NASACONTRACTOR REPORT

NASACR-1577

A METHOD FOR DETERMINING THE CHARACTERISTIC FUNCTIONS ASSOCIATED WITH THE AEROELASTIC INSTABILITIES OF HELICOPTER ROTORS IN FORWARD FLIGHT
by Vincent J. Piarulli and Richard P. White, Jr.

Prepared by
ROCHESTER APPLIED SCIENCE ASSOCIATES, INC.
Rochester, N. Y.
for Langley Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1970

*For sale by the Clearinghouse for Federal Scientific and Technical Information

CONTENTS

Page
SUMMARY 1
INTRODUCTION 1
SYMBOLS 2
DEVELOPMENT OF THE EQUATIONS FOR DETERMINING CHARACTERISTIC FUNCTIONS 3
DESCRIPTION OF COMPUTER PROGRAM 11
APPLICATION OF THE METHOD 13
CONCLUDING REMARKS 21
APPENDIX A: Listing of Computer Program for Determining Characteristic Eigenvalues (Update of Program Listed in Reference l) 23
APPENDIX B: Listing of Computer Program for Determining Characteristic Modal Functions 67
REFERENCES 73

A METHOD FOR DETERMINING THE CHARACTERISTIC FUNCTIONS

ASSOCIATED WITH THE AEROELASTIC INSTABILITIES

OF HELICOPTER ROTORS IN FORWARD FLIGHT

By Vincent J. Piarulli and Richard P. White, Jr. ROCHESTER APPLIED SCIENCE ASSOCIATES, INC.

SUMMARY

A method has been developed for determining the characteristic functions (modal content) of aeroelastic instabilities experienced by helicopter rotors in forward flight. The method assumes a knowledge of the characteristic values which characterize the frequency and growth rate of an unstable mode of a helicopter rotor in a given flight condition. Characteristic values may be found from the previously developed program (Reference l) which is capable of analyzing a coupled set of linear, second-order differential equations with periodically varying coefficients.

The necessary formulation was programmed for the case of a system with three degrees of freedom. Calculations were carried out for comparison with available experimental data.

INTRODUCTION

An analysis of the aeroelastic stability of a helicopter rotor in forward flight was carried out in Reference l. In that study a computer program was developed which is capable of determining the characteristic values of a given set of coupled, linear, secondorder differential equations with periodically varying coefficients.

Stability properties determined by that program consist solely of the real and imaginary parts of the system characteristic values. A knowledge of these quantities alone is akin to knowing the natural frequencies and rates of exponential growth or decay associated with each of the natural modes without knowing the actual modal content.

The study described herein was directed at developing the characteristic functions (modal content) associated with the stability of a helicopter rotor in forward flight. Characteristic functions clearly give an indication as to the degrees of freedom excited in a particular unstable mode. More importantly, however, a close inspection of the characteristic functions should yield insight towards the redesign required to eliminate an instability.

The method developed here relies heavily on the basic formulation and computer program previously developed in Reference 1. Therefore, the reader is referred to Reference 1 for a more complete description of the fundamentals of the general approach and to Appendix A of the present report for a corrected listing of that computer program.

SYMBOLS

$a_{m n}, b_{m n}$
[a], [b]
$[\mathrm{A}]^{(\mathrm{k})},[\mathrm{B}]^{(\mathrm{k})}$
$\left[_{A}{ }^{(k)},[B]^{(k)}\right.$

N
$\mathrm{N}_{\mathrm{f}} \quad$ number of Fourier components retained in Fourier representation of characteristic functions
columns of Fourier coefficients of the characteristic functions
$\{q\}^{(k)} \quad$ columns related to $\{p\}^{(k)}$ through the change in index defined by Eq. (13)
rotor radius, m
magnitude of free-stream velocity (aircraft forward speed), m / s
[T] array formed by computer program in order to solve for characteristic functions
large column containing all of the $\{p\}^{(k)}$
nondimensional quantity corresponding to time

The theory of Floquet (Reference 2) can be used to show that a solution to Eqs. (I) must be of the form

$$
\begin{equation*}
\zeta_{\mathrm{m}}(z)=e^{\lambda z} \phi_{\mathrm{m}}(z) \tag{2}
\end{equation*}
$$

where λ is a complex constant and $\phi_{m}(z)$ is periodic with a period π. The differential system, Eq. (1) m is of order 2 N , so there are 2 N linearly independent solutions. Hence, there are 2 N values of λ and 2 N associated sets of N functions ϕ_{m}, defining solutions to Eqs.(1).

The stability of the system is determined by the 2 N values of the complex constant λ. If any one of these has a positive real part then the motion following an initial disturbance diverges with increasing time and the system is unstable. If the real part of λ is negative, the system is said to be stable.

In Reference l, a method was developed whereby, for a given system, all the characteristic values for λ may be calculated. A computer program was developed to implement the method of Reference 1 for the case of three degrees of freedom ($\mathrm{N}=3$).

The specific objectives of the study described herein were to develop the means for determining, for a given λ, the relative contribution of each generalized coordinate ζ_{m} to the motion. Thus for each characteristic value of λ it is required to calculate the corresponding characteristic function $\phi_{m}(z)$ which appears in Eq.(2).

In formulating the scheme for obtaining characteristic functions it has been found that the use of matrix algebra simplifies the representation of the equations. Therefore, Eqs.(1) and (2) are rewritten below in matrix form.

The matrix equation counterpart of Eqs.(1) and (2) are given by

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}}\{\zeta\}+[a] \frac{d}{d z}\{\zeta\}+[b]\{\zeta\}=\{0\} \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& {[a](z+\pi)=[a](z)} \\
& {[b](z+\pi)=[b](z)}
\end{aligned}
$$

and

$$
\begin{equation*}
\{\zeta\}=\{\phi\}(z) e^{\lambda . z} \tag{4}
\end{equation*}
$$

[a] and [b] are N by N square matrices and $\{\zeta\}$ is a column of N elements.

