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assertions. These are consistent with all that is previously 

known, strongly supported by numerical results, and lead to 

a method for deciding the existence of any given RAM surface 

computationally. 

I. INTRODUCTION 

Problems in many branches of physics can be reduced to the study 

of two-dimensional measure-preserving mappings. In one important 

application, these mappings are an abstract representation of the 

simplest nantrivial problem of classical mechanics, the motion of two 

coupled oscillators. It is an intriguing problem because the cor­

responding equations are simple and deterministic, with solutions 

that are either ordered or chaotic. The type of solution depends 

sensitively on both the parameters of the system and on the initial 

conditions. The aim of this paper is to illustrate a point of view 

for the examination of the boundaries between these types of motion. 

The method adopted here is to first explore the problem empirically 

with the aid of a computer, and then use this insight to guide 

analytic calculations. 

5—6 
A number of authors have recently written reviews of the 

subject covered in this paper, so that it need not be introduced in 

great detail. One physical example will be given here to provide a 

context for the remainder of this paper. Consider a particle con­

strained to the surface of a nonsymmetric bowl, i.e., moving in a 

potential V(x,y) which has a minimum at x = y = 0 . In general, 

the particle will go around and around the bowl^on some irregular 
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orbit. For ease in picturin9 and understanding this orbit, its 

dimensionality can b« reduced by one by a method introduced by 

Poincare. Consider a time at which the orbit crosses the ray 

y = 0 , x > 0 . This orbit is completely characterized by its 

position in the two-dimensional phase plane (x,x) since the 

requirement  y= 0 together with the conservation of energy can be 

used to complete the specification of the orbit in the full phase 

space. An orbit is then conveniently pictured through its 

successive intersections with this plane. 

The orbits runniag around the bowl from intersection to inter­

section of the phase plane (x,x) determine; ci mapping of the phase 

plane onto itself. By one of Poincare's invariants, the area of a 

bundle of orbits is conserved in this mapping. Mappings with 

this area preserving property can be constructed analytically and 

these show the full range of orbit types as those arising from 

Hamiltonian differential equations. Thus, they represent a very 

convenicant abstraction of dynamics, since they can be evaluated 

rapidly and accurately. 

This paper is devoted to the study of a particular mapping 
7 

that was introduced by Taylor, and more recently treated extensively 
4 

by Chirikov. Termed "the standard mapping" by the latter author, 

it is 

n+i n 2it n 

Bn+1 ~ 9 n + cn+l ' (1) 
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It transforms a point (r , 6 ) to the point (r .,,9 .,) . In this 
n n n+i n*ri. 

space an orbit is a sequence of po.nts generated by successive 

iterations of the mapping on an initial point (r , 8 ) . One 

iteration of this mapping is thus analogous to one traversal of the 

particle around the bowl in the previous example. For this reason, 

the number of iterations that generate an orbit segment will be 

called the length of that segment. 

The mapping of Eq. (1) is naturally periodic in both 9 and 

r with unit poriod. Thus, the domain 0 <̂ r < 1 , 0£6 < 1 will be 

treated as a torus. 

Consider the standard mapping for the value k = 0 . Then r 
D 

is a constant of the motion, and the mapping is integrable. Orbits 

on surfaces where r is rational close on themselves after a finite 

number of iterations of the mapping, and thus are periodic. Surfaces 

with irrational r are filled ergodically as the orbits are extended 

indefinitely. 

Three typical orbit segments for nonvanishing Jc are shown in 

Fig. 1. Now a type of orbit appears that did not exist for the 

integrable case, one that apparently randomly fills out some area of 

the torus. These will be called stochastic, or two-dimensional orbits. 

Two such orbits are illustrated in Fig. 1. The two types of orbits 

that appeared in the integrable case are also found when k is 

finite. According to a theorem of Kolmogorov, Arnol'd, and Moser,"' 

for sufficiently small but finite k, there are orbits filling 

surfaces that in the limit as k vanishes go continuously into 

surfac as with irrational r. These are one-dimensional orbits, or 

KAM surfaces. Two orbits of this type are illustrated in Fig. 1. Finally, 
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according to a theorem of Poincare and Birkhoff, surfaces with 

rational r are reduced to a finite number of periodic orbits when 

k is nonvanishing. In fact, in Appendix A it is shown that for this 

mapping two such orbits survive frcrs each rational surface. These 

orbits can be called zero-dimensional. One orbit of this type is 

denoted by the symbol Q in Fig. 1. The resultant mapping, then, 

is a complex mixture of zero-, one-, and two-dimensional orbits. 

Two KAM surfaces extending around the r,6 torus-- in the 8 

direction divide the torus in two. This divides the orbits into two 

classes, since by continuity and uniqueness, orbits in one region 

cannot cross the bounding KAM surfaces into the other region. Under 

this circumstance, two stochastic orbits such as shown in Fig. 1 

are distinct and disconnected. Thus, these orbits cannot wander around 

the torus in the r direction. 

On the other hand, for sufficiently large values of k , orbits 

are seen to encircle the r,9 torus in the vertical, or r direction. 

This behavior will be called connected stochasticity. The presence 

of connected stochasticity precludes the existence of horizontally 

encircling KAM surfaces. 

We are thus led to the following picture. For small values of 

k , there are many KAM surfaces that encircle the r,9 torus 

horizontally. These divide the space into many compartments, each of 

Which may contain stochastic orbits. For larger values of k, there 

are fewer such KAM surfaces, and individual stochastic orbits can 

occupy a greater area of the phase space. Finally, at some critical 

value of k , the last horizontally encircling KAM surface disappears. 

For larger values of k there are vertically, encircling stochastic 

orbits. A major purpose of this paper is to calculate and describe 
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the critical k . 

Previous work on this problem for this mapping has been sum-
4 

marized by Chirikov. 

The method of approach used in this paper was first studied 

11 
several years ago. It is based on an examination of the stability 

of periodic orbits. These orbits are attractive points of departure 

since they are of finite length, and thus can be treated with 

arbitrary accuracy. It is shown here that there is necessarily a 

close relation between the stability of these orbits and the 

existence of nearby KAM surfaces. 

This paper is an improvement over the previous paper in several 

respects. The particular mapping studied here is superior. There 

is now a well-defined problem for finding the critical k for 

connected stochasticity that has no simple analog in the previous 

mapping. Also, this mapping is continuously connected to an 

integrable mapping through the parameter k, which is very useful 

conceptually. Among other developments that have been helpful is a 

new formulation of the problem of calculating the stability of 

12 periodic orbits given by Bountis and Helleman that sheds considerable 

new insight. This is discussed in the next section, and described 

in more detail in Appendix B. Finally, present computers have 

permitted the calculation and sifting of much more data, allowing 

stronger statements of results to be given. 

The quantities to be calculated in this paper are defined and 

discussed in Sec. II. The results of many numerical calculations are 

then distilled into a series of assertions given in Sec. III. Some 

of the evidence leading to these assertions is given in Sec. IV. 
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Finally, the meaning of it all is discussed in Sec. V. 
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II. DEFINITIONS 

The material in this section has considerable overlap with 

similar material in the previous paper. It is included here for 

completeness, and also to point out certain differences between 

these two papers. 

Here we are interested particularly in the periodic orbits of 

the mapping given in Eq. (1). A periodic orbit is a finite set of 

points that transform among themselves under iteration of the 

mapping, and all of which are accessible from any one of the points. 

We will say that the orbit is of length Q if the orbit closes after 

Q iterations. 

Not all of the periodic orbits are considered here. The class 

of interest can be defined succinctly as those periodic orbits that 

exist for all values of the parameter k , down to k = 0 . Some of 

the other periodic orbits bifurcate out of shorter periodic orbits 

at a finite value k , and some just suddenly appear as k is in­

creased. One way of classifying all these orbits is through the 

bifurcation tree that produced them, as k is varied from zero. 

This classification was called a hierarchy in the previous paper. 

Hopefully, it is somewhat clearer here, where the mapping can be 

connected to an integrable mapping by a continuous transformation, 

i.e., through variation of k . 

A method for calculating all the periodic orbits of interest 

is given in Appendix A. 

Similarly, attention in this paper is focussed only on those 

KAM surfaces that encircle the torus. Other KAM surfaces bifurcate 

out of periodic orbits, interspersed with the bifurcated periodic 
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orbits discussed above. These, however, provide only limited 

impediment to the diffusion of many orbits, since they do not encircle 

the torus. The KAM surfaces of interest can also be defined as 

those that exist down to k = 0 . The conclusion of this paper is that 

there is a close connection between the KAM surfaces and the 

periodic orbits that exist together down to k = 0 . 

By extension, the KAM surfaces that bifurcate out of a periodic 

orbit are related to the interspersed periodic orbits that successive­

ly bifurcate out of the given orbit. All of the periodic orbits and 

KAM surfaces on a given branch of a bifurcation tree should be con­

sidered together as a system. 

It  is convenient to associate a winding number with the periodic 

orbits and KAM surfaces of interest. In the integrable limit, k = 0 , 

this winding number is q = 1/r . For rational r , r = P/Q with P 

and Q relatively prime, Q is the length of the orbit before it 

closes, and 

Q Q 
P = }" r = T ( e - 6 , ) = 9 r . - 8 (2) 

n=l n n=l n n - 1 Q ° 

th where r and 6 are the coordinates of the n point of the periodic 

orbit. Then, from Eq. (1), P and Q , and thus 

q 5 Q/P (3) 

are well-defined and independent of k , and can be used to identify 

a given periodic orbit. Returning to the picture used in the 
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Introduction where an iteration of the mapping was analogous to a 

traversal of a particle once around a bowl, Q can be regarded as an 

angle, and it is reasonable to call q a winding number. This 

winding number can oe extended to KAM surfaces in the obvious way. 

