severely distorted

signals for short time intervals are common at nearby buses

following system disturbances such as line-to-line or three-

phase faults. Estimating the frequency from those signals

yields defective results regardless of the estimation technique

utilized. However, as we have seen in Section III-A whenever

there is a severe distortion and the frequency estimate is

most likely erroneous, the IRM increases. The estimation

algorithms used in this work can be thought as systems that

have two outputs: a frequency estimate f(t) (or f̂k in discrete

time) and IRM r(t) (r̂k in discrete time). This concept is

observed in Fig. 6.

ˆ

( )f t

Freq. Estimation 

Algorithm

( )s t

( )r t

FIGURE 6. Schematic of frequency estimation.

Because the IRM increases whenever there is a distortion

and the frequency estimate is likely faulty, it can be used

as a flag to mark these estimates and correct them. The

idea of correcting frequency estimates using a IRM has been

introduced in [10] for the KF frequency estimation algorithm

used in this paper. The solution consists of correcting the

frequency estimate when the magnitude of the IRM (rk)

surpasses a user-defined threshold (ǫ). When this condition is

met the frequency estimate is deemed incorrect and the cor-

rected frequency is held to a previous value. This hold value

is returned to the estimated value by the estimation algorithm

only after rk has been below the threshold ǫ for a certain user-

defined period of time thold. This paper extends the frequency

Algorithm 2 Frequency Correction Algorithm

1: if (|rk| < ǫ and ¬FtH and ¬Framp) then

2: f̂ corr
k ← f̂k

3: else if |rk| < ǫ and FtH and Framp then

4: if tcont,k > thold then

5: FtH ← False

6: end if

7: f̂ corr
k ← f̂prev

8: tcont,k = tcont,k−1 + Ts

9: else if |rk| < ǫ and ¬FtH and Framp then

10: ∆f̂k = f̂k − f̂ corr
k−1

11: if |∆f̂k| > Rfmax then

12: ∆f̂k ← sgn(∆f̂k)Rfmax

13: else

14: Framp ← False

15: end if

16: f̂ corr
k ← f̂ corr

k−1 +∆f̂k
17: else if |rk| > ǫ then

18: f̂ corr
k = f̂prev

19: Reset time: tcont,k ← 0
20: FtH ← True

21: Framp ← True

22: end if

corrector algorithm described above, and presented in [10], to

incorporate a rate limiter for the corrected frequency. The rate

limiter (Rfmax) is enabled only after the frequency estimate

is considered reliable again and a transition needs to be made

between the value at which the corrector holds the frequency

and the current frequency estimate. The purpose of the rate

limiter is to avoid undesirable jumps in the output of the

frequency corrector. For control applications, avoiding jumps

in the estimated frequency will help produce a smoother (or

bumpless) control signal. This procedure, including the rate

limiter extension, is presented in Algorithm 2. Note that in

this algorithm, f̂k is the input and f̂ corr
k is the output. FtH is a

binary variable that indicates that the IRM has surpassed the

threshold (ǫ) and the frequency should be held at a safe value

f̂prev. FtH is active whenever ǫ is larger than the limit and for

thold after it goes below the threshold. Similarly, Framp is a

binary variable that determines when the rate limiter is active

after the action of holding the frequency, determined by FtH,

has subsided.

The three estimation algorithms used in this work are con-

trol systems that produce frequency estimates continuously

as they receive input data. These frequency estimates are

continuously adapted so that the difference between the mea-

surement and a signal estimate is minimized. These methods

produce signals that can be used as IRMs as presented above.

A window-based estimation algorithm such as nonlinear least

squares can also produce a similar metric. Yet another family

of algorithms such as those used by PMUs do not have an ex-

plicit metric. However, with such an approach, based on the

estimates (amplitude, phase and frequency) an ideal signal

VOLUME 4, 2016 5
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can be reconstructed and compared with the measurement.

From this comparison a metric for reliability (and its inverse)

can be proposed [24].