Since [a] and [b] are periodic they may be expressed in a Fourier sexies as follows:

$$
\begin{align*}
& {[a]=\sum_{k=-\infty}^{\infty}[A]^{(k)} e^{2 i k z}} \tag{5}\\
& {[b]=\sum_{k=-\infty}^{\infty}[B]^{(k)} e^{2 i k z}} \tag{6}
\end{align*}
$$

Since $\{\phi\}(z)$ is also periodic with period π it may also be represented by a complex Fourier series. Thus,

$$
\begin{equation*}
\{\phi\}(z)=\sum_{k=-\infty}^{\infty}\{p\}^{(k)} e^{2 i k z} \tag{7}
\end{equation*}
$$

Substituting Eq.(7) into Eq. (4) yields:

$$
\begin{equation*}
\{\zeta\}=\sum_{k=-\infty}^{\infty}\{p\}^{(k)} e^{2 i k z+\lambda z} \tag{8}
\end{equation*}
$$

Upon differentiating the above expression for $\{\zeta\}$, substituting into Eq. (3), and then grouping and setting equal to zero the coefficients of like powers of $e^{2 i z}$, the following equation is obtained.

$$
(\lambda+2 i n)^{2}\{p\}^{(n)}+\sum_{k=-\infty}^{\infty}\left[(2 i n-2 i k+\lambda)[A]^{(k)}+[B]^{(k)}\right]\{p\}^{(n-k)}=\{0\}
$$

$$
\begin{equation*}
n=0, \pm 1, \pm 2, \ldots \pm \infty \tag{9}
\end{equation*}
$$

Since Eq. (9) is valid for all positive and negative integer values of n, an infinite number of homogeneous matrix equations are theoretically available to arrive at the relative values for:

$$
\{p\}^{(0)},\{p\}^{(\pm 1)},\{p\}^{(\pm 2)} \ldots\{p\}^{(\pm \infty)}
$$

In practice it is necessary to deal with a finite number of equations. Therefore Eq. (9) is written for values of

$$
\mathrm{n}=0, \pm 1, \pm 2, \pm 3 \ldots \mathrm{~N}_{\mathrm{f}}
$$

where N_{F} is some finite number such as five or ten. It should be noted, however, that N_{f} is equal to the number of Fourier components which are solved for in the Fourier representation of $\{\phi\}(z)$. Therefore N_{f} would probably be no greater than half the number of Fourier components calculated for the arrays of periodically varying functions [a] and [b] which occur in Eqs.(3), (5), and (6).

Since a homogeneous set of $\left(\mathrm{NXN}_{\mathrm{f}}\right)$ equations is being dealt with, one of the unknowns is arbitrary. Generally speaking, the elements in $\{p\}^{(0)}$ would be non-zero. Therefore, one of these elements may be arbitrarily set equal to i.

Unfortunately, while Eq. (9) is a valid and concise equation governing the relative contributions of the generalized coordinates to the total motion of the system, a problem does arise in programming this equation. The zero and negative values of n and k occurring in Eq. (9) cause difficulty when programming in Fortran. This difficulty also had to be overcome in Reference l. Since the program being described in this report must be compatible with that developed in Reference l, some further manipulations of Eq. (9) are required in order to arrive at equations suitable for programming in Fortran.

Firstly, Eq. (9) may be rewritten as follows where now the governing equation consists only of a finite number of terms.

$$
\begin{align*}
& {\left[(\lambda+2 i n)^{2}[I]+(\lambda+2 i n)[A]^{(0)}+[B]^{(0)}\right]\{p\}^{(n)}} \\
& +\sum_{k_{=1}^{N}}^{N_{f}^{+n}}\left[(\lambda+2 i n-2 i k)[A]^{(k)}+[B]^{(k)}\right]\{p\}^{(n-k)} \tag{10}\\
& +\sum_{k=1}^{N_{f}-n}\left[(\lambda+2 i n+2 i k)[A]^{(-k)}+[B]^{(-k)}\right]\{p\}^{(n+k)}=\{0\} \\
& n=0, \pm 1, \pm 2, \ldots \pm N_{f}
\end{align*}
$$

Now, since the periodically varying functions [a] and [b] occurring in Eq. (3) are real matrices (Reference l) it can be shown from Eqs. (5) and (6) that:
and

$$
\begin{align*}
& {[A]^{(-k)}=\overline{[A]}^{(k)}} \\
& {[B]^{(-k)}=\overline{[B]}^{(k)}} \tag{11}
\end{align*}
$$

where the bar indicates a complex conjugate.
The difficulty of having n assume zero and negative integer values is removed by letting

$$
\begin{equation*}
\mathrm{n}=\mathrm{m}-\mathrm{N}_{\mathrm{f}}-\mathrm{l} \tag{12}
\end{equation*}
$$

and defining $\left(2 \mathrm{~N}_{f}+\mathrm{l}\right)$ vectors (each containing N elements) as follows:

$$
\left.\begin{array}{rl}
\{q\}^{(1)} & =\{p\}^{\left(-N_{f}\right)} \\
\{q\}^{(2)} & =\{p\}^{\left(-N_{f}+1\right)} \\
& \cdot \\
& \cdot \\
\{q\}^{\left(N_{f}\right)}= & \{p\}^{(-1)} \tag{13}\\
\{q\}^{\left(N_{f}+1\right)}= & \{p\}^{(0)} \\
& \cdot \\
& \cdot \\
\{q\}\left(2 N_{f}+1\right) & =\{p\}^{\left(N_{f}\right)}
\end{array}\right\}
$$

Finally, after making the definitions:

$$
\left.\begin{array}{rlrl}
{[A]^{(1)}} & =[A]^{(0)} & {[B]^{(1)}} & =[B]^{(0)} \\
{[A]^{(2)}} & =[A]^{(1)} & {[B]^{(2)}} & =[B]^{(1)} \\
{[A]^{\left(2 N_{f}+1\right)}} & =[A]^{\left(2 N_{f}\right)} & {[B]^{\left(2 N_{f}+1\right)}} & =[B]^{\left(2 N_{f}\right)}
\end{array}\right\}
$$

and then utilizing Eqs. (11), (12), (13), and (14) in Eq. (10), the following equation results.

$$
\begin{align*}
& \sum_{k=1}^{m-1}\left[\left(\lambda+2 i\left(k-N_{f}-1\right)\right)[A]^{(m-k+1)}+[B]^{(m-k+1)}\right]\{q\}(k) \\
& +\left[\left(\lambda+2 i\left(m-N_{f}-1\right)\right)^{2}[I]+\left(\lambda+2 i\left(m-N_{f}-1\right)\right)[A](1)+[B](1)\right]\{q\}(m) \\
& +\sum_{k=m+1}^{2 N_{f}+1}\left[\left(\lambda+2 i\left(k-N_{f}-1\right)\right) \overline{[A](k-m+1)}+\overline{\left.[B]]^{(k-m+1)}\right]\{q\}}(k)=\{0\}\right. \\
& m=1,2,3, \ldots 2 N_{f}+1 \tag{15}
\end{align*}
$$

The quantities $[A]^{(j)}$ and $[B]^{(j)}$ correspond exactly to variables which are defined and may be computed in the computer program developed in Reference 1 .