The nature, behavior, and characteristics of periodic orbits 

and KAM surfaces are not continuous functions of the winding number, 

q . It is observed that, in the neighborhood of a given periodic 

orbit, KAM surfaces and other longer periodic orbits are strongly 

perturbed. In perturbation theory, this effect appears to be a 

problem of small denominators, where the denominator is a me?sure of 

the distance between a perturbing periodic orbit and the region of 

interest. A good way to take account of this phenomena is to express 

13 winding numbers as continued fractions. 

q = a o + (4) 

Va-KTT 

where, since q>l , the an's are positive integers. This will be denoted 

[a 0.a 1.a 2....a N] . (5) 

Note that [a ,a. ,a,} approaches [a ,a.J when a, becomes large. 

Thus, the magnitude of the partial quotients, a , is a measure of 

the degree of isolation of the associated orbit. 

The continued-fraction representation is unique up to an 

ambiguity in the last partial quotient 

[aQ,a1,...,aNl = [a 0,a l f...,a -1,1] (6) 
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as can be seen from the definition. There is also an inversion 

symmetry around the midpoint of the standard mapping, with the 

result that orbits with winding numbers q and q/(q-l) are 

essentially identical. In the continued fraction representation, 

this means that winding numbers [a ,a.,...,a ] and 

[l,a -l,...,a.,] are interchangeable. It is amusing that this is 
O JM 

symmetric with the natural ambiguity of continued fractions. 

It is sometimes u~>eful to place a subscript on q to indicate 

the number of partial quotients in its continued fraction representa­

tion. 

Irrational numbers have unique representations as continued 
13 fractions, with an infinite number of partial quotients. Thus, 

these numbers will be denoted q . Successive truncations of the 

infinite continued fraction yield rational approximations that are 

called the convergents of q . These convergents yield, from 

among the periodic orbit of the given length or shorter, the one 

that most nearly approaches the surface of interest. 

Other parameters can be calculated to further characterize the 

periodic orbits. Orbits in the immediate vicinity of the given 

orbit can be computed in the linear, differential approximation. 

The domain of this approximation is called the tangent space. It 

was well treated in the previous paper, but the results will be 

summarized here. 

The tangent space orbit (Sr ,66 ) at the point (r ,6 ) is 

given in terms of the initial conditions on the orbit (6r ,58 ) 
o o 

at the point ' r

0'
8,J » through a matrix M, 
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f 66 1 n 

- r n 

= M 

69 
o 

fir L o (7) 

This matrix M can be computed as the product of matrices, one for 

each orbit section. Over the full cycle of a periodic orbit, 

Q 

M = n 
i=l 

l-kcos2ire. l' 

- k cos 2K 6 . 1 (8) 

The property of M of greatest interest is its eigenvalues. 

These are the Floquet multipliers for the linear difference equation 

in the periodic tangent space. From the area-preserving property 

of the mapping, 

DetM = 1 (9) 

the eigenvalues of M depend only on its trace. As will be seen, to obtain 

the best analytic properties it is convenient to subtract 2 from 

the trace, and then it is convenient to scale it with a factor of 

-4. This leads to a definition of a quantity to be called the resi-

, 11 due, 

R  «  x<2­TtraceM) 
4 

(10) 

The eigenvalues of M are given in terms of the residue by 
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X  =  1 ­ 2 R ±  2 t R ( R ­ m 1 / 2  •  U.1) 

When 

0  <  R  <  1  ,  (12) 

the eigenvalues are complex with magnitude unity. Under this con­

dition, tangent space orbits, continued over many periods, rotate about 

the origin on ellipses. If we express 

A = exp ii , (13) 

then i is the average angle of rotation per period. It is given in 

terms of the residue, 

R = sin2 i/2 . (14) 

When R< 0 or R>1 , tangent space orbits lie on hyperbolae. 

Then the periodic orbit is said to be unstable since all the tangent 

space orbits march off to infinity, except those lying on the eigen­

vector of M with an eigenvalue less than one. 

In the previous paper a theorem of PoincarS's was invoked to 

show that, for each rational q , there are as many periodic orbits with 

positive residue as there are with negative residue. It follows from 

the results of Appendix B that, for the mapping treated here, there is 

always one orbit of each kind when k is small. These two periodic 

orbits with the same q will be distinguished by ± superscripts. 

For integrable mappings, all except a small, finite number of 

periodic orbits lie on surfaces composed of periodic orbits. Then 

there must be a line of periodic orbits in the tangent space also. 

A necessary condition for this is R = 0 (X = l). Thus, for the present 

mapping, all the residues for the periodic orbits of interest here 

vanish in limit as k goes to zero. 
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The positive residue orbits are stable when k is small, but the 

residues are seen to increase with k and ultimately become larger 

than unity. At that point the corresponding orbits become unstable. 

This change in orbit character, from stable to unstable, as k is in­

creased, is the central concept of this paper that will be related to the 

disappearance of KAM surfaces. 

Appendix B presents a result of Bountis and Helleman,12 that 

the residue can also be written as the determinant of the Qxg 

matrix, 

R = -iDet H 4 (15) 

2 - kcos 2ir 8, 

-1 2 - k cos 2it 

-1 

2 - k cos 2ir 6 
Q 

(16) 

where H is tridiagonal with additional -l's in the corners. 

It is apparent that when k is large, the residue is proportion­

al to k u . To prove this, one would need only to establish that 

periodic orbits do not approach either 9 = 1/4 or 8 = 3/4 , and 

numerically the opposite tendency is observed. 

In Appendix B it is shown that in the limit of small k also, 

the residue is proportional to k . 

In the succeeding sections of this paper, the aim is to make 
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sensible statements relating the residues of neighboring periodic 

orbits of different lengths. Since it appears that the magnitude 

of the residues is dominated by an exponential dependence on orbit 

length, it is natural to introduce a new quantity proportional no the 

Q f c root of R. The new quantity will be called the mean residue, f, 

f £ (|R|/B')1/Q . (17) 

The quantity B could be adjusted for convenience, as is discussed 

in Sec. IV C. From the considerations of Sec. IV E, the value 

6 = 1/4 is preferred far the cases of most interest, and that value 

has been used for all the numerical computations of this paper. 

In the previous paper, a slightly different definition of 

f was used, which was the square of the value used here. For the 

present mapping, it is clear that it is preferable to have f pro­

portional to the perturbation k , rather than its square. In 

retrospect, this argument should have led to the present definition 

of f in the previous paper also. 

A quantity partially related to the mean residue has been 

used by other authors, 

h S i m |*| (18) 

where  \ is the eigenvalue of Eg. (11). When the residue is large, 

and therefore tha eigenvalue  in large, 

X = -4R (19) 
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so that 

h = In f . (20) 

However, in distinction to h , f is a real analytic function of 

k for both large and small values of k, and is thus considerably 

more useful in the same way that the residue is more useful than 

the eigenvalue. 

The quantity f can be evaluated for both positive and negative 

residue orbits. R superscript  ± will be used to indicate the sign 

of the residue of the orbit. 

One further property of the tangent space mapping is useful, 

that of the shapes of the conic section surfaces that are invariant 

when the mapping is extended over a full period. Since this quantity 

depends on more than the trace and determinant of M, we introduce 

the parameterization, 

a + d c +b 

c - b a - d 

The condition on the determinant of M can be written 

(21) 

a 2 + b 2 - c 2 - d 2 = 1 . (22) 

First consider unstable periodic orbits so that the invariant 

surfaces are hyperbolae. It is straightforward to establish that 

the angle  y between the asymptotes of these hyperbolae is given by 
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tan 2  y  ­  *2­X  ­  **­*­» 
b 2 b 2 (231 

Thus, wiien the residue is small, the hyperbolae degenerate into 

straight lines, appropriately for integrable systems. 

Further, it can be shown that in the stable case, where the 

invariant conies are ellipses, the same expression is related to the 

ratio of major, p. , to minor, p , semi-axes, 

4p+p_ , .2 2 2 

- 1 " a^ = 4EU1-R) 

(pJ+pV b 2 b 2 (24) 

Again, small values of R show the approach to the straight lines of 

an integrable system. 
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III. ASSERTIONS 

An outline of the numerical results that have been obtained for 

the standard mapping is given in this section. The results are 

presented as a series of assertions, or hypotheses. The evidence for 

the truth of these assertions will be given in the succeeding 

section. The emphasis here is on their significance, and on the 

relation between them. It will be seen that they are not independent, 

but since they have not been proven, it is undesirable to form a 

logical structure that is too rigid. 

Assertion I 

k l f l 1  +  | k  +  | ( * 2  +  4 k > 1 / 2 

S i '  •  «*"• 

This first assertion applies to each periodic orbit and provides 

some estimates and bounds on the magnitude of f . In fact, for the 

standard mapping, f is close to linear in k . According to the 

third part of this assertion, the periodic orbit with negative 

residue has a slightly larger value of f than the associated orbit 

with positive residue. Note that the upper bound on f is con­

sistent with the bound on the derivative. 