Corrected frequency estimates (and their associated RO-

COF) are instrumental in power system monitoring and

control applications which require extremely accurate mea-

surements even in situations where the signal is distorted.

The algorithm presented here is useful in such cases. An

alternative for correcting frequency measurement has been

presented in [19]. In that case, whenever a phase step is

detected in the input signal, it is replaced with a cleaner

reconstruction of it. This method was proposed for a PMU

estimator.

C. FREQUENCY CORRECTION EXAMPLES

This section shows examples of using Algorithm 2 to correct

frequency estimates.

Fig. 7 shows the frequency estimates obtained with the

three estimation algorithm in Section II in addition to the

DFT method recommended for PMUs for the signal in Fig. 2

with a 40 dB SNR. In addition to the frequency estimates

obtained from the three algorithms, the corrected values for

those using Algorithm 2 are also shown. The results in Fig. 7

show that the proposed frequency correction technique is able

to suppress the frequency drop. In this example the estimate

was held at the nominal value, 60 Hz, which is the level

before the IRM flags the estimate as incorrect.

5.95 6 6.05 6.1 6.15 6.2 6.25 6.3 6.35

57.5

58

58.5
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59.5

60

FIGURE 7. Estimated frequency with the EKF, QPLL, ANF and DFT for the

signal in Fig. 2 with a 40dB SNR. Corrected frequency estimates are also

shown in this figure.

Fig. 8 shows the same information as Fig. 7 but the y-

axis is zoomed in around the nominal frequency to highlight

the effect of the frequency corrector. The results in this

figure show that following the phase step in the signal, the

frequency corrector holds the frequency to a correct value and

for a short period of time. The value at which the frequency

is held, as well as the duration of this action are different

for the three estimation algorithms but very close to the

nominal value. Fig. 8 also shows the effect of the rate limiter

on the frequency estimates. The frequency estimate for all

the algorithms under consideration behaves as a straight line

with a slope when transitioning from the held value to a new

correct one.

5.95 6 6.05 6.1 6.15 6.2 6.25 6.3 6.35
59.98

59.985

59.99

59.995

60

60.005

60.01

FIGURE 8. Estimated frequency with the EKF, QPLL, ANF and DFT for the

signal in Fig. 2 with a 40dB SNR. Corrected frequency estimates are also

shown in this figure. The y-axis has been zoomed in around the nominal

frequency to show the effect of the frequency corrector.

Fig. 9 shows the phase A voltage signal at a location

that is electrically close to a line-to-line fault that occurs at

5 seconds. The fault is cleared 50ms later but that cannot

be observed in the figure. In this signal, it is observed that

the fault causes both the phase and amplitude of the signal

to abruptly change. Estimating frequency for those types of

signals is often difficult; in fact, similar signals were partially

responsible for the 2016 Blue Cut fire event in Southern

California [20].
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FIGURE 9. Voltage waveform of a line-to-line fault.
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FIGURE 10. IRM of the EKF, QPLL, and ANF methods for the the signal in

Fig. 9.

Fig. 10 shows the normalized IRM of the EKF, QPLL,

and ANF for the signal in Fig. 9 with added noise for a
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FIGURE 11. Estimated frequency with the EKF, QPLL, and ANF, and their

associated corrected estimates for the signal in Fig. 9.

SNR of 40dB. The results in this figure show that the IRM

spikes when the fault occurs and when the fault is cleared but

decays in between those two events. It can also be observed

that the IRM associated with the EKF exhibits higher values

that those associated with the other algorithms after the

fault is cleared. Fig. 11 shows the frequency estimates and

their associated corrected values for the EKF, QPLL, and

ANF. These results show that the distortion to the voltage

waveform caused the frequency estimate to take initially

positive values reaching around 61 Hz, 50 ms after the fault

for all the estimation algorithms. After this maximum value

is reached, the estimate starts decreasing until it crosses the

nominal value around 85 ms after the event. At that point the

EKF frequency estimate keeps decreasing until 59.4Hz while

the estimates for the QPLL and the ANF only reach 59.86 Hz.