Eq. (15) may be written as one single set of homogeneous equations as follows:
where:

$$
\begin{align*}
{\left[R_{m, k}\right] } & =\left[\left(\lambda+2 i\left(k-N_{f}-1\right)\right)[A]^{(m-k+1)}+[B]^{(m-k+1)}\right] k<m \\
& =\left[\left(\lambda+2 i\left(m-N_{f}-1\right)\right)^{2}[I]+\left(\lambda+2 i\left(m-N_{f}-1\right)\right)[A](1)+[B](1)\right] k=m \\
& =\left[\left(\lambda+2 i\left(k-N_{f}-1\right)\right) \overline{\left.[A]^{(k-m+1}\right)}+\overline{[B](k-m+1)}\right] k>m \tag{17}
\end{align*}
$$

Using the simplest possible shorthand notation, Eq. (16) may be expressed by:

$$
\begin{equation*}
[T]\{x\}=\{0\} \tag{18}
\end{equation*}
$$

where:

$$
\{x\}=\left\{\begin{array}{l}
\{q\}(1) \\
\{q\}(2) \\
\vdots \\
\{q\}\left(2 N_{f}+1\right)
\end{array}\right\} \begin{aligned}
& \text { is a column of } N\left(2 N_{f}+1\right) \\
& \text { elements }
\end{aligned}
$$

and [T] is the large $N\left(2 N_{f}+1\right)$ by $N\left(2 N_{f}+1\right)$ array constructed from $\left[R_{m, k}\right]$ submatrices.

Given a characteristic value λ, the [A]'s and [B]'s, and the number N_{f} of Fourier components desired in the representation of the characteristic function, it should now be clear how the matrix [T] is constructed. In order to solve for the characteristic functions, it is necessary to fix one of the elements of $\{x\}$ and then solve for the remaining elements.

Consider for example, the case of a three degree of freedom system for which $N=3$. If the characteristic functions are normalized with respect to the zeroth order Fourier component of the second generalized coordinate, then referring to Eq. (8) the second of the three elements in $\{p\}^{(0)}$ is to be set equal to 1 .

According to Eq. (13),

$$
\begin{equation*}
\{\mathrm{p}\}^{(0)}=\{q\}\left(\mathrm{N}_{\mathrm{f}}+1\right) . \tag{19}
\end{equation*}
$$

Thus, if the N_{f} is say 5 , then the second element in $\{q\}(6)$, or equivalently the $17^{\text {th }}$ element in the vector $\{x\}$ is to be set equal to 1 .

In the most general case consider the matrix equation (18) to be
where: $\quad\left(\mathrm{NN}_{f}+\mathrm{I}\right)$ indicates the element which is to be equal to 1 in the $\{x\}$ column,
I indicates a normalization with respect to the I th generalized coordinate,
c_{0} is the element in the $\left(\mathrm{NN}_{\mathrm{f}}+\mathrm{I}\right)$ th row and column of the [T] array.

It can then be easily shown that the matrix equation required to solve for the remaining x 's is given by

Note that Eq. (21) differs from Eq. (20) in that the row and column of [T] which contain the element $T_{N_{f}}+I, N N_{f}+I$ have been removed and a right-hand side of the equation ${ }^{f}$ has been formed from the negative of the removed column minus that element. Eq. (21) may be solved in a straightforward manner for the x 's or equivalently by the characteristic functions
$\{p\}(k) \quad$ where: $k=0, \pm 1, \pm 2 \ldots \pm N_{f} \quad$.

DESCRIPTION OF COMPUTER PROGRAM

The computer program developed for this study was coded directly from the formulation described above. Since this program was intended to be used in conjunction with the program developed in Reference 1 , the number of degrees of freedom treated in this study was restricted to three $(\mathrm{N}=3)$ as in the characteristic value program.

The main inputs to this program are: the characteristic value (λ); the number of Fourier coefficients desired (N_{f}); and the Fourier components of the periodically varying coefficients in the original equations of motion ([A]'s and [B]'s). The latter quantities are computed in a special subroutine which was also used in the characteristic value program of Reference l. The λ 's, of course, are the characteristic values which are the output of the Reference 1 program. The quantity N_{f} is arbitrary except for the practical considerations that it is limited by the number of Fourier components (the [A]'s and [B]'s available) and the computer storage capacity.

Also provided as an input quantity is an index which indicates how the characteristic functions are to be normalized.

The input quantities are manipulated by programming logic that closely follows the formulation described in the previous section of this report in order to construct the large [T] array (Eq.20). The operations of removing the appropriate row and column are performed and the resulting set of linear algebraic equations are solved for the characteristic functions.

The functions are printed out with appropriate comments for identification purposes.

A flow diagram paralleling the above description and the previously described formulation is provided in Figure 1, and a listing of the associated computer program is given in Appendix B.

Figure 1. Basic flow diagram for characteristic modal functions

The computer program developed in Reference 1 for predicting the characteristic values of a coupled set of linear, second-order differential equations with periodically varying coefficients was used in conjunction with the computer program that was developed herein to determine the stability characteristics of a model helicopter blade in hover and forward flight. The model helicopter rotor blade for which experimental flutter results are presented in References 3 and 4 had a single blade with a radius of four feet and with a flapping hinge through the axis of rotation. The blade had a constant chord of 3.5 inches and a root cutout of 6 inches. The blade was relatively rigid in torsion, but the control system was made flexible, so the primary contributions to the blade motions derived from rigid-body feathering, flapping motions and deflections in the first flapwise bending mode.

The model configuration that was chosen for investigation had a ratio of the nonrotating first uncoupled flapwise bending frequency, $\bar{\omega}_{\phi_{1}}$ to feathering frequency $\bar{\omega}_{\theta_{0}}$ of 0.63 and a chordwise center of mass at the 42.5% chord aft of the leading edge.

Determination of Model Blade Frequencies
Since the experimental flutter data presented in Reference 3 was not supported by either measured or computed uncoupled and coupled mode shapes and frequencies for the model blade (needed for the present study), they had to be determined. This was accomplished by using a refined rotor blade vibration analysis, Reference 4, in conjunction with the blade data reported for the blade in Reference 3. The results of these calculations yielded an uncoupled nonrotating first bending frequency $\bar{\omega}_{\phi_{1}}$ of $75 \mathrm{rad} / \mathrm{sec}$.
The root feathering spring was then adjusted so that the first nonrotating feathering-torsion mode had a frequency $\bar{\omega}_{\theta_{0}}$ of $119.1 \mathrm{rad} /$ sec in order that a frequency ratio of $\bar{\omega}_{\phi_{1}} / \bar{\omega}_{\theta_{0}}$ of 0.63 was obtained.
Using the stiffness of the feathering spring that was determined by this method, the coupled nonrotating and rotating vibration modes were then computed at various rotational speeds. A frequency diagram presenting the results of these calculations is presented in Figure 2, and the generalized components of the various coupled modes at the blade tip are given in Table I for a few of the rotational speeds at which calculations were conducted.