Assertion II: Consider the mean residue, f , to be a function 

of the partial quotients of the cont.inued-fraction representation 

of the winding number q of a given periodic orbit. Then 

f<a o a.,...,aN) > f(b Q ^....,1^) 
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if a.=b.+l for some set of b^s that satisfy ^ = b m a x = max^b^), 

and a =b. otherwise, with the further restriction 
1 i 

a = a.. = 1 o N 

Further, 

lim f (a0,a1,...a.,...,aN) > 1 . 
a . •"» 

This assertion compares orbits whose continued-fraction 

representations have the same number of partial quotients, and 

says that the mean residue is increased if any of the largest partial 

quotients are increased. 

The first comment to be made about this assertion is that it is 

reasonable to consider f to be a function of the partial quotients 

of q rather than a function of q directly. In fact, f is not a 

well organized function of q with continuity properties. Its 

dependence on the partial quotients is more orderly. The general 

thrust of this assertion is that periodic orbits with large 

partial quotients have large values of f, and thus tend more to 

instability. In other words, periodic orbits that are close to 

shorter periodic orbits tend to be more unstable than orbits that 

are further removed. 

Unfortunately, the mean residue is not simply monotonie with 

respect to each partial quotient. Thus, the desired properties must 

be expressed in terms of some weaker statement. The most important 

use of a statement of this kind is the identification of the orbit 
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with the minimum value of f , among all those with a given number of 

partial quotients in the continued-fraction expansion of its winding 

number. This provides a context, for example, for Assertion IV 

below. This Assertion II seems to be the cleanest statement that 

is both true and useful in this respect. 

The symmetries associated with the partial fraction representa­

tion permit the restriction on a and EL, without eliminating any 

significant periodic orbit. Again, unfortunately, this restriction 

is necessary to avoid counterexamples. 

The last part of this assertion, when combined with Assertion 

VI, leads to the conclusion that there is a stochastic region in the 

immediate vicinity of every chain of periodic orbits. Note that 

the bounds of Assertion I are consistent with the present inequality, 

and prevent the limit from diverging. 

Assertion Ills Consider an irrational winding number q , and 

its unique continued-fraction representation. Associated with this, 

consider the series of periodic orbits whose winding numbers are 

given by the successive truncations, or convergents, of this 

continued fraction, and calculate the mean residue for each. Then 

ff(qj = limf(q ) 

converges nontrivially, where 

q N ~ ^ o ' ^ " " ' 3 ^ ' 
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Further, 

f + (qj = f" (qj • 

This assertion continues the definition of f <q) to irrational 

values of the argument. According to the theory of continued 

fractions, the orbits that have been used in each approximation 

have the minimum separation from the chosen irrational orbit 

among all orbits of a given length. This has a clear meaning, at 

least, when there is a KAM surface with the chosen irrational q . 

Thus, the irrational is approached through a consistent sequence of 

rationals. 

The statement that the convergence of f is nontrivial means 

f(q ,k) is not identically unity. In that case, the interesting 

behavior associated with irrational winding numbers would be 

exhibited by some other function of the residue. 

The second part of this assertion states that the same value 

of f is achieved if the limit is taken using either the positive 

or negative residue orbits. While according to Assertion I, the 

negative residue orbit yields the larger value of f for each 

finite approximation, the difference disappears in the limit. The 

significance is that near the irrational surface, associated 

positive and negative residue orbits will have the same character. 

See also the comments under Assertion VI. 

Assertion IV: Define 

q* = 11,1,1,...] = |(l + /5) . 
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Then 

f(q  )  < f(q ) for all q  f  q*  . 

* 
The irrational number q^ has been known for millenia as the 

gulden mean. It has many interesting properties that are discussed 

in Niven, and also by Gardner. It is the number that is least 

easily approximable by rationals. It is thus the point at which 

the problems of small denominators are minimal, and the surface for 

which the conditions for the KAM theory are most easily satisfied. 

Assertion IV follows if Assertion II is true for all 

sets of orbits with a finite number of partial quotients. Together 

with Assertion VI, it yields Assertion VII for the boundary of 

connected stochasticity for this mapping. 

The details of this assertion are true only for the standard 

mapping considered in this paper. It should be borne in mind that 

the partial quotients determine the position of the orbit with 

respect to inhomogeneities over the full domain of the mapping, as 

well as its relation to nearby shorter periodic orbits. The former 

variations will always have a weak dependence on the partial quotients 

a. with large i . Thus, this assertion should be relevant, for 

general mappings, for all except the first few partial quotients. 

See also the comments on the next assertion. 
t 

Assertion V: Consider an irrational winding number q^ whose 

partial fraction representation has the property 

a. = 1 for all i  > N . 
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Choose that value of k = k such that the converged mean residue 

satisfies 

t t f(q ,kT) = 1 . 

Then the associated residue converges with the limit, 

R(q +,k +) = 0.25 . 

This assertion can be approached in the following manner. 

Consider an asymptotic representation of the residues and mean 

residues for the sequence of convergents of a particular q^ , in the 

limit of a large number of partial quotients. The length Q of 

the associated periodic orbits can be taken to be the large parameter 

of the expansion. According to Assertion III, this asymptotic 

expansion for the residues can be written 

R - Y(Q.q„,k) fQ(q<jo,k) [1+ ...] , (25) 

where  y need only satisfy 

1/Q 
Y / w k. 1 

Then Assertion V can be restated 

Y<ql.k+) = 0.25 (26) 



-24-

The irrational numbers q^ are closely related to the golden 

mean that appeared in the previous assertion. They are an obvious 

generalization when attention is fixed on a subregion of a given 

mapping. It is remarkable that this assertion appears to be true 

for all such numbers, even though there are counterexamples to its 

generali-ation to the full set of irrational numbers. Since the 

surfaces corresponding to the winding numbers q^ have a considerable 

variation in their immediate environment, there is some hope that 

this assertion could be generalized to other mappings. 

Picking up a loose end, the rather arbitrary value B = 1/4 

that appears in the definition of f , £q. (17), has little or no 

influence on the assertions of this section. Only in Assertions I 

and II will this number enter, and then, rather weakly. 

The significance of this Assertion V is in determining a best 

value for B • A value of 1/4 yields the most rapid convergence, in 

the sense of Assertion III, for those interesting winding numbers 

q^ in the vicinity of the critical limit, k=k , since the asymptotic 

expansion for the mean residue, from Eqs. (17) and (25), is 

f = (7/e>1/Qf(q00)[l+-..I , (27) 

and the leading term is independent of Q only when B = y  . 

It is interesting that in the preceding paper, similar 
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considerations, if less coherently presented and less accurately 

evaluated, led also to the conclusion that 3 should be given the 

value of 1/4 for the most rapid convergence. It is very tempting 

to speculate that, for some hidden reason, B = 1/4 is universally 

the desired value to best determine the KAM surfaces of most 

interest. The common factor between the corresponding orbits is 

n«->t at -II clear. 

Assertion VI: The KAM surface with a given winding number 

a exists if and only if 

f(qj < i • 

This is perhaps the most striking of the various assertions 

of this section. An intuitive feeling for this assertion can be 

gleaned from a consideration of the definition of f , Eq. (17). 

When f(qro) is slightly smaller than unity, Assertion III yields the 

conclusion -hat che necessarily long, nearby periodic orbits 

corresponding to the convergents of  qm will all have a small 

residue, |R| << 1 . On the other hand, when f(q^l is slightly 

larger than unity, these residues will be large, |R| >> 1 . Thus, 

at the critical value of k , Rfq^.k) will have an infinite dis­

continuity. It should not be surprising that this discontinuity is 

associated with other remarkable phenomena. Note that, from 

Assertion III, this discontinuity occurs simultaneously for 

positive and negative residue orbits. 

Assertion VII: Connected stochasticity occurs for 

* 
k > k 

c 
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where 

f<q!,'k

c) =
  1  • k

c = 0.971635... 

From Assertion IV, 

f(q.,k*) > 1 « for all qro  ? q* , 

and thus, from Assertion VI, no other KAM surfaces exist that 

encircle the torus horizontally in the usual pictorialization. 

Therefore, for k > k , there are no impediments to orbits 

encircling the torus vertically. Evidence will be presented that 

this latter type of orbit does exist, then, at least for k's 

that are slightly above the critical value. That is, it is shown 

that there is at most a very small range of the parameter k for 

which there is neither a vertically encircling stochastic type 

orbit, nor a horizontally encircling KAM orbit. This is sort of 

reasonable in the following sense. If there are no vertically 

encircling orbits, then each orbit must have some upper and 

lower bound, 

rL(6) < j^  <  r^ (8) . 

These bounds can be intuitively identified with KAM surfaces. 
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IV. EVIDENCE 

A. Assertion I 

The upper limit on f has been obtained by considering the 

Jacobian matrix M of Eq. (8). For any given length orbit, the 

trace of this matrix must always be less in absolute magnitude than 

ttiS tcace of the matrix obtained from an orbit restricted to 

9 = 1/2 , i.e., 

TraceM < Trace 
1 + k 1 N Q 

= A Q + * Q (28* 

The inequality follows from the fact that the product of matrices 

on the right then involves the sum of positive terms, each of which 

has been maximized over conceivable orbits. The trace on the right 

has been evaluated by diagonalization, and thus represented in 

terms of the largest eigenvalue of each factor, 

K = 1 + |k + |(k 2 + 4 k ) 1 / 2 . (29) 

When this estimate is used with the definition of f , an 

upper bound is obtained that decreases with orbit length. Since the 

general trend of Assertions II and III is that f does not decrease 

with the orbit length, the leap has been made to minimize this 

bound over Q, with the result given in Assertion I. 

