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It is proposed to create materials with a desired refraction coefficient in a bounded
domain D ⊂ R

3 by embedding many small balls with constant refraction coefficients
into a given material. The number of small balls per unit volume around every point
x ∈ D, i.e., their density distribution, is calculated, as well as the constant refraction
coefficients in these balls. Embedding into D small balls with these refraction coefficients

according to the calculated density distribution creates in D a material with a desired
refraction coefficient.
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1. Introduction

In Refs. 6–15, it was proposed to create material with a desired refraction coefficient

by embedding into a given material small particles with suitably chosen boundary

impedances. It was proved that any desired refraction coefficient n2(x), =n2(x) ≥ 0,

can be created in such a way in an arbitrary given bounded domain D ⊂ R
3.

Preparing small particle with a prescribed large boundary impedance may be a

technologically challenging problem. In Refs. 1 and 2 numerical results are given.

These results illustrate the efficiency of the author’s method for solving many-body

scattering problem in the case of small scatterers embedded in an inhomogeneous

medium.

By this reason we propose in this paper a new method for creating materials

with a desired refraction coefficient. We use wave scattering by many small particles

(see Ref. 10).

This method for creating materials with a desired refraction coefficient n2(x)

consists of embedding into a given material small particles (balls) with a suitably

chosen density distribution of the embedded particles and a suitably chosen constant

refraction coefficients of each of the embedded particles. No boundary impedances
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are necessary to use in this method. Therefore, one hopes that the new method

may be easier to implement in practice.

The density of the distribution of the embedded particles Dm and their constant

refraction coefficients ν2(xm) are calculated given the desired refraction coefficient

n2(x) and the refraction coefficient n2
0(x) of the original material in D.

In the literature there are many papers and books (see Ref. 5 and references

therein) in which homogenization formulas of Bruggeman, Maxwell Garnett, and

their numerous modifications are used to derive approximate formulas for the di-

electric and magnetic parameters of various composite materials. Various bounds,

for example, Hashin-Shtrikman bounds, are found for these formulas (see Ref. 5).

These formulas are, for the most part, such that the homogeneized material is char-

acterized by constant parameters. The inhomogeneities are assumed, in most cases,

randomly distributed in the medium. There are also many mathematical papers

and books dealing with homogenization theory.3,4 Our approach differs from the

published in several respects: we do not assume periodic structure of the medium,

the small parameter is not entering the coefficients of the equations, the problems

we are studying are non-selfadjoint and the operators involved have continuous,

rather than discrete, spectrum.

The problem, discussed in our paper, is also different: the small inhomogeneities

are not distributed randomly and our goal is not to derive the properties of the ho-

mogeneized medium. On the contrary, we prescribe the desired “property of the

medium”, which in our paper is the desired potential, and we give a method for

creating a medium with the a priori prescribed “properties”. This method consists

of embedding into a given medium many small inhomogeneities (particles) with con-

stant parameters which vary from particle to particle. We prove that the density of

the distribution of the embedded particles and their parameters, as functions of the

positions of the embedded particles, can be chosen so that the limiting medium will

have the desired “properties”, i.e., in our case, the desired potential. This is a “syn-

thesis” problem, rather than an “analysis” problem. Our results are rigorous, and

not approximate. They do not require the assumption, made in Bruggeman’s and

Maxwell Garnett’s theories, about smallness of the relative volume of the embedded

inhomogeneities.

Let us compare the new method with the method originally proposed in Refs. 6–

11. Let a denote the characteristic size of the small particles Dm. We assume that

all the particles have the same characteristic size. The physical properties of these

particles Dm of the characteristic size a are described in Refs. 6–8 by the boundary

impedances ζm of the particles Dm. The order of magnitude of ζm is O(a−κ), as

a → 0, where κ ∈ (0, 1] is a parameter a physicist can choose as he/she wishes,

and the total number N of the embedded particles is of the order O(a−(2−κ)). For

κ = 1, for example, this order is O(a−1).

In the new method, proposed in this paper, the physical properties of the em-

bedded small particles Dm are described by their constant refraction coefficients

ν2(xm), where xm ∈ Dm is a point inside Dm. Since Dm is small, it does not matter
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what point xm ∈ Dm is chosen. The boundary impedances are not used in the new

method. The total number N of the embedded particles in the new method is of the

order O(a−3), as a→ 0. This number is much larger than O(a−(2−κ)), as a→ 0.

A possible disadvantage of the new method, compared with the original one, is

the increase of the number of embedded small particles as a→ 0.

An advantage of the new method, compared with the original one, is, possibly,

that it is easier technologically to prepare small particles with constant refraction

coefficients than small particles with desired boundary impedances ζm.