Figure 2. Coupled natural frequencies versus rotor speed

GENERALIZED COMPONENTS OF COUPLED MODES

Coupled Mode	Component	Rotational speed (rad/sec)			
		0	15	20.	24.5
First	Flap-Bending Feathering-Torsion	-	$\begin{aligned} & 1.0 \\ & 0.0738 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.193 \end{aligned}$
Second	Flap-Bending Feathering-Torsion	$\begin{gathered} 1.0 \\ -1.81 \end{gathered}$	1.0 -1.93	1.0 -2.01	1.0 -2.1
Third	Flap-Bending Feathering-Torsion	$\begin{aligned} & 1.0 \\ & 9.01 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 8.77 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 8.62 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 8.46 \end{aligned}$

It should be noted that since the generalized components have been normalized by the flap-bending deflection, the featheringtorsion deflections have units of radian per unit of tip bending deflection.

The first coupled mode is primarily a flapping mode and the second and third coupled modes are primarily highly coupled bendingfeathering modes with the third mode having a significantly larger relative feathering motion than the second mode.

Theoretical Determination of Rotor Stability Characteristics

Using the first three coupled modes of the rotor blade as generalized coordinates, the characteristic values and characteristic functions were determined for various rotor speeds at advance ratios of $0,0.1,0.2$, and 0.3 . The characteristic values and characteristic functions that were determined are presented in Table II and Table III, respectively. In order to determine, at a given advance ratio, the rotational speed at which the rotor is neutrally stable, the real part of the characteristic value is plotted versus rotational speed and the rotation speed at which the real part vanishes is the critical speed. Since the real part of the characteristic value can be considered to be a measure of the system damping (growth or decay rate) the effect of structural damping can be easily determined in much the same manner as it is accomplished for fixed wing aircraft through plots of velocity versus damping.

TABLE II
CHARACTERISTIC VALUES OF MODE WHICH BECOMES UNSTABLE

μ	Rotational Speed (rad/sec)				
	10	15	18	20	23
0	$-1.74 \pm 64.0 i$	$-1.390 \pm 60.3 i$	-	$2.32 \pm 53.9 i$	$8.0 \pm 50.2 i$
0.1	-	$-1.190 \pm 56.3 i$	$-0.612 \pm 56.3 i$	$2.50 \pm 54.1 i$	-
0.2	-	$-0.980 \pm 60.2 i$	$1.360 \pm 56.4 i$	$4.04 \pm 53.5 i$	-
0.3	-	$-0.525 \pm 59.7 i$	$2.430 \pm 56.4 i$	$4.20 \pm 55.0 i$	-

As noted in Table III, the characteristic function at each condition has contributions from all the coupled modes which have been normalized by the value of the second coupled mode. The relative magnitudes of the various modes in the characteristic function give an indication of the primary degrees of freedom that are present. For example, for a rotor speed of $18 \mathrm{rad} / \mathrm{sec}$ and an advance ratio of 0.10 , the first coupled mode has a relative amplitude of approximately 0.78 , the second 1.0 , and the third, 0.026 . These relative orders of magnitude indicate that the rotor oscillatory motion at these conditions is comprised primarily of motions in the first and second coupled modes. When these relative amplitudes of motion for the various modes are applied to the different coupled degrees of freedom to determine the relative amplitudes of the primary motions (flap, bending, feathering), the results indicate that the mode of instability is of a highly coupled bendingfeathering type.

Comparison of Theoretical and Experimental Results

In order to put the theoretical results in a form in which they could be compared with the experimental results of Reference 3, the characteristic values presented in Table II were plotted versus rotor speed to determine the rotational speed at which the rotor was neutrally stable. With the critical rotor speed determined, the nondimensional flutter parameters were calculated and are presented in Table IV. When the theoretical results presented in Table IV were compared with the experimental data, it was noted

TABLE III
CHARACTERISTIC FUNCTIONS OF MODE WHICH BECOMES UNSTABLE

μ	Mode	Rotational Speed (rad/sec)				
		10	15	18	20	23
0	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\left\lvert\, \begin{gathered} -0.161 \pm 0.0298 i \\ 1.00 \\ -0.008 \pm 0.0036 i \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -0.4290 \pm 0.005 i \\ 1.00 \\ -0.0170 \pm 0.007 i \end{gathered}\right.$	-	$\begin{gathered} -1.020 \pm 0.33 i \\ 1.00 \\ -0.027 \pm 0.011 i \end{gathered}$	$\left\lvert\, \begin{gathered} -1.2400 \pm 1.13 i \\ 1.00 \\ -0.0326 \pm 0.015 i \end{gathered}\right.$
0.10	1 2 3	-	$\begin{gathered} -0.4340 \pm 0.001 i \\ 1.00 \\ -0.0170 \pm 0.007 i \end{gathered}$	$\left\{\begin{array}{c} -0.763 \pm 0.145 i \\ 1.00 \\ -0.024 \pm 0.010 i \end{array}\right.$	$\begin{gathered} -0.990 \pm 0.346 i \\ 1.00 \\ -0.027 \pm 0.012 i \end{gathered}$	-
0.20	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\left\lvert\, \begin{gathered} -0.4490 \pm 0.020 i \\ 1.00 \\ -0.0185 \pm 0.008 \mathrm{i} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -0.760 \pm 0.205 i \\ 1.00 \\ -0.025 \pm 0.0115 i \end{gathered}\right.$	$\left\|\begin{array}{c} -0.980 \pm 0.489 i \\ 1.00 \\ -0.027 \pm 0.010 i \end{array}\right\|$	-
0.30	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	-	$\left\lvert\, \begin{gathered} -0.4780 \pm 0.048 i \\ 1.00 \\ -0.0210 \pm 0.009 i \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -0.756 \pm 0.294 i \\ 1.00 \\ -0.027 \pm 0.014 i \end{gathered}\right.$	$\begin{gathered} -0.865 \pm 0.48 i \\ 1.00 \\ -0.029 \pm 0.017 \end{gathered}$	-