A few periodic orbits are independent of k . Thus, they are 

easily found. For q = l , the positive residue orbit is 
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r = 0 , 8 = 0 (30) 

and the negative residue orbit is 

r = 0 , 9 = | . (31) 

The corresponding mean residues are easily evaluated yielding 

f"(l,k) = k . (32) 

Simi la r ly ,  the  p o s i t i v e  res idue  o r b i t  for  q = 2  i s 

r  =  | ,  6  =  0 ;  r  =  | ,  B =  j  (33) 

and the corresponding mean residue is 

f +(2 rk) = k (34) 

These orbits thus tust the lower bound on f and its derivative. 

The expansion for small k given in Appendix B can yield as 

many asymptotic values of f as one cares to evaluate. In this 

limit, the positive arid negative residue orbits yield the same 

mean residues. A few such values are 
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f(3) = (9/8) 1 / 3k 

f(4) = (5/3) 1 / 4k 

f(5) = 1(1675 + 375/5)/768] 1 / 5k 

f(5/2) = [(1675 - 375/5)/768] 1 / 5k (35) 

Finally, in Table I, a few values of the mean residue are 

given for orbits with the winding number q = 3 . 

Altogether, the results of this subsection should provide some 

feeling for the typical behavior of f as a function of k . The 

most noteworthy result is that the positive residue increases 

monotonically as a function of k . It passes through unity, and 

thus the orbit becomes unstable without hesitation or indication 

of nonanalyticity in these parameters. 

B. Assertion II 

In Table II, a series of values of mean residue is presented 

for a number of orbits whose winding number q has five partial 

quotients. It is seen that minimizing the partial quotients yields 

the minimum mean residue. On the other hand, the fifth in the 

list is smaller than the second. This shows the difficulty of making 

useful true statements, without invalidating Assertion II. 

The limit of a given partial quotient tending to infinity that is 

considered in the second part of this assertion is quite interesting. 

The binding number in this limit approaches the continued fraction 

that is truncated at the term i-1 , as is clear from the continued 

fraction representation. Experimentally, the corresponding limiting 
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orbits are closely associated with the negative residue orbit with 

the truncated winding number. This latter orbit will be referred 

to as the truncated orbit. It is observed that the limiting orbit 

1 7 

approaches the homoclinic points of the truncated orbit where 

each set of homoclinic points is defined as an orbit of infinite 

length that asymptotically, at either end of its trajectory, approaches 
5 

points of the truncated orbit. Thuu, orbits that are close to the 

truncated orbit at several points will also be close to corresponding 

homoclinic points. 

Now consider a set of limiting orbits with increasing partial 

quotients, as in the second part of Assertion II. These have an 

increasingly long residence near the truncated orbit with short 

bridges from one orbit section to the next. The beginning of this 

process can be seen in Fig. 3 of Ref. 11. The contributions to the 

Jacobian matrix M from orbit sections neighboring the truncated 

orbit can be calculated as powers of the Jacobian matrix associated 

with the truncated orbit, and the contribution from the bridges is 

independent of a. , when a. is large. As a result, 

Q/Qt -Q/Q t 

R(q = Q/P) = (*t + Afc )o (36) 

and 

lim £(aj = (A.) t (37) 
a ±+-

 n t 

whera A. is the largest eigenvalue of the truncated orbit, Q t 

is the length of that orbit, and c is a constant, for large a.̂  , 
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associated with the bridges. Since the eigenvalue Xfc is always 

larger than one, the limiting f is also larger than one. 

C. Assertion III 

Table III presents data relating to the convergence of the 

mean residue f for a sequence of convergents to the golden mean. 

These have been chosen because the golden mean is the winding number 

of the greatest interest. The value of k given here is the best 

approximation to the critical k that has been evaluated. Attention 

for the moment should be focussed on the mean residue f , to the 

exclusion of R. It has been evaluated for both positive and 

negative residue points. 

For the positive residue orbits, the convergence is oscillatory 
_2 

and the differences decrease approximately as Q . Since Q 

increases exponentially from convergent to convergent as powers of 

the golden mean, the convergence of f is quite rapid and 

convincing. 

The negative residue orbit exhibits convergence from above, 

and the differences decrease more slowly and they are more nearly 

proportional to Q~ . The problem is that the value of 6 in the 

definition of f has been chosen to maximize the convergence of the 

positive residue orbit. For this set of orbits, the quantity  y of 

fig. (25) is slightly larger than 0.25, as can be seen from Table III. 

A slightly larger value of B would provide faster convergence, without 

affecting the converged value, f - ^ ) . Note also that, to within the 

limits of accuracy of the calculation, the converged f's for the posi­

tive and negative residue orbits are identical. 
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As a further example, in Table IV the golden mean is again 

considered, but for a somewhat smaller value of k . Again monotonic 

convergence with differences proportional to Q is observed. It 

thus appears that the optimizing  & should be a function of k as 

well as of the orbit. 

Part of the reason for the excellent convergence of these cases 

lies in the regularity of the succeeding partial quotients. Orbits 

with random partial quotients are probably less interesting in light 

of Assertion II, and they are more difficult to calculate. The 

problem is that orbits become long very fast, there is a limited 

window 

1 0 ~ 1 0 < |R| < 10 9 

within which residues can be calculated accurately because of 

roundoff, and the residue depends exponentially on orbit length. 

There are a couple of possibilities for generalizing the 

results that have been given here. Perhaps the convergence of 

f(q^) could be combined with the approximate monotonicity of f 

with partial quotients discussed in Assertion II, and the upper 

bound established in Assertion I, to establish convergence in more 

general cases. Also, it might be possible to use the calculation 

of Appendix II to establish convergence in the limit of small k . 

To conclude, the evidence for convergence seems quite strong 

for the interesting cases associated with the golden mean. It is 

at least credible that there should be convergence in a large 

generalization of this class. 



-33-

D Assertion IV 

No independent work has been done for this assertion. All the 

evidence assembled for Assertion II indicated that golden mean 

convergents yielded the smallest f , among all orbits whose winding 

number had a partial fraction representation with a given number of 

partial quotients. While this assertion follows from Assertion II, 

it is logically independent of the efforts to generalize it beyond 

the golden mean convergents. It has thus been given a separate 

number. 

E Assertion V 

Some evidence for this assertion has been given in Table III. 

The fact that the positive residue converges to 1/4, accurate to at 

least four decimal places, is sufficiently remarkable to invite 

speculation that an integer is involved. 

This inspired the calculation presented in Table V. Here an 

irrational winding number has been chosen whose first few partial 

quotients are arbitrary, but all of whose succeeding partial quotients 

are unity, q= [3,1,4,1,...]= (143 + /5)/38 . Again, k has been 

carefully selected to be close to the critical value for this 

winding number. The associated residue here is also approaching 

1/4 to a remarkable degree of accuracy. 

F Assertion VI 

The evidence for this assertion is given in Figs. 2,3, and 4. 
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In each of these figures, portions of periodic orbits have been 

plotted, with x's denoting negative residue orbits and o's 

denoting positive residue orbits. In every case, the orbits 

chosen are golden mean co^ivergents. 

For Fig. 2, the value k=0.95 has been chosen, and the cor­

responding mean residue has been evaluated, 

f(q*,0.95) = 0.977 

so that the golden mean KAM surface is expected to exist. In 

Fig. 2a the orbits shown have winding numbers q = 55/34 and 

89/55 respectively. These two numbers are slightly larger and 

smaller respectively, than the golden mean, and thus, the two 

orbits should enclose the golden mean KAM surface. This statement 

is true of the succeeding pairs of orbits also. 

The next two golden mean convergents are shown in Fig. 2b. 

Each successive golden mean convergent orbit has approximately 

s|i times as many points as the preceeding, where the golden mean 

is denoted by <j> for brevity. Thus, the horizontal scale has been 
2 

expanded by approximately  $ between Figs. 2a and 2b, and also 

between succeeding frames. This accounts for the fact that each 

figure exhibits about the same number of points. 

When examining the bottom of a parabola with increasing 

magnification, the vertical scale should be expanded as the square 

of the expansion of the horizontal scale to preserve the aspect. 

Thus, for each succeeding frame in this figure, the vertical scale 
4 

has been expanded by <f> . 
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This figure then, is entirely consistent with the picture that 

these successive convergent orbits are closing down on a KAM 

surface thau is represented very well by the first few terms of 

its Taylor expansion. 

Expressions for the mapping in the tangent space of these 

periodic orbits are given in Eqs. (23] and (24). Since R is very small 

-20 and of the order 10 for the orbits of Fig. 2f, the invariant 

ellipses associated with the positive residue orbit are extraordinarily 

long and thin, with an aspect ratio of the order 10 . Also, there 

is an extraordinarily small angle between asymptotes of the 

hyperbolae associated with the negative residue orbits. Even on the 

expanded scales used here, these figures are not resolvable from 

straight lines. Further, from Eq. (14), of the order of 10 

iterations are required to traverse these ellipses. Thus, about 

the same number of iterations would be required to distinguish the 

mapping in the portion of phase space delimited by Fig. 2f from the 

shear mapping of an integrable system. 

Turn now to Fig. 3, which is very similar to Fig. 2, except that 

here k= 0.971635 , which is the critical k to the accuracy of this 

figure. Remarkably unlike the previous picture, here a new 

structure appears with each successive magnification. From 

Table III, it can be seen that each of these orbits has very nearly 

the same residue, R. Thus, from Eqs. (23) and (24) , the 

shape of the tangent space conic sections varies only with the 

parameter b . Evaluating this, it was found that these shapes 

would be similar from frame to frame, if the mean vertical magnifi­

cation were 6.01/frame when averaged over a three-frame period. 
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This was used here, rather than the magnification of <j> = 6.85/frame 

used in the previous figure. It is seen that similarity is indeed 

achieved by this scaling. It seems natural to associate the 

structure on successive scales with a necessity to accommodate the 

invariant ellipses surrounding each stable orbit. 