The results in Fig. 11 also show the corrected values when

Algorithm 2 is applied; in those cases the frequency does

not experience any significant deviation from its steady-state

value (note that in steady state the estimate is not constant but

instead it exhibits small variations around the nominal value

which can be attributed to the noise added to the signal).

For completeness, this paper also presents the behavior of

the frequency corrector for a signal experiencing a modu-

lation in frequency in the form of a ramp. The modulation

starts at 6 seconds with rate of change of -0.1Hz/s. Fig. 12

shows the normalized IRM of the EKF, QPLL, and ANF

algorithms for this signal. Note that the values presented in

this figure were normalized, per algorithm, with the same

constant as those in Fig 3. This is because the IRM for this

type of disturbance to the signal never has a significant value

(for either algorithm) and normalization in such scenario is

not helpful. Normalizing the IRM for this signal with the

values obtained for the phase step shows that in a case of a

smooth (and real) frequency change the proposed IRM is not

harmful to the frequency estimation process. Fig. 13 shows

the frequency estimates for all the estimation methods for

the frequency ramp case. The figure shows that the results

with the corrector are the same as those without it. This was

expected because as mentioned above, the IRMs are always

low.

It is important to note to the user that in practice the IRMs
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0.8

1

FIGURE 12. IRM of the EKF, QPLL, and ANF methods for a signal

experiencing a frequency ramp starting at 6 s with a slope of -0.1 Hz. The IRM

was normalized with the same values as those in Fig 3.

5.8 6 6.2 6.4 6.6 6.8 7

59.92
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60

FIGURE 13. Estimated frequency with the EKF, QPLL, ANF and DFT for the

signal with the frequency ramp starting at 6 s with a slope of -0.1 Hz.

are not normalized. This was done in the paper so that a

comparison could be made across algorithms. In practice

what should be done is to determine what the IRM value is

for a severe event such as a phase step, and what it is for

a smooth change such as a ramp modulation. These values

should vary significantly and ǫ of Algorithm 2 can be set to a

value in between them.

IV. FREQUENCY CORRECTION IN SYNTHETIC INERTIA

CONTROL

A. POWER SYSTEM MODEL

This paper uses the system in Fig. 14 to test the efficacy of

the proposed frequency corrector in SI control. The system

is a modified version of the well-known KRK 2-Area system

in [25] and has 6 generators. G1 and G2, in Area 1, each

have a rating of 1000 MW. G3 in Area 2 has a rating of

900 MW. Generators G4, G5, and G6, also in Area 2, have,

respectively, machine ratings of 450, 225, and 225 MW. The

operating condition for the system used in this work has G1,

G2 and G3 with a power level of 700MW while G4, G5, and

G6, respectively, produce 450, 225 and 225 MW. Load LA1

in Area 1 and LA2 in Area 2 consume 950 and 1540MW, re-

spectively. Note that G2 is the swing bus and its actual power

is adjusted during the loadflow computation. This system was

implemented in Simscape from Matlab/Simulink [26].

This research considers the following cases to study the ef-

fect of different implementations of SI control in the system:

VOLUME 4, 2016 7
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FIGURE 14. Test power system used in this work: a modified version of the

2-area KRK system.

• the base case with the system as described above;

• the 25% no control case where G1 is fully replaced by a

CIG that is not responsive to frequency deviations;

• the case where G1 is replaced by CIG that has the SI

controller in Section IV-B without using the frequency

correction algorithm;

• the same configuration as above but with the correction

algorithm active.

B. SYNTHETIC INERTIA CONTROL

This paper uses the SI controller presented in Fig. 15. This

type of controller tries to imitate the inertial response of

synchronous generator by modulating the active power of

the CIG with the derivative of a frequency measurement.

This frequency measurement plays the role the speed has

in a synchronous machine and it was selected to be the

frequency estimate of the local voltage measurements. The

frequency estimation algorithm selected for the results of

this paper was the EKF (but similar results are obtained

with the QPLL and ANF). An important difference between

the controller in Fig. 15 and a typical SI controller is the

presence of the frequency correction stage. This stage was

made optional in order to show the benefits of including it.