TABLE IV
PREDICTED ROTOR PARAMETERS AT FLUTTER BOUNDARY

Damping g	Rotor Parameters	0	0.10	0.20	0.30
		Advance Ratio			
	$\bar{\omega}_{\theta_{0}} / \Omega$	6.44	6.44	7.09	7.35
0.03	$\bar{\omega}_{\theta_{0}} / \Omega$	18.20	19.15	17.60	17.00

that the theoretical results were extremely conservative in that the rotor speed at which the instability boundary was predicted was only 59\% of that which was measured. While the support data that was presented for the model in Reference 3 did not record the uncoupled frequencies associated with the first bending mode and the first feathering modes, it was determined from the data presented in Reference 5 for the same model, that the first nonrotating uncoupled flapwise bending mode had a frequency $\bar{\omega}_{\theta_{1}}$ of
$83 \mathrm{rad} / \mathrm{sec}$ and-the first nonrotating uncoupled feathering-torsion mode had a frequency of $\bar{\omega}_{\theta_{0}}$ of $132 \mathrm{rad} / \mathrm{sec}$. Since the correspond-
ing frequencies that were calculated during this program using the reported mass-elastic data for the model were $75 \mathrm{rad} / \mathrm{sec}$ and 119.1 rad/sec, respectively, a direct comparison of the theoretical and experimental data was not deemed to be valid. However, on the basis of a straight-line interpolation of experimental flutter data for $\bar{\omega}_{\theta_{0}}$ of $108 \mathrm{rad} / \mathrm{sec}$ and $132 \mathrm{rad} / \mathrm{sec}$ presented in Reference 5 for the
subject model in the hover condition, it was estimated that if the experimental frequencies reported for the model had been used in the theoretical prediction, the theoretically determined rotor speed would be approximately 1.24 times those predicted. It was believed, therefore, that if the predicted results were corrected by this factor a direct comparison could be made with the experimental results presented in Reference 3. The theoretical results presented in Table IV were thus adjusted to account for this difference and are presented in Table V. The results presented in Table V are

TABLE V
CORRECTED ROTOR PARAMETERS AT FLUTTER BOUNDARY

$\begin{gathered} \text { Damping } \\ \mathrm{g} \end{gathered}$	Rotor Parameters	Advance Ratio μ			
		0	0.10	0.20	0.30
0	Ω	23.05	23.05	20.95	20.20
	$\bar{\omega}_{\theta_{0}} / \Omega$	5.19	5.19	5.72	5.93
0.03	Ω	23.80	23.75	21.82	21.06
	$\bar{\omega}_{\theta_{0}} / \Omega$	5.03	5.04	5.49	5.68

compared with the experimental results in Figure 3.
As can be seen from the results that are plotted, the corrected theoretical results while being about 35% conservative, indicate the same trend with advance ratio as do the experimental data. The effect of a normal amount of structural damping decreased the degree of conservation by only 4\% indicating that structural damping was not the reason for the difference between the predicted and experimental results. It is believed that possible reasons for the difference between the theoretical and experimental results are tip losses and a significant reduction in the lift curve slope from the theoretical value of 6.28 due to the relatively low Reynolds number at which the model tests were conducted. To determine if this could possibly be the reason for the discrepancy between the theoretical and experimental results, it was assumed that the aerodynamic forces in hover were reduced by 50% due to these factors. The results of these calculations indicated that the $\bar{\omega}_{\theta_{0}} / \Omega$ at hover would be 3.6 or approximately the same value as
determined by the experimental data. While it is not believed that the aerodynamic forces would be reduced by this amount due to Reynolds number and tip loss effects, the results do indicate that the theoretical and experimental results would probably be in much closer agreement if the effective lift curve slope associated with the model was used in the theoretical analysis.

Since the performance characteristics were not measured for the flutter model, an evaluation of the effective lift curve slope could

Figure 3. Comparison of predicted and experimental characteristic values
not be undertaken. For the obvious benefits that could be derived, it is suggested that it might be invaluable to measure, during all scale model dynamic tests, the performance characteristics of the rotor so that an estimate of the effective lift curve slope can be made for use in theoretical analyses correlating the experimental results.

CONCLUDING REMARKS

The results of the research program conducted herein indicate that a reliable method of predicting the characteristic functions associated with rotor instabilities has been developed once the characteristic values of the instability have been determined by means of the analysis procedure previously developed.

During the performance of the effort associated with this research investigation, it again became apparent that there is a definite need for a reliable and well-documented set of experimental flutter data. It is believed that the need for this data is urgent as, due to the rapid growth in rotor technology, more instances of unexpected and unexplained cases of rotor instability will probably occur more frequently. In order to investigate the reason for the instabilities and determine means for corrective action, there is a need for a proven method of analysis. While it is believed that a reliable analysis has been developed, it or any other analysis procedure cannot be assumed to be quantitatively reliable until it has been proven to be so by comparison with a well-documented set of experimental data.