As further evidence in this direction, note that the threefold 

period in the structure is accompanied by a threefold period in 

the positions of the x and o points, relative to the center of 

each frame. 

After carefully observing that Figs. 3c and 3f each exhibit 

two w shaped curves, one lying above the other, the picture emerges 

that the oonvergents for this value of k are squeezing down on 

some nonanalytic curve that has a structure on every scale. 

Finally, in preparation for the next figure, note that, while 

there is similarity, the configurations in Figs. 3d, 3e, and 3f 

are somewhat shrunken compared with Figs. 3a, 3b, and 3c respectively , 

indicating that there is a mild tendency toward the clusterinq of orbits. 

Now consider Fig. 4 for which k has been increased to 0.99. 

In each of these frames, the vertical exaggeration has been fixed 

at 50 . This scaling yields a similarity of the tangent space 

configurations for this value of k , and indeed, there is a 

tendency for similarity of the wedges that appear here. 

Aside from that, there is such a strong tendency toward the 

clustering of orbits, i.e., some of the black marks on Figs. 4c 

and 4d represent 3 or 4 points,, that these orbits do not seem to be 

squeezing down on any kind of curve, even a highly singular one. 

Something strange is going on at this value of k . 
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To conclude then, the value of the mean residue, f , determines 

the value of the residue, R. This, in turn, has a strong influence 

on the shape of the tangent space figures through Ecs. (23) and (24). 

The latter fit smoothly against KAM surfaces when k is below the 

critical value and rumple it nonanalytically at the critical value. 

Beyond the critical value there is no indication for the existence 

of KAM surfaces or any other organizing principle. 

G Assertion VII 

In the previous section, evidence was presented that KAM 

surfaces existed for values of k up to the critical value. Here 

we concentrate on showing that stochastic orbits vertically encircling 

the torus exist for values of k slightly exceeding the critical value. 

It is clear that horizontally encircling KAM orbits, and vertically 

encircling stochastic orbits cannot co-exist. It is not so clear 

that there is no range of k for which neither type of orbit exists. 

Nevertheless, it appears that this statement is true. 

Five crbits are shown in Fig.  5 where k has been chosen to be 

0.975. Four of these are periodic, the positive and negative 

residue points with winding number 144/89 and 233/144 

respectively. These are the last golden mean convergents for which 

there are stable orbits. Golden, mean convergent orbits with 

length 377 or greater have residues greater than unity, and 

are therefore unstable. 

A Stochastic orbit is also shown on that figure. The initial 

condition for this orbit was near one of the x points on the 

figure. The interesting point is that it wanders back and forth 
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across the region between the periodic orbits, the region where 

the KAM surface might exist. There is not the slightest indication 

of an invariant surface in this vicinity that divides phase space. 

It was not possible to carry this orbit to the length required 

for it to encircle the torus vertically. It wandered slowly upward 

out of the picture, and beyond, but the diffusion of other orbits 

back into this region is really extraordinarily slow. Similar 

18 
behavior has been found by Karney in an inhomogeneous random 

walk problem, showing that it is consistent with a Markovian process. 

The details of the stochastic orbit diffusion are governed by a 

numerical roundoff. One can rapidly lose thousands of digits of formaL 

accuracy in such calculations. To show that the effects of Fig. 5 

are not strictly roundoff, we present Fig. 6. 

For this figure, k is 0.97 . From the criteria of Assertion 

VI, KAM surfaces exist on both sides of the stochastic orbit shown. 

The length of the orbit shown in this figure is a few hundred 

thousand. In another calculation, this orbit was taken to a length 

of 5-107 , and it was entirely contained within the stochastic orbit region 

exhibited here, in spite of the fact that crude estimates show 

that the calculation suffered from truly fantastic numerical error. 

How can this be? A more careful consideration of the numerical 

error is called for. A detailed calculation of this is given in 

Appendix C. It turns out that, at a given point, the errors from 

all the preceding parts of the orbit are, to great accuracy, spread 

out in only one direction. When this direction is calculated, it is 

found to be parallel to the apparent edge of the stochastic orbit 

in Fig. 6. Thus, numerical error can only lead to diffusion parallel 
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to KAM surfaces, not across them. 

As for numerical error in diffusing orbits, othe'. calculations, 

11 19 similar in spirit, ' have shown that there is almost always one 

exact orbit in the vicinity of any orbit determined numerically with 

a roundoff error that is small for each iteration. 

These considerations lead to the conclusion that roundoff 

does not affect the essential features to be learned from Figs. 5 

and 6. 
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V. DISCUSSION 

This paper has explored the concept that there is a close 

relation between the existence of KAM surfaces and the stability 

of nearby periodic orbits. The relationship has been found to be 

very close when the problem is put in the proper perspective. In 

this section we first review that perspective. 

Since not all orbits can be calculated and evaluated for sta­

bility, a credible method must be found for estimating this trait 

by extrapolation. Eigenvalues evaluated in the tangent space of 

the periodic orbit, as in Eqs. (10), (11) and (15), quantitatively 

characterize the stability of the orbit. These eigenvalues are 

unsuited for extrapolation, however, because they are not analytic 

functions of the parameters of the system. They have branch points 

where they turn from real to complex as in Eq. (11). 

Information equivalent to these eigenvalues is contained in 

the residue, R , defined in Eqs. (10) or (15). This residue is 

a real continuous function of the parameters of the system. It 

is, thus, in this respect quite suitable for interpolation and 

extrapolation. 

As a vehicle for extrapolation, the residue suffers from 

another problem. Orbits near a KAM surface have varying lengths 

and are longer, the closer the orbit is to the surface. It has 

11 20 21 
been noted by several authors in the past ' ' that the residue 

has an exponential dependence on orbit length. The methods of 

Appendix B of this paper allow this result to be established firmly 
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for large and small k. As a result, nearby orbits may have vastly 

different residues. This exponential dependence on orbit length 

can be supressed by defining the mean residue in Eq. (17). 

Even this mean residue, or residue per unit length, is not a 

continuous function of relative location of the periodic orbit. 

More precisely, it does not depend continuously on the winding 

number q defined in Eq. (3). The problem is that periodic orbits 

perturb nearby longer periodic orbits. An orbit of given length is 

more likely to be unstable if it is close to a shorter periodic 

orbit and more likely to be stable if it is relatively isolated. 

Since every rational number has its zone of perturbation, the 

dependence of f on the winding number q is verv peculiar as seen 

for example in Rsfs. 11 or 21. 

One way to deal with this problem is to express the winding 

number as a continued fraction as was done in Eq. (4). The magni -

tudes of the partial quotients of the continued fraction provide 

an estimate of all the perturbations on the given orbit. It is not 

yet possible to estimate the mean residue, f , quantitatively as a 

function of these partial quotients, but they do yield a very useful 

qualitative understanding. This understanding can be used to esti­

mate the stability of orbits by extrapolation of known results for 

nearby orbits. 

In order to relate the existence of a KAM surface to the sta­

bility of nearby periodic orbits, it is desirable to make a careful 

choice of this set of orbits. It should be a sequence of successively 

longer orbits that asymptotically, in some sense, approach the postu­

lated KAM surface. Further, each member should be as close to the 
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desired surface as feasible and as far from the perturbing effects 

of other, shorter orbits. A choice that meets these criteria is 

the set whose winding numbers are the convergents to the KAM winding 

number. These were defined in Sec. II. 

These considerations determined the calculations made in this 

paper. 

The results of a large number of these numerical calculations 

has been distilled into a series of assertions in Sec. III. 

According to Assertion III, the seguence of mean residues 

for the convergents of a KAM surface converges to a limit. For 

the sequences calculated in Sec. IVC, adding a partial quotient had 

a smaller effect when the continued fraction representation of the 

winding number had many partial quotients. 

When the limiting mean residue is less than one, beyond some 

orbit length all the residues will be less than one according to 

Eq. (17). In fact, the residues rapidly approach zero in the limit. 

Therefore, the positive reside orbits are stable. On the other hand, 

when the limiting mean residue is greater than one, the converse is. true 

In this case both the positive and negative residue orbits of the 

chosen set are unstable for orbits longer than some length. 

Figures 2,3, and 4 show graphically that there is a close 

relation between KAM surfaces and the stability of nearby period.  : 

orbits. Repeating the discussion from Sec. IVF, the environment of 

an irrational winding number is entirely different depending on 

whether the nearby periodic orbits are stable or unstable. This is 

particularly true because, according to Eq. (17) , the stability of 

these orbits is extreme whether stable or unstable. It is thus 
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reasonable that the value of the converged mean residue 

for an irrational winding number determines the existence of the 

corresponding KAM surface. This idea has been discussed in Pef. 21. 

Convergence of the mean residue can be optimized by judicious 

choice of B in Eq. (17). It appears that B = 1/4 is the preferred 

value for all cases that have been considered to date. The under­

lying reason is given in Assertion V. This choice of (2 yields 

remarkably good results. For example, consider the crudest approxi­

mation to the converged mean residue for the golden mean surface 

discussed in Sec. III. The leading convergents to this surface are 

the periodic orbits with q of one and two. The mean residue was 

evaluated analytically for these orbits in Sec. IVA and is equal to 

k in either case. Thus, the leading estimate for the converged mean 

residue of the golden mean surface is 

£(qj = k . 