Only experiments can show which of the two methods and for what practical

goals is better to use.

In the recent paper14 a method, similar to the one proposed in this paper, has

been used for creating non-relativistic quantum-mechanical potentials of a desired

form.

Let us formulate the problem precisely. Assume that a bounded domain D ⊂ R
3

is filled with a material with known refraction coefficient n2
0(x), =n2

0(x) ≥ 0,

n2
0(x) = 1 in D′ := R

3 \ D, n2
0(x) is piecewise-continuous. Throughout this pa-

per by piecewise-continuous function we mean a bounded function with the set of

discontinuities of Lebesgue measure zero in R
3, and do not repeat this.

The waves satisfy the equation:

L0u0 := [∇2 + k2n2
0(x)]u0 = 0 in R

3, k = const > 0 , (1)

u0 = eikα·x + v . (2)

Here v is the scattered field, satisfying the radiation condition:

vr − ikv = o(r−1) r := |x| → ∞ , (3)

where α ∈ S2 is the direction of the incident plane wave, and S2 is the unit sphere in

R
3. It is proved in Ref.6 that this scattering problem under the stated assumptions

on n2
0(x) has a unique solution, and the function G(x, y), satisfying the equation

L0G(x, y) = −δ(x− y) in R
3, (4)

and the radiation condition (3), does exist and is unique.

One can write

L0 = ∇2 + k2 − q0(x) ,

where

q0(x) := q0(x, k) := k2 − k2n2
0(x) , q0(x) = 0 x ∈ D′ . (5)

Let n2(x) be a desired refraction coefficient inD. We assume that n2(x) is piecewise-

continuous, =n2(x) ≥ 0, and n2(x) = 1, x ∈ D′.

We wish to create material with the refraction coefficient n2(x) in D by em-

bedding into D many small non-intersecting balls Bm, 1 ≤ m ≤ M , of radius a,

centered at the points xm ∈ D, with constant refraction coefficients n2
m in Bm.

Smallness of the particles means that ka� 1.
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Let ∆ ⊂ D be any subdomain of D. We assume that the number of small

particles, embedded in ∆, is given by the formula:

N (∆) :=
∑

xm∈∆

1 = V −1
a

∫

∆

N(x)dx[1 + o(1)] , a→ 0 , (6)

where N(x) ≥ 0 is a piecewise-continuous function in D, and

Va :=
4πa3

3

is the volume of a ball of radius a.

Formula (6) gives the density distribution of the centers of the embedded small

balls in D. The total number of these balls tends to infinity as O(V −1
a ) = O(a−3)

when a→ 0.

We assume that the total volume V (D) of the embedded particles (balls) is not

greater than |D|, where |D| is the volume of D, i.e.,

V (D) = VaN (D) =

∫

D

N(x)dx[1 + o(1)] ≤ |D| , a→ 0 .

This means physically that although N(x) can be large in some subdomains of D,

its average over D is not greater than unity.

The scattering problem in the case of the embedded into D particles is:
(

L0 + k2
M
∑

m=1

n2
mχm

)

U = 0 in R
3 , (7)

where χm is the characteristic function of the ball Bm, i.e., χm = 1 in Bm, χm = 0

in B′
m := R

3 \Bm, and

U = u0 + V , (8)

where V satisfies the radiation condition (3), u0 solves the scattering problem in

the absence of the embedded particles, i.e., when M = 0, and

n2
m = ν2(xm) .

Here ν2(x) is some piecewise-continuous function in D, =ν2(x) ≥ 0.

The solution U(x) = Ua(x) to problem (7) and (8) depends on the parameter

a, and the number M of the embedded particles depends also on a,

M = O(V −1
a ) = O(a−3),

soM → ∞ at a prescribed rate as a→ 0. We are interested in the limiting behavior

of U(x) = Ua(x) as a→ 0. Our basic result, Theorem 1, below, says that the limit

lim
a→0

Ua(x) := ue(x) , (9)

does exist and satisfies the integral equation (17) in Theorem 1.
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From (7) and (8) one gets

U(x) = u0(x) + k2
M
∑

m=1

n2
m

∫

Bm

G(x, y)U(y)dy . (10)

This integral equation we rewrite as

U(x) = u0(x) + k2
M
∑

m=1

n2
m

∫

Bm

G(x, y)dyU(xm)[1 + o(1)] a→ 0 . (11)

Here the continuity of U in Bm, 1 ≤ m ≤M , was used. This continuity implies

U(y) = U(xm)[1 + o(1)] a→ 0; y ∈ Bm .

The function U is twice differentiable in R
3, as follows from (11), so it is continuous

in D.

We need three lemmas.