APPENDIX A

Listing of Computer Program for Determining Characteristic Eigenvalues
 (Update of Program Listed in Reference l)

```
    PROGRAM NASA4(INPUT,OUTPUT,ABS,TAPES=INPUT,TAPEG=OUTPUT,
    1. TAPE8=ABS)
    \MPLICIT REAL*8(A-H,O-Z)
    D!MENSION AR(125),A!(125),BR(125),BI(125),CR(250),CI(250),DR(250)
    DIMENSION DI(250),FR(250),FI(250),ER(250),E!(250)
    DSQRT(D) =SQRT(D)
    DMAX1(A,B,C)=AMAXI(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(U)
    DCOS(D)=COS(D)
    DEXP(D) =EXP(D)
    DLOG(D)=ALOG(D)
    DLOG1O(D) #ALOG10(D)
    DSIN(D)=SIN(D)
    DCUSH(D) #COSH(D)
    DSINH(D)=SINH(D)
    READ (5,9876) NN,NF,LI,LJ,NWI,NSTOP
9876
    LK=NF
    DO 11 IJK=1,125
    BR(IJK)=0.
    BI(IJK)=0.
    AI(IJK)=0,
        AR(IJK)=0,0
    DO 111 II I=1,NN
    AZ=1,
    IF (NW1,EQ,1) GO TO 150
    READ (8) I,J,K,ARR,A\R,BRR,BIR
    GO TO 160
    150 READ) (5,9875) 1,J,K,ARR,AIR,BRR,BIR
9875 FOHMAT (3I3,4E14,7)
    160 |Jh=(I*LI - 4+J)*NF+K
    IF (K,GT,5) AZ=0,
    AR(IJK)=ARR*AZ
    AI(IJK) = AIR*AZ
    BI(IJK)=BIR*AZ
        BR(IJK)= BRR*AZ
    WRITE (6,100) I,J,K,AR(IJK),AI(IJK),BR(IJK),BI(IJK)
    100 FORMAT (3(2X,1<),4X,4(3X,E14,7))
    111 CONTINUE
    CALL (G (IOUT,NF,LK,AR,AI,BR,BI,NR,NA,PDO)
    STOF
    ENU
    SUGROUTINE Q (IOUT,NF,LK,AR,AI,BR,BI,NR,NA,PDQ)
    IMPLICIT REAL*B(A-H,O-Z)
    INTEGER UT
    REAL MU
    DIMENSION L2(5)
    DIMENSION ER(350),EI(350),FR(350),FI(350),FFR(150),FFI(150)
    DIMENSION UELT(150),ALPHA(150), BETA(150),GAMMA(150)
    DIMENSION GR(5U00),GI(5000)
    DIMENSION CI(250),DR(250),DI(250),DUM(810)
    DIMENSION YR9(y),YI9(9),YR12(12),YI12(12),BIGA(9),BIGAH(13),YY(13)
    DIMENSION AK9(y),AK12(13),DYR9(11),DY19(11),DYR12(12),DY11.2(12)
    DIMENSION SIGMA(7)
    DIMENSION XI9(10),ET9(10),XI12(13),ET12(13),X16(7),ETA6(7)
    DIMENSION R12TR(13),R12TI(13)
    DIMENSION AUM(1,1),AY(15),AR(125),AI(125),BR(125),BI(125),CR(250)
    DIMENSION PSI9(9),ROGTR(6),ROGTI(6),NDR9(9),NDI9(9),NDR12(12)
    DIMENSION NDI1<(12),DETR(12),DET|(12),PIRNEW(12),PIROLD(12)
    DIMENSION PIINEW(12),PIIOLD(12),AUMR9(8,14),AUMI9(8,14)
    DIMENSION AUMR12(11,14),AUM!12(11,14)
```

```
    DIMENSION ROLY(9),PSI12(13),ETA9(10),ETA12(13)
    DINENSION RR(2U),RRI(20),ROOTI(20),ROOTR(20),Z(20),Y(20),POLY(20)
    DIAENSION XR(12).XI(12)
    DIMENSION CCH(150),CC(150),PSIO(7)
    DIMENSION RR12(13),RRI12(13)
    DIMENSION A9(9),89(9),C9(9),AH(13),BH(13),CH(13)
    DINENSION ICHG(15)
    DIMENSION U(12)
    EQUIVALENCE(PSI9(1),DUM(50)),(R06TR(1),DUM(60)),(R06T1(1),DUM(70))
    EQU|VALENCE(NDR9(1),DUM(80)),(ND19(1):DUM(90)),(NDR12(1),DUM(100))
    EQUIVALENCE (DYR9(1),DUM(115)),(DYI9(1),DUM(130)),(RR(1),DUM(145))
    EQUIVALENCE(DYK12(1),DUM(166)),(ND{12(1),DUM(180))
    EQUIVALENCE(DETR(1),DUM(193)),(DET|(1),DUM(206))
    EQUIVALENCE(PIKNEW(1),DUM(220)),(PIROLD(1),DUM(233))
    EQUIVALENCE(PIINEW(1),DUM(246)),(PIIOLD(1),DUM(260))
    EQUIVALENCE (AUMR9(1,1),DUM(273)),(AUMI9(1,1),DUM(386))
    EQUIVALENCE(AUMR12(1,1),DUM(500)),(AUM112(1,1),DUM(655))
    EQUIVALENCE(AKY(1),GR(1)),(AK12(1),GR(10)),(SIGMA(1),GR(25))
    EQUIVALENCE(GR(35),X\9(1)),(ET9(1),GR(45)),(X112(1),GR(60))
    DSGRT(V)=SQRT(V)
    DMAX1(A,B,C)=AMAXI(A,B,C)
    DABS(V)=ABS(V)
    DATAN(V)=ATAN(V)
    DCOS(V)=COS(V)
    DEXP(V)=EXP(V)
    DLOG(V)=ALUG(V)
    DLOG10(V)=ALOG10(V)
    DSIN(V)=SIN(V)
    DCOSH(V)=COSH(V)
    DSINH(V)=SINH(V)
C FORMULA FOR GR,GI,ALPHA,BETA,GAMMA,DEL
C mainframe program for the nasa flutter
    DO 1 I =1,5000
    GR(I)=0.
1GI(I)=0.
    DO 2 I=1,9
    BIGA(I)=0,
    YR9(1)=0.
    YI9(I)=0,
    DYRY(I)=0,
    DY19(1)=0,
    A9(I)=0,
    B9(1)=0.
2C9(1)=0.
    DO 3 I=1,1\
    BIGAH(I)=0.
    AH(I)=0,
    BH(l)=0.
    CH(I)=0.
    RR12(1)=0.
3 RRI12(I)=0,
    DO 4 I=1.12
    YR12(I)=0.
    YI12(I)=0,
    DYK12(I)=0,
    DYI12(I)=0,
    XR(I)=0.
    XI(l)=0,
4 U(I)=0.
    DO 5 I =1,15
    AY(1)=0,
5 |CHG(I)=0.
```

```
    D0 6 I=1,150
    CCH(I)=0.
    6CC(I)=0,
    DO }7\mathrm{ I=1,7
    7 PSI6(1)=0.
    NUMMA=1
    iNP = 0
    NO=9
    LK = NF
    UT=6
    IOUT=UT
    NIN=5