This estimate yields a critical k of unity, only a few percent dif­

ferent, fron the more exact value of Assertion VII! So, the method 

described in this paper seems well suited for giving rough estimates 

for stochastic behavior 

The accuracy of this estimate depends critically on choosing 

an optimum value of B in Eq. (17). That is, it depends on 

Assertion V, that near the critical k many orbits have residues 

near 1/4 . It is interesting to examine this criterion geometrically. 

From Eq. (14), the corresponding value of i for these orbits is 

60° . When a periodic orbit bifurcates out an orbit with period six 

times longer than itself, some nearby related KAM surface is on the 
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edge of disappearance. This relationship has been noted by 

22 

Lichtenberg also. 

Sufficient numerical work has been done on this problem to 

identify reasonable hypotheses, but considerable effort is now 

needed to provide proofs. Probably the most crucial of these is 

Assertion III, concerning the convergence of the mean k residue 

for irrational winding numbers. It might be possible to use the 

methods of Append-.x B to establish this hypothesis for small k 

as a first step. Such a proof would show that the mean residue 

is indeed a fruitful concept. 
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APPENDIX A: Calculation of Periodic Orbits 

It is possible to use the symmetry of the mapping to reduce 

the problem of finding a given periodic orbit to one of finding the 

root of a function of one variable. This reduction from a two-

dimensional problem to a one-dimensional problem vastly increases the 

speed and accuracy with which these orbits can be determined. This 

23 method has been described thoroughly by deVogeleare but is included 

here for completeness. 

The nature of the symmetry can be stated succinctly: the 

mapping is the product of two involutions. In other words, if the 

standard mapping is denoted by T , then 

T = I ^ (Al) 

where I. is given by 

9 n = - V l ' 

rn  =  r n ­ l ­ 5 7 s i n 2 7 r 9 n ­ l  '  ( A 2 ) 

and I, by 

3n +l = - 0

n

 + rn ' 

rn +l =
 rn ' <A3> 
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It is straightforward to show that 

1^ = 1 ,  12

2 = 1 , (A4) 

so that these transformations are involutions. 

Each of these involutions has lines of fixed points. Namely, 

I1(r,e) = (r,9) 

is satisfied hy 8 = 0 or 9 = 1/2 for any r , and 

I2(r,8) = (r,6) 

is satisfied by 8 =  hr or 9= Mr+l) 

It is now easy to show that if the initial value of an orbit 

is a fixed point of I.. , 

and the N iterate is also a fixed point of I. , 

H ^ o ' ^  '^^o'6o)  ' ( A 6 ) 

then  the  full  orbi t  i s  periodic  with  length  2N .  Consider  with 

the  aid  of  Eqs.  (Al),  (A5)  and  (A6) , 

T 2 N < V B O )  ­  ^ , ­ l l a l 1 ^ " 1 i a i 1 ( r 0 , B 0 )  =  ^ l ^ 1 * ­ 1  V W 

{hi) 
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From Egs. (Al) and (A4), 

I 2 T = I x , T I X = I 2 (A8> 

which, used alternately in Eq. (A7) yields 

T 2 N(r 0,e o) = < v e o ) (A9) 

as stated. 

Thus, the problem of finding periodic orbits has been reduced 

to that of finding the root of any function that vanishes on the 

fixed lines of I, , and with the independent variable taken to be 

the one parameter family of fixed points of I, . For example, 

fixed points can be found from the solutions of 

sin 2-rr 9„(r ) = 0 
N O 

with 8 Q = 0 . 

The procedure can be readily generalized to include the fixed 

points of I_ as either the initial or the final point of the com­

puted orbit. All the periodic orbits that exist down to k = 0 can 

be determined this way. 
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APPENDIX B: Expansion for Small k. 

In this Appendix an algorithm is derived for calculating the 

residue, R, in the limit of small k . It is shown that R is 

proportional to k , where Q is the length of the periodic orbit. 

In the first few paragraphs, the relation between the two forms for 

calculating R, Eqs. (10) and (15), is derived, since the less 

12 familiar Bountis and Helleman form is used in the argument of 

this Appendix. 

The equations governing the orbits in the tangent space are 

found by differencing Eq. (1) and evaluating the coefficients on 

the periodic orbit considered, yielding 

6r ,, = 5r - k cos 2TT e„ 68 n+1 n n n 

5 9 n + l =
 6 8 n + 6 r n + l ' ( B 1 ) 

O.L. 

where 6 is the coordinate of the n point on the periodic 

orbit. A set of equations for the 2Q variables (se^Sr^, ••-, 

58Q,6r ) is closed through the Ploquet condition, 

6 rn+Q = X 6 r n 

6 8 n + Q = X6e n . (B2) 

Then (6ro,68 ) is an eigenvector of M of Eqs. (7) and (8), with 

eigenvalue A . 
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These equations can be written in matrix form 

­X 

­ 1 

­k  cos  2TI  6  1 

1  0 

­ 1  0 

0  ­1 

0  0  ­ k c o s 2 t r 9 2  1 0  ­ 1 

-k cos 2-n S 1 

69, 

«r, 

69, 

<5r. 

60, 

or, 
Q) 

J'Sx = 0 

(B3) 

The condition that the determinant of  g vanishes yields an 

equation for A . 

Adding each even numbered row to the row above yields 

M L -1 0 0 

Det J e Det 

M, -1 0 

­\ 0 

where  each  e l e m e n t  i s  now  a  2  x 2  m a t r i x ,  and 

<B4> 

I 

f l ­ k c o s  2ir  9.  1 

k c o s  2ir  9 i  1  (B5) 
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Multiplying the first row by M. , and adding the second row, 

and continuing on to eliminate all but the diagonal term in the 

first row, we find 

Det J = Det( II M. - Al) 
i=l x 

(B6) 

where Det M. = 1 has been used. This is the usual equation for the 

eigenvalue X . 

Alternatively, the fourth element in the first rowof Eq. (B3) can be 

used to eliminate every other element in its row and column. The 

other I's down that diagonal are treated similarly, as is the X 

in the second column next to last row. These elements can then 

12 be factored out of the determinant, leaving 

DetH(X) = 0 

where 

(2 -k cos 2ir 6, 

-1 

H(X) = 

(B7) 

-1 1 

2 - k cos 2n 9 2 -1 

-X -1 2 - k cos 2TT 

(B8) 

is a tridiagonal matrix with additional elements in the corners. 

Considering the cofactor of the element, X , yields the result 

DetH(X) = DetH(l) - X-X~ 1 + 2 (B9) 
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Since the residue R is related to the eigenvalue X , we obtain 

directly 

R = -jDetH(l) (BIO) 

In some respects, a determinant is easier to calculate than the 

trace of a product. 

The relation between these two forms for calculating R is 

analogous to the relation between Hill's method and the shooting 

method for calculating the Floquet parameter for the Mathieu 

equation. 

We now proceed to evaluate DetH(l) . The argument X = l will 

be understood for the rest of this section, and thus dropped from 

the notation. At k «= 0 , 

H(k=0) = 

f 2 -1 0 

1 2 - 1 

0 - 1 2 

-1 

-1 2 (Bll) 

It can be seen immediately that the eigenvalues of this matrix 

T\.  = 2(1- cos 2ir j/Q) = 4 sin n j/Q 

with eigenvectors, 

(B12) 

a R | j  =  cos  2itn  j / Q  (B13) 



-52-

The lowest eigenvalue vanishes, so 

Det H(k= 0) = 0 . (B14) 

The product of the others can be evaluated with the result 

Q-l , 
n n. = Q . (B15) 

j = l  3 

It follows from DetH = n.T1. that the lowest order nonvanishing 

2 

approximation to Det H is Q  r\  , where n is the lowest order non-

vanishing approximation to the lowest eigenvalue of the symmetric 

matrix H . 
Since H depends on the orbits, it is necessary to evaluate 

srbits to some degree of accuracy 

result that the requisite order is k 

The coordina' 

Eg- (1), yielding 

the orbits to some degree of accuracy. It will be shown by the 

The coordinate r can be eliminated from the standard mapping, 

- 9 ^ T + 2 6 „ ~ 9„ i = £sin2it 8 . (B16) 
n+l n n-l 2tr n 

This has been written in recursion form. That is, if the periodic 

orbit is known to some degree of precision, and that estimate is 

used to evaluate the right-hand side of Eq. (B16), inverting the 

operator on the left yields an estimate improved by one order in 

k. The inversion is done with the periodicity condition 

9n+Q = 9 n 
(B17) 
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We already know something about this operator, since it is 

H(k=0). For one thing it is singular, and each element of the 

eigenvector of the vanishing eigenvalue is unity. Multiplying 

by this eigenvector yields the solvability condition 

Q 
I sin 2ir 8 = 0 . (B18) 

n=l n 

A formal solution of these equations can be written in the 

form 

- Q a (r ( 0 ))k* + 2 j 

2, 9 =2,e'°l +  I  I  ­M s i n 2 l l J l g < ° > 
j=0 1=1 2(l-cos 2TT % r l o J) n 

(B19) 

where 

r ( o ) = P/Q , 

e(o) = e ( o , + r(o)  t ( f i 2 0 ) 

P and Q are relatively prime, 6 will be determined later, 

and the a*, coefficients are evaluated as follows. Inserting this 

form into the right- and left-hand sides of Eq. (B16) yields 

»  Q 

I  I  a  .  k f t + 2 : l  s i n  2TT I  8 ^ o )  =  k  s i n  2TT 8 
j=0  «,=!  *J  n  n 

=  k  s i n 

^ + 2 j 

B n  T  . L  l  '—  TTTT1 

3=0  ( t = 1 2 ( l ­ c o s  2ir  J,  r l ° ' )  n 

2 l r 6 < o )

+ I  jj  ' ' J * '  "  .  ,  s i n 2 , f c e

( ° > 
I 

(B21) 
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The sine on the right can be expanded since the second term of 

its argument is small in powers of k. The factors of resulting 

products are combined to yield Fourier coefficients of sin 2ir X. 6  °' 

as powers of k . These determine the coefficients a„ . on the 

left-hand side, order by order in k. Thus, the formal solution 

is consistent. 