The corrector stage is based on Algorithm 2. The input signal

is the local voltage where the CIG is included. The values

for the parameters of the frequency corrector are: ǫ = 0.05,

thold = 20 ms, Rfmax = 20 µs−2. We also note that for a

SI to be stable a filtering stage is needed. Intuitively, this is

because the presence of the derivative in a SI controller needs

to be compensated at some frequency. The details of the filter

design are beyond the scope of this paper but the interested

reader is referred to [26].

d

dt

si

k

Correction 

Algorithm

P∆

Filtering 

Stage

ˆ

k

f

corr

ˆ

k

f

FIGURE 15. SI controller that includes the frequency corrector used in this

paper.

C. RESULTS FOR POWER SYSTEM DISTURBANCES

In addition to the SI control cases detailed in Section IV-A,

this research considers three different power system distur-

bances:

• Connecting a load of 150 MW in Area 1 at 2.5 seconds.

This case is selected to show that the SI controller used

in this work is effective in mitigating the effects of

inertia reduction in the inertial and primary frequency

response of the system.

• A line-to-line fault at B1 cleared after 41.5 ms (which is

about 2.5 cycles). This type of fault was selected partly

because it was the most common during the Blue Cut

fire event [20]. This is an event for which a SI controller

must not negatively respond and for which these type of

controllers are rarely designed (as the design is based on

the emulation of the inertial response of a synchronous

generator). However, if a SI control is enabled it is

important to verify that in fact the controller is harmless

in all situations.

• A line-to-line fault at B1 cleared after 41.5 ms (which

is about 2.5 cycles). This type of fault was also present

during the Blue Cut fire event [20].

Fig. 16 shows the frequency of the system for the different

CIG integration and control cases considered for the load

connection event. To focus on the inertial response of the

system, the figure show results only for the first 2 seconds

following the disturbance. The results in Fig. 16 show that

the controller has its intended effect and reduces the RO-

COF of the system following the event. In fact, in cases

where the control is included there is an improvement in

the ROCOF with respect to the base case. Fig. 17 shows the

power (without the scheduled value) injection of either the

conventional generator or the CIG at Bus BG1 after the event.

This figure shows that in the case, immediately after the

load is connected, the conventional generator injects power

which briefly and slightly goes up before slowly decaying. In

contrast, for the SI control cases the power injection is slow

but eventually surpasses that of the conventional generator.

The case with the corrector is not different from the case

without it because the corrector is never enabled as the IRM

for this event is always below the threshold value, ǫ, of

the frequency corrector. This latter fact can be observed in

Fig. 18 and is explained because, as seen in Fig. 19, the

load connection does not significantly distort the voltage

waveform at BG1.

2.5 3 3.5 4 4.5

59.9

59.92

59.94

59.96

59.98

FIGURE 16. Frequency of the system following a 150 MW load connection at

B1 in the system of Fig. 14.
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FIGURE 17. Power injection at Bus BG1 following a 150 MW load connection

at B1 in the system of Fig. 14.
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FIGURE 18. IRM of the EKF when estimating frequency out of voltage

measurements for the load connection event.
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FIGURE 19. Voltage of phase at Bus BG1 following the load connection event.

Fig. 20 shows the frequency of the system for the SI

control cases considered for the line-to-line event. For the

base case this figure shows that the event causes the fre-

quency to initially increase up to a value of 60.04 Hz (110

ms after the fault) and then slowly decrease to reach a value

close to the nominal. For the case of CIG integration with

no control the response is similar but faster. For the case

of SI control without the frequency correction algorithm

enabled, the results show that the system loses synchronism;

in fact G2 separates from the system. Recall that this is

the same controller that in Fig. 16 is shown to provide a

beneficial support to the frequency regulation of the system.