    NP=6
    NOUT=NP
    LI=3
    LJ=3
    LK=NF
    N=NF
    K=1
    LM = 3
    LJ1 = LJ+1
    DO 1575 MM=1,810
    DUM(MM) = 0
1575 CONTINUE
    OUT=-1
    PI=3,1415926
    DELTA=,0001/PI
    EPS=1,D-10
    DELTAX=1,D-5
    CALL SIB(OUTPUT,CR,CI,INFUT,AR,AK,AI,AI,BR,BI,LI,LJ,LK,NF,NP)
    CALL SIB(OUT,DK,DI,IN,AR,BR,AI,BI,DUM,DUM,LI,LJ,LK,NF,NP)
    CALL SIC(AR,AI,CR,CI,CR,CI,DR,DI,ER,EI,LI,LJ,LK,NF)
    CALL SIC(BR,BI,CR,CI,DR,DI,DUM,DUM,FR,FI,LI,LJ,LK,NF)
    CALL SS(1,PSI9,ETA9,YR9,YI9,K9,IN,DELTA,CR,DR,NF,9,NP,NIMAG)
    L=NIMAG
    CALL S3(1,PSI12,ETA12,YR12,YI12,K12,JN,DELTA,ER,FR,NF,12,NP,NIMAG)
    CALL D(FFR,FFI,GR,GI,ALPHA,BETA,GAMMA,DELT,CR,CI,DR,DI,AUMRG,AUMIG
    1,AUMR12,AUMI12,DYR9,DYI9,PIRULD,PIRNEW,YR9,YI9,NDR9,NDI9,9,K9,L,N,
    ZLI,LJ,NF,EPS,DELTAX)
    CALL D(FFR,FFI,GR,GI,ALPHA,BETA,GAMMA,DELT,ER,EI,FR,FI,AUMRG,AUMIG
    1,AUMR12,AUMI12,DYR12,DYI12,PIIOLD,PIINEW,YR12,YI12,NDR12,NDI12.
    212,K12,NIMAG,N,LI,LJ,NF,EPS,DELTAX)
    WRITE (NP,1180) DYR9,DYI9,DYR12,DYI12
    CALL S4!CC,BIGA,A9,B9,C9,XR,XI,U,PSI9,ETA9,9,K9,PI,DYR9,DYI9,YR9,
    1 Y|9)
    WRITE (NP,1180) BIGA
    CALL SIMQ(CC,9,BIGA)
    WRITE (NP,1180) BIGA
    OUT=1
    CALL S4\CCH,BIGAH,AH,BH,CH,XR,XI,U,PSII2,ETA12,12,K12,PI,
    1 DYR12,DYI12,YK12,YI12)
    WRITE (NP,1180) BIGAH
    CALL SIMU(CCH,12,BIGAH)
    WRITE (NP,1180) BIGAH
    WRITE (NP,1180) AH,BH,CH
    WR!TE (NP,1180) A9,B9,C9
1180 FORMAT (*1*/(G15,7))
    CALL S5A(OUT,AK12,IN,K12, 6,BIGAH,BH,AH,CH,IERR)
1171 AY(1) = AK12(12)
    AY(2) = AK12(11)
    AY(3) =AK12(10)
    AY(4) = AK12(9)
```

```
    AY(5) = AK12(8)
    AY(G) = AK12(7)
    AY(7) = AK12(6)
    AY(8) = AK12(5)
    AY(9)=AK12(4)
    AY(10)=AK12(3)
    AY(11) = AK12(2)
    AY(12) = AK12(1)
    AY(13) = 1,
    NUM=12
    CALL DPRQD (AY,13,R12TR,R12TI,YY,NUM, IERR)
    WRITE (6,1180) NUM,IERR
    1169 CALL TEA(12,6,K12TR,R12TI,XI12,ET12)
    CALL S5A(OUT,AK9,IN,K9,4,BIGA,B9,A9,C9,IERR)
    1177 AY(1) = AK9(9)
    AY(2) = AK9(8)
    AY(3) = AK9(7)
    AY(4) = AK9(6)
    AY(5) =AK9(5)
    AY(6) = AK9(4)
    AY(7) = AK9(3)
    AY(B) = AK9(2)
        AY(y) = AK9(1)
    AY(10)=1.
    NUM=9
    CALL DPRQD (AY,10,RR,RRI,YY,NUM,IERR)
    WRITE (6,1180) NUM,IERR
1175 CALL TEA(9,6,RK,RRI,XI9,ET9)
    CALL S6(OUT,SIGMA,IN,AK9,AK12,NP)
    1167
    Z(7)=1
    Z(6)=SIGMA(1)
    Z(5) = S|GMA(2)
    Z(4) = SIGMA(3)
    Z(3)=SIGMA(4)
    Z(2)=SIGMA(5)
    Z(1) = SJGMA(6)
    WRITE (NP,1180) SIGMA
    NUM=6
    CALL DPRQU (Z,7,ROGTR,ROGTI,YY,NUM,IERR)
    WRJTE (6,1180) NUM,IERR
    CALL TEA(6,6,RUGTR,ROGTI,XIG,ETAG)
    CALL PAT(AUMR9,AUMR12,PSI9,PSI12,XI9,XI12,XI6,ETA9,ETA12,ETQ,ET12
    1,ETAG, GA,MU,NF,RR,RRI,R12TR,R12TI,R06TR,ROGTI,NDR9,NDR12,YR9,YR
    212,PIROLD,PIRNEW,PIIOLD,PIINEW,AUMI9,AUMI12,NDI9,NDI12,YI9,Y112)
    STOP
    END
    SUBROUTINE D(FFR,FFI,GR,GI,AL,BE,GA,DE,CR,CI,DR,DI,AUMR9,AUMIG
    1.AUMR12,AUM!12,DYR9,DYI9,PIROLD,PIRNEW,YR9,YIG,NDR9,NDI9,NO,L,K,N,
    2LI,LJ,NF,EPS,DELTAX)
C IMPLICIT REAL*O(A-H,O-Z)
    DIMENSION AY(150)
    DIMENSION DETR(20),DEFI(20),NDI(20),P|RNEW(20),P!ROLD(20)
    DIMENSION FFR(1),FFI(1),GR(1),GI(1),AL(1),BE(1),GA(1),DE(1),DR(1),
1 D|(1),CR(1),CI(1),AUMR9(8,14),AUMI9(8,14),AUMR12(11,14),
2 AUM\12(11,14),DYR9(1),DYI9(1),YR9(1),YI9(1),NDR9(1),ND19(1)
    DSQRT(V)=SQRT(V)
    DMAX1(A,B,C)=AMAX1(A,B,C)
    DABS(V)=ABS(V)
    DATAN(V)=ATAN(V)
    DCOS (V)=COS(V)
    DEXP(V) =EXP(V)
    DLOG(V)=ALOG(V)
```

```
    DLOG10(V)=ALOG10(V)
    DSIN(V)=SIN(V)
    DCOSH(V)=COSH(V)
    DSINH(V)=SINH(V)
C SUBROUTINE TO FETCH DETERMINANTS AND CONVERGENCE MONITOR
    QUT=6.
        NQ=6
    NlMAG= K
    KEUFK
    K9=L
    1F(NO-9) 2,3,2
    3 \mp@code { N U M = 1 }
    GO TO 4
    2 IF(NQ-12) 5,6,5
    5 KEU=3
    RETURN
    6 \mp@code { N U M ェ 2 }
    4 NO1=NO=1
C
    DO COMPLEX ROOTS FIRST USING COMPLEX CONJUGATE OF THE DETERMINAN
C DO THE REMAINING REAL ROOTS SECOND PART 2
            DO 1145 NP=1,2
            go TO (1041,1042),NP
1041 NP1=1
    NP2=NIMAG
    NSTEP=2
        GO TO 1143
1042 NP1=NIMAG+1
    NP2= NO-1
    IF (NP2,EQ,NIMAG) GO TO 1145