Since from Eq. (B20), the 8 * are equally spaced in the 

interval (0,1), the solvability condition is satisfied trivially 

for  I  ? Q and thus, up to the order of k Q . At the order k Q , the 

value of 9 * must be chosen so that sin 2TT Q 6^°' = 0 . There are 

two such solutions, with cos 2IT Q 9^°' = ±1 . With this solvability 

condition, the problem of a vanishing denominator, 1 - cos 2TT 8, r , 

disappears. Further, it can be used to eliminate terms with  I  > Q 

in favor of terms with il < Q . 

Since the relation between the e and r l o ) is identical to 
n 

the integral mapping for k = 0 , and also from the fact that the 

..solvability condition is satisfied in the lower orders by every 

ioint on the surface r = const ., it is apparent that the formal 

tiolution above is equivalent to the transformation from an integrable 

mapping to one that is integrable to all orders. This is useful 

below so it will be pursued further here. 

Consider the transformation 

r =r(r
( o )

,9<°>) , 

, s i s f B 2 2 ) 

9 = 8 ( r ( 0 ) , 9 ( o ) ) . 



­ 5 5 ­

I f  t h e s e  f u n c t i o n s  s a t i s f y 

r ( r ( o ) , 8 < o ) )  =  0 ( r ( o ) , 8 ( o ) )  ­ 8 ( r ( o ) , e ( o )  ­ r < a ) ) 

­  e ( r ( o ) , 9 ( o )  +  r ( o ) )  +  2 9 ( r < o ) , 9 ( o ) >  ­ 9 < r ( 0 ) , 9 ( o )  ­ r ( o ) ) 

=  ^ s i n 2 T t  9 ( r ( o ) , e ( o > )  (B23) 

to all orders in k , then r is a constant of the standard mapping 

to all orders. Eliminating 9 between r and 9 would yield an 

implicit expression for the invariant r l . 

Indeed, the formal solution of these equations is very similar 

to that given above, 

,  to)  . ,  .1+2 j 
/  ,  °°  «  a 0 . ( r  )k  J  , 

2it  9  =  2TT  6 KO>  +  I  I  — i J  j ^ ­v—sin  2TT  A 9 t o J  (B24) 
j=0 8.=12(l-cos 2TT  H  rKO)) 

where 

I  I a,, k* + 23 Sin 2* I 9
 ( o ) = k sin 2TT 6 < o ) 

j=0 1=1 3

 i 

» » a k

a + 2 j 

+ I I £L - — - 8 i n 2 * * e
t o )

] . 
j=0 £=1 2(l-cos2it «r ( <") J 

(B25) 

The subscripts on 9 ' have been dropped since here 8 depends 

continuously on B { o ) , the sum over  % has been extended to infinity, 

and the condition that r ( o ) be rational has been dropped. Indeed, 

it is better if it is not rational! 
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Now return to the problem of calculating the lowest eigenvalue 

of H , 

H(50 n) = n o(69 n) 

where 68 n is the eigenvector. This also can be expressed in recur­

sion form, 

- 6 8 + 2 6 6 - 5 8 , , , = (n + k cos 2TT 6 )66 (B26) 
n+x n n—1 o n n 

again, yielding the operator H(k=0) . The solvability condition 

is used to determine the eigenvalue, 

Q 
1 68 cos 2TT 8 

n=l n n 

£ 68 
n=l n 

As will be seen, the lowest order of the eigenvalue is the 

order of k . Thus, we need to evaluate the eigenvector accurate 

to the order k , with n being a higher order term in Eq. (B26!. 

This can be done directly. Take tha derivative of Eq. (B23) 

with respect to 6 , and evaluate it at the points 8 =8 

which are the values of Eq. (B20). It can be verified immediately 

that these derivatives satisfy the same equation as 68 , and thus, 

58 = ae/86 ( o ) 

9<°U<°> '
 ( B 2 8 ) 



-57-

Since the mapping is effectively integrable to the desired order, 

the eigenvector is merely deformed by the transformation of Eq. 

(B22). 

It then follows immediately that 

59 kcos2ir8  =  •£ l—rsin2Tr8  , .  ,„, 

n  n  2TT .„ (o)  n | n ( o )  „(o) 

00  00  . 

=  I  I  l a .  . ^  2 3  cos  2TT I  9 ( o )  .  (B29) 
j=0  1=1  2  n 

In evaluating the eigenvalue from Eq. (B27), the sum over n 

vanishes trivially for  I  < Q . Thus, the first nonvanishing term 

is proportional to k . For J. = Q , the cosines are either plus 

or minus one depending on the orbit as discussed above. Therefore, 

the eigenvalue has as its lowest nonvanishing estimate 

yielding for the residue 

R = ± I a Q o Q 3 k Q * ( B 3 1 ) 

The  q u a n t i t i e s  a_  can  be  ca lcu la ted  one  by  one  using  Eq.  (B25) 

I t  would  be  exceedingly  i n t e r e s t i n g  to  know  some  general  p r o p e r t i e s 

of  these  c o e f f i c i e n t s . 
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APPKNDIX C: Stretching and Numerical Errors 

In numerical work, it has been noticed that computed orbits 

are stochastic only in regions where stochasticity is expected and 

lie on surfaces when the mapping is integrable. This is surprising 

in the sense that there are huge numerical errors in calculating 

these orbits, yet these errors do not seem to fundamentally change 

the character of the orbit. A part of that question is examined in 

this Appendix. 

These numerical errors are highly anisotropic. Here, we show 

that errors are generally parallel to KAM surfaces and do not lead 

to diffusion across them. 

Consider a long segment of an orbit that is not periodic. 

There will be a certain small numerical error in calculating the 

first iteration of the mapping from (r.,B.) to (r_,Q 2). This error 

will have a probability distribution that can be crudely represented 

by a small circle. At the end of the considered segment, at the 

point (r ,0 ), this circle will have become an ellipse, in the tan­

gent space approximation,with a large aspect ratio. Thus, a small 

error will have become a large error in one direction. 

First, let us calculate this ellipse. If the tangent space 

orbits are represented by 

'68  1 
n 

Sr 
(.  nj 

n, ^ 

«e2­

6 r 2 ­
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where the notation distinguishes the matrix N from the similar 

matrix for periodic orbits, M , then the initial values, and the 

adjoints, are given in terms of the endpoints by 

—o n,2 — n 

—o —n n, 1 
(C2) 

The condition that the initial point lie on a circle of radius 

one, 

6x f • 5x = *X'!'(19"1_)1'K*"1

06X„ —o —o —n n, 2 n, 2 —n 

2 2 
= 6r„ + 69„ 

o o 

= 1 <C3) 

yields an expression for the ellipse at (r ,0 ). Thus, the axes 

of the ellipse are given in terms of the eigenvalues and eigenvectors 

t CS-1 
of  (N„  .,)  N n ~ 2  ,  o r  i t s  i n v e r s e ,  NN'  .  I f  N  i s  p a r a m e t e r i z e d 

"n .2 

a 2 + d 2  c 2  +  b 2 

c 2 _ b 2  a 2 " V  (C4) 

w i t h 

a 2  +  b 2 ­ C 2 ­ d 2  =  1  (C5) 

t h e n 

n ,  i  n ,  i. 

A 2  +  D 2  C 2 

A 2  ~  D 2 '  (C6) 
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where 

A 2 = aj + bj+cj+dj 

C 2 = 2(a 2c 2-b 2d 2) 

D 2 = 2(a 2d 2 + b 2c 2) . (C7) 

The eigenvalues of this matrix are the squares of the major and 

minor semi-axes, 

2 . . ,.2 ,,1/2 
p + = A 2 ± (A2 - 1) 

= [(a^bipVZ * (c2 + d 2 >
1 / 2 ] 2 ( C 8 > 

and the eigenvectors yield the angle, 8 , that this ellipse makes 

with the line 6r=0 , 

tan0 e = C 2/[(A^-l)
1 / 2 + D 2] . (C9) 

Note that the eigenvalues of the matrix N _ do not enter, 
n, i 

and in fact this result depends on both a, and b_ whereas the 

eigenvalues of N ~ depend only on a„ . Nor is there any reason 

for eigenvalues to be important. They are appropriate for determining 

the properties of powers of N , and the nonperiodic orbit will 

never retrace this orbit segment. 

Next consider the effect of the roundoff error that arises 

in computing (r,,B,) from (r .8 )• This error is propagated to 

the point (r ,9 ) over a slightly longer path, so the correspond­

ing orbits in the tangent space are given by 
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n,l 

a

l
 + d

l
 c

l
 + b

l ^ 

l o

l
_ b

l
 a

l ~
d

l 

= N 
n, 2 

a + d c + b 

c - b a - d 

where the second factor on the right propagates the tangent space 

orbits from (r , 6 ) to (r.,,8.,). 