The results show that when the frequency corrector algorithm

is included the response of the system is very similar to the

one with no control as the action of the frequency corrector

was rightfully triggered after the event. This is because, as

observed in Fig. 22, the EKF IRM goes above the frequency

2.5 3 3.5 4 4.5
59.9

59.95

60

60.05

FIGURE 20. Frequency of the system following a line-to-ground event at B1

for the system shown in Fig. 14.
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FIGURE 21. Power injection at Bus BG1 following the line-to-ground event at

B1.
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FIGURE 22. IRM of the EKF when estimating frequency out of voltage

measurements line-to-ground event at bus B1.
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FIGURE 23. Voltage of phase at Bus BG1 following the line-to-ground event

at bus B1.

corrector threshold (ǫ) following the fault inception. Fig. 21

shows the power modulation of the actuator for the line-to-

line disturbance. This figure shows that the response of a
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FIGURE 24. Frequency of the system following a line-to-line event at B1 for

the system shown in Fig. 14.

conventional generator is oscillatory while the responses of

the CIG are not. The response of the case where there is no

corrector stage becomes negative not too long after the fault

which exacerbates its effect and is what ultimately causes the

system break out. The results in Fig. 20 show that the pro-

posed frequency corrector is crucial to block incorrect actions

by the SI controller due to faulty frequency estimates. The

corrector action lasts for about 200 ms after the event and the

ramp rate stage was necessary to avoid steps in the estimated

frequency (f corr
k ). These steps are to be avoided because

when differentiated cause spikes in the CIG power injection

which in turn distort the voltage waveform to the point where

the corrector action may be again triggered. Fig. 23 presents

the phase A voltage waveform at the beginning of the line-to-

line event. These waveforms show that the signal is severely

distorted for the cases of CIG integration.

Fig. 24 shows the frequency of the system for the SI

control cases considered for the line-to-ground event. The

results show a similar behavior to those in Fig. 20: the system

loses synchronism for the case where the SI controller does

not have the frequency corrector but is able to remain stable

when the corrector is included. The results in Figs. 25, 26,

and 27 are akin to those in Figs. 21, 22, and 23 and show

that the faulty power injection by the CIG due to an incorrect

frequency estimate is the main contributor to the loss of

synchronism .
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FIGURE 25. Power injection at Bus BG1 following the line-to-line event at B1.

The results in Figs. 20 and 24 convey an important mes-

sage: control strategies aimed at enhancing the inertial and

primary frequency regulation of the system can have unin-
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FIGURE 26. IRM of the EKF when estimating frequency out of voltage

measurements line-to-line event at bus B1.
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FIGURE 27. Voltage of phase at Bus BG1 following the line-to-line event at

bus B1.

tended consequences for disturbances for which they were

not specifically designed. And some of these consequences

can only be analyzed in electromagnetic transient simulation

platforms that are able to reproduce actual waveforms and

distortions that a power system can exhibit and that are not

possible to represent adequately with positive sequence simu-

lation software. The authors understand that many challenges

arise when considering the advocated approach for large

scale power systems; this paper aims only at fostering the

discussion on how to approach the coming challenges for a

grid with more power electronics based generation.

V. CONCLUSION

This paper presents three three frequency estimation algo-

rithms: EKF, QPLL, and ANF. The paper shows how internal

signals of these algorithms can be used as metrics for fre-

quency estimate reliability. The paper shows that these IRMs

work even for signals contaminated with noise. The paper

then proposes a frequency corrector algorithm to improve the

estimates of the presented algorithms. This corrector is based

on the IRM and is tested with signals with phase-steps and

with severe distortions caused by line-to-line faults.

The paper tests the frequency corrector in a SI application

where this controller is driven by the corrected frequency

estimate. The SI control is included to a CIG in a test power

system. The paper shows that the frequency corrector: (i)

allows the SI action to enhance the inertial response of the

system when the power quality of the signal is appropriate;

and (ii) prevents the SI controller from performing unde-
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sirable actions with negative impact to the system in cases

where this type of control action is seldom tested.

Future avenues of research will include scaling up the test

system and including a higher fidelity model for the converter

of the CIG.
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