Lemma 1. The following relations hold:

lim
|x−y|→0

|x− y|G(x, y) =
1

4π
, (12)

sup
|x−y|≥0

|x− y||G(x, y)| ≤ c . (13)

By c > 0 we denote various estimation constants.

Proof of Lemma 1 is given in Sec. 2.

Lemma 2. The following relations hold:
∫

|y−xm|≤a

|x− y|−1dy = Va|x− xm|−1, |x− xm| ≥ a ,

∫

|y−xm|≤a

|x− y|−1dy = 2π

(

a2 −
|x− xm|2

3

)

, |x− xm| ≤ a .

(14)

Proof of Lemma 2 consists of a direct routine calculation and is therefore omit-

ted. The result of Lemma 2 is known from the potential theory.

Lemma 3. If f is piecewise-continuous and bounded in D and the points xm are

distributed in D by formula (6), then the following limit exists:

lim
a→0

Va

M
∑

m=1

f(xm) =

∫

D

f(x)N(x)dx, (15)

where N(x) is defined in (6).

This Lemma is proved in Refs. 6, 17 and 18.

This Lemma was recently generalized by the author to allow the function f

to be unbounded at some points or sets S of Lebesgue measure zero and of di-

mension less than the dimension of the space. For such f one considers the set
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Dδ := {x : x ∈ D, dist(x,S) ≥ δ} in which f is piecewise-continuous and bounded,

and defines the sum (15) as

lim
a→0

Va

M
∑

m=1

f(xm) := lim
δ→0

lim
a→0

Va
∑

xm∈Dδ

f(xm) .

With this definition the conclusion of Lemma 3 remains valid for f piecewise-

continuous in D with the set W of discontinuities of Lebesgue measure zero and

the subset S ⊂ W , at which f = ∞ and satisfies the following estimate |f(x)| ≤

c[dist(x,S)]−ρ, where c = const > 0 and 0 ≤ ρ < 3, and we assume that the

integral
∫

D
f(x)N(x)dx := limδ→0

∫

Dδ

f(x)N(x)dx exists as an improper integral

or the Cauchy principal value singular integral.

One has:
∫

Bm

G(x, y)dy = VaG(x, xm)[1 + o(1)] , a→ 0 ; |x− xm| ≥ a . (16)

From (11), (15) and (16) our basic result follows:

Theorem 1. There exists the limit (9) and

ue(x) = u0(x) + k2
∫

D

G(x, y)N(y)ν2(y)ue(y)dy . (17)

Physically the limiting field ue is interpreted as the effective (self-consistent)

field in D.

Corollary 1. The functions U(x) and ue(x) are twice differentiable in R
3. The

function ue(x) solves the equation:

Lue(x) = 0 , L := L0 + k2N(x)ν2(x) , (18)

so

n2(x) = n2
0(x) +N(x)ν2(x) . (19)

To prove this Corollary one applies the operator L0 to Eq. (17) and uses Eq. (4).

Conclusion: To construct a material with a desired refraction coefficient n2(x) one

embeds small balls with radius a, centered at the points xm, 1 ≤ m ≤M, distributed

by formula (6), and chooses N(x) and ν2(x) so that relation (19) holds.

The choice of N(x) and ν2(x) is therefore nonunique, because the relation (19)

can be satisfied by infinitely many ways. For example, one may fix N(x) > 0 in D

and then choose

ν2(x) =
n2(x)− n2

0(x)

N(x)
.

If n2(x) = n2
0(x) in a subdomain ∆ ⊂ D, then one can take N(x) = 0 in ∆.

In Sec. 2 proof of Lemma 1 is given.
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2. Proofs

Proof of Lemma 1. We start with the equation:

G(x, y) = g(x, y)−

∫

D

g(x, z)q0(z)G(z, y)dz := g − TG , (20)

where q0 is defined in (5), and

g(x, y) =
eik|x−y|

4π|x− y|
. (21)

Equation (20) is of Fredholm-type in the space X of functions ψ(x, y) of the form

ψ(x, y) = φ(x, y)/|x− y|, where φ(x, y) is a continuous function of its arguments,

and the norm in X is defined as ‖ψ‖ = supx,y∈R3(|x− y||ψ(x, y)|).

We have ‖g‖ = 1/4π. The homogeneous equation (20) has only the trivial

solution (see Ref. 6), so the operator (I +T )−1 is bounded in X . Therefore, ‖G‖ ≤

c‖g‖ = c/4π. This implies estimate (13).

To prove (12), let us multiply (20) by |x − y| and let |x − y| → 0. One has

lim|x−y|→0 g = 1/4π. The integral TG is bounded for all x, y ∈ D, so lim|x−y|→0(|x−

y|TG) = 0. Thus, relation (12) follows.

Lemma 1 is proved. �
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