Straightforward multiplication yields 

a x = aa 2 - bb., + cc 2 + dd 2 

b 1 = ab 2 + ba 2 + cd 2 - d c 2 

c

l
 = a c 2 + b t^2 + c a 2 ~ ^ b

2 

d, = ad, - bc_ + cb_ + da 2 (CIO) 

and 

2 2 2 2 
a l C l ~ b

l
d

l
 = * a c ~ b c^ '

a

2 ~ b

2
 + c 2 ~ d

2 * 

- 2(ad + be)(a 2b 2 - c 2 d 2 ) 

+ ( a 2 + b 2
+ c

2

 + d
2

) ( a 2 c 2 - b 2 d 2 ) 

a

l
d

l
 + b

l°l = 2(ac - bd)(a 2b 2 + c 2 d 2 ) 

+ (ad + bc) ( a 2 - b 2 - c ^ + d
2 ) 

+ ( a
2

+ b
2

+ c
2

 + d
2

) (a ad 2 + b 2 c 2 ) . (Cll) 

We next need some identities that follow from the determinant 
2 2 2 9 

condition, a + b = c + d + 1 , 



­ 6 2 ­

2  . 2  2  2  _  , .  ^ a c + b d  ,  a 2 ­ b 2 

a ­ b + c ­ d  =  2(ac­bd)—=—j+~~o—w 
a^+b^  a  +b 

a b ­ c d  =  ­ ( a c ­ b d ) 3 ^ * ­ * 1 3 

2  ">  9  ? 

a  +b  a^+b 

ab + c d =  (ad  + b c ) S f t b | +  ab 
a  +b  a  +b 

2  2 
a 2 ­ b 2 ­ c 2 + d 2  =  2(ad  + b c ) ^ b |  + \ ^ I  .  (C12) 

a  +b  a  +b 

Using  these  r e s u l t s  in  Eq.  (Cll)  y ie lds 

2  l ­ 2  O K 

a l C l _ b l d l =  { a 2 C 2  ~ b 2 d 2 > S +  ( a c  ­ b d ) ~ 2 — |  ­  (ad  + b c ) ­ ~ ­ |  (C13) 
a 2 +b 2 a 2 +b 2 

2 a2 b2 a2~ b2 
a l d l + b l c l = I a2 d2 + b2c ) S + (ac - bd) 2  2 + ( a d + b c ) ~2—I ( C 1 4 ) 

a 2+b 2 a 2+b 2 

a 2 + b 2 = (a 2+b 2)S - (c2 + d 2) (C15) 

where 

2 2 2 2 a2 C3 + b2 d2 a2 d2" b2 C2 
S =  BT  + b + c  + d* + 2 (ac - bd) ̂  g | • + 2 (ad + be) — - § — ~ . 

a2 + b2 a2 + b2 
(C16) 

2 2 2 2 We are interested in the cases a. + b. and a_ + b 2 are both 

large, so that the ellipses for both roundoff errors are very long, 

but the coefficients a,b,c and d are not large since the latter 

only carry the tangent space orbits over one iteration. It follows 
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from Eq. (Cl5) that S can not be very small. It also follows from 

Det NN = 1 that at least one of the factors a 2c 2 - b 2

d2 a n d 

a ?d + b 2 c ? must be large. The two terms on the right of Eqs. (C13) 

and (C14) can not be large. Hence, the two error ellipses must be 

very nearly parallel in the limit of interest. 

It follows that the large accumulated errors at a given point 

are all in a direction that is characteristic of the given point. 

Errors perpendicular to this direction are only of the order of the 

2 2 
round-off, and thus, very small. Since the quantity (a +b ) 

generally grows exponentially with the orbit length, numerical 

convergence to the characteristic direction is quite rapid. 

Thee: quantities can be calculated on a KAM surface. Since 

this surface can be transformed to r (o) const as in Appendix B , 

the tangent space orbit can be written in the space (6r ,68 (°'), 

n,l 

n 
1  0 

_ 
' 1  0 

s  1  ns  1.  (C17) 

Thus, here (a + b ) grows only linearly with n. From Eq. (C9) , 

9 e goes to zero in the limit of large n, so that the roundoff 

error is parallel to the KAM surface. Numerical calculations con­

firm this result for orbits that come close to KAM surfaces. 
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Table I: Mean Residue for q= 3 Orbits 

k f + 

f~ 
— — — 

0.5 0.52068 0.52118 

1.0 1.04378 1.05081 

2.0 2.09494 2.16282 

20.0 20.48158 21.44352 

21.0 21.48851 22.46472 

Table II: Mean Residue for Various Orbits with k 

q Q/P r 
U,i,i,i,i] 8/5 1.0325 

[1,1,1,2,1] 11/7 1.0638 

[1,1,2,1,1] 12/7 1.0378 

[1,2,1,1,11 11/8 1.1139 

[1,1,2,2,1] 17/10 1.0475 

[1,2,1,2,1] 15/11 1.1447 

[1,2,2,1,1] 17/12 1.0967 

[1,2,2,2,1] 24/17 1.1070 

[1,1,1,3,1] 14/9 1.1020 

[1,1,3,1,1] 16/9 1.0796 

[1,3,1,1,1] 14/11 1.2290 
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Tab le  I I I :  Res idues  and  Mean  R e s i d u e s  of 

Golden  Mean  C o n v e r g e n t s ,  k = 0 . 9 7 1 6 3 5 

Q/P 

89/55 

144/89 

233/144 

377/233 

610/377 

987/610 

0.99998014 

1.00001090 

C.99999772 

1.00000177 

0-99999965 

1.00000009 

R 

0.24956 

0.25039 

0.24987 

0.25017 

0.24995 

0.25002 

1.000217 

1.000158 

1.000088 

1.000058 

1.000034 

1.000021 

­ 0 . 2 5 4 8 8 

­C.25574 

­ 0 . 2 5 5 2 0 

­ 0 . 2 5 5 5 1 

­0 .25528 

­0 .25537 

Table  IV:  Mean  Res idues  of  Golden  Mean  C o n v e r g e n t s , 

k =  0.9 

Q/P 

55/34 0.92427 0.92428 

89/55 0.92409 0.92409 

144/89 0.92406 0.92406 

233/144 0.92401 0.92401 
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Table V: Residue for Convergents of 

q= (143+/5)/38 , k= 0.834365 

Q/P R + 

730/191 0.24766 

1181/309 0.25166 

1911/500 0.24924 

3092/809 0.25079 

5003/1309 0.24995 
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Fi^ure Captions 

Fig. 1 Five orbits for the standard mapping with k=0.97 . 

Fig. 2 Golden mean convergent periodic orbits with k= 0.95 . 

In (a) positive and negative residue orbit segments are shown for 
-2 

q= 55/34 and 89/55 , that lie in a range of 9 , 66= 5.2«10 and 
_3 

a range of r , fir= 1.1-10 . In (b) the orbits and ranges are 

q= 144/89 and 233/144 with 69 = 2.0-10~2 and fir = 1.65 -10 - 4 . 

In (c) they are q=377/233 and 610/377 with 66 = 7.5«10~3 and 

6r=2.4-10~5, in (d) q= 987/610 and 1597/987 with 6B = 2.9-10~3 

and 6r = 3.5-10~6, in (e) q=2584/1597 and 4181/2584 with 

69 = 1. l-io'"3 and 6r=5.0«10~7, and in (f) q=6765/4181 and 

10946/6765 with 66 = 4.2-10-4 and 6r=7.5-10~8. 

Fig. 3 Golden mean convergent periodic orbits with k= 0.971635 . 

In (a) the orbits and ranges are q = 55/34 and 89/55 with 

69 = 5.2-10~2 and 6r = 1.0" 10~3 , in (b) q = 144/89 and 233/144 with 

69 = 2.0«10"2 and 3.0-10 - 4, in (c) q=377/233 and 610/377 with 

68 = 7.5-10"3 and fir = 1.5.10"*5 , in (d) q=987/610 and 1597/987 with 

68 = 2.9 10"3 and fir = 4.6-10""6 , in (e) q = 2584/1597 and 4181/2584 

with 69 =1.1-10~3 and fir = 1.4-10"6 , and in (f) q = 6765/4181 and 

10946/6765 with 59 = 4.2«10~4 and 6r = 7.0'10~8. 
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Fig. 4 Golden mean convergent orbits with k=Q.99 . In (a) the 

orbits and ranges are q= 55/34 and 89/55 with 66 = 5.0-10~2 and 

fir =1.0-10" , in (b) q= 144/89 and 233/144 with 66 = 2.0-10~2 

and 6r=4.0-10~ 4, in (c) q= 377/233 and 610/377 with 66 = 7.5-10~3 

and 6r=1.5-10~ , and in (d) q = 987/610 with 66 =3.5-10~4 and 

6r= 7.0-10 . In (e) and (f) orbits of (c) with the two values of 

q have been plotted separately. 

Fig. 5 Orbits near the golden mean with k= 0.975 . Periodic 

orbits with positive and negative residues are shown for q=144/89 

and 233/144 , together with a segment of a stochastic orbit. The 

-2 -
ranges of r and 8 in this figure are 66 = 2.0*10 and Sr=2.0 10 

Fig. 6 Stochastic orbit for k=0.97 . The range of r and 6 in 

this figure is 69 = 1.0-10~2 and Sr=1.2-10" 4. 
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