    NSTEP= 1
11.43 DO 145 MM=NP1,NP2,NSTEP
    IN=0
    H=YR9(MM)
    GH=Y19(MM)
    168 DO 55 ND=5,6
            NOS=6*ND+3
            NN=1NO3*NO3
            @O 77 LL=1,NN
            GR(LL)=0,
        77 GI(LL)=0,
            MD=ND
C NOGO = 4 INDICATES THAT BOTH HAVE CONVERGED
            CALL SZA(OUT,FFR,FFI,GR,GI,AL,BE,GA,DE,PIR,PII,
            1 IN,CR,Cl,DR,UI,H,GH,N,ND,LI,LJ,NF,M,NQ,NO,EPS,DELTAX)
4444 IF(KEU) 11,11,12
    12 WRITE(NO,1037) ND,H,GH,PIR,PII
1037 FORMAT(1H0,4H Y(,I3,4H)=E20,8,*I*,14H D REAL E20,8,
    112H D IMAG = G20,8/*0*,BG15,7)
    11 UETK(ND)=PIR
            DETI(ND)=PII
            GO TO (919.912),NUM
    919 AUMR9(MM,ND)=P!R
        AUMI9(MM,ND)=PII
        IF(NP,E(N.1) GU TO 55
        AUMR9(MM+1,ND)= PIR
        AUMI9(MM+1,ND)=-PII
            GO TO 55
    912 AUMK12(MM,ND)=PIR
        AUMI12(MM,ND)=PII
        IF(NP,EQ.1) GU TO 55
        AUMK12(MM+1,ND) =P\R
        AUMI22(MM*1,ND)=-PII
```

```
        55 CONTINUE
        NOMO=1
        NOCO=1
        DEII(3)=0.
        DETI(A)=0.
        DO 155 ND=7,11
        IF (NSTEP,EQ,1) NOMO=2
        NOGOE NOCO*NOMU
        IF (NOGO,EQ.4) GO TO $677
        NOS=6*ND*3
            NN=NO3*NO3
        DO 78 LL=1,NN
        GR(LL)=0.
        78 GI(LL)=0
        MD=ND
        91 CALL S2A(OUT,FFR,FFI,GR,GI,AL,BE,GA,DE,PIR,PII,
            1 IN,CR,CI,DR,DI,H,GH,N,ND,LI,LJ,NF,M,NQ,NO,EPS,DELTAX)
        JF(KEU) 13,13,14
        14 WRITE(NQ,1037) ND,H,GH,PIR,DII,NOCO,NOMO
        13 DETR(ND)=PIR
            GO TO(29,32),NUM
        29 AUMR9(MM,ND)=P|R
            GO TO 35
        32 AUMP12(MM,ND)=PIR
    35 NSTART=5
    GO TO (92.93),NOCO
        92 CALL UP(DETR,MD,NSTART,NQ)
            NDR9(MM)=ND
            DETH(4)=P!R
        83 IF (NSTART) 93.141.93
    141 |F(DETR(2)) 93,167,93
    167 DETR(4)=DETR(1)
C REAL PART HAS CONVERGED
        NOCO=2
    93 NSTART=5
    GO TO (95,155),NOMO
    95 DETI(ND)=PII
        CALL UP(DETI,MU,NSTART,NQ)
        DETI(4)=PII
        ND|9(MM)=ND
        IF(NSTART) 155,1441,155
1441 [F(DETI(2)) 15%,97,155
    97 NOMO=2
        DETI(4)=DETI(1)
    155 CONTINUE
        IF (NOMO,EQ,1) DETI(1)=PII
        IF (NOCO.E(,1) DETR(1)=PIR
        IF (NSTEP,EQ,1) UETI(1)=0.
        ND=MD
1677 DYIG(MM)= DETI(4)
    DYR9(MM)=DETR(4)
    PIRNEW(MM)=DETK(3)
    PIROLD(MM)=DET1(3)
    GO TO(49,52),NUM
    49 AUMH9(MM,ND+1)=DYR9(MM)
    AUM19(MM,ND+1)=DYI9(MM)
    IF(NP,EQ,2) GO TO 51
    AUMR9(MM+1,ND*1)=DYR9(MM)
    AUMI9(MM+1,ND+1)=-DYI9(MM)
    NDI9(MM*1)=0
    GO TO 51
    52 AUMR12(MM,ND+1) =DYR9(MM)
```

```
    AUMI12(MM,ND*1)=DYI9(MM)
    IF(NP,EQ,1) GO TO 51
    AUMR12(MM+1,ND+1)=DYR9(MM)
    AUM112(MM+1,ND+1)==DY\9(MM)
    ND|9(MM+1)=0
51 NDI9(MM)=NU
    IF(KEU)145,145,57
    57 WRITE(NO,6656)UETR(1),DETI(1),H
    6656 FORMAT(1HO,22HPREDICTED CONVERGENGE G2O,8,7H REAL ,G2O.B,
    1 7H IMAG: 15H EVALUATED AT G20,8)
    DETI(4)=0,
    145 CONTINUE
1145 CONTINUE
    RETURN
    END
    SUBROUTINE PRE(ND,PC,NP)
C IMPLICIT REAL*O(A-H,O-Z)
    DIMENSION PC(16)
        PREDICT THE CONVERGEED VALUES BASED ON THE LAST THREE
C DETERMINANTS
C REAL*8 K2K1,K2K3,MU,K1,K2,K3
    REAL K1,K2,K3,K2K1,K2K3,MU
    DSQRT(D)=SURT(U)
    DMAX1(A,B,C)=AMAX1(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(U)
    DCOS(D)=\operatorname{COS(D)}
    DEXP(D)=EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)=ALOG10(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(U)
    DSINH(D)=SINH(D)
    DELTA=,00001
    C1 = PC(ND.2)
    C2 = PC(ND-1)
    C3 = PC(ND)
    K1=ivD-2
    K2 = ND-1
    K3 = ND
    K2k3= K2/k3
    K2K1=K2/K1
C WRITTEN FOR THE INFINITE DETERMINANT SUBROUTINE WITH ASYMPTOTIC
    MU = (C1-C2)/(C2-C3)
    P=,00001
    FP=MU*(9.,-K2K3**P)-K2K1**P+1
    A=DABS(FP)/FP
C THIS GETS NEGATIVE OR POSITIVE ONE
    AM = 1
    AP=1
    M20=1
    M100=100
    M1 = 1
    13 KKKK=0
    DO 1 M = M20,M100,M1
    AP = K2K1*AP
    AM =K2K3*AM
    FP=MUFMU*AM -AP+1
    B=DABS(FP)/FP
    IF(A+B) 1,10,1
    1 CONTINUE
    PC(2) = 3
```

RETURN
$10 \mathrm{M} 50=\mathrm{M}+50$
18 PNEM
19 FA $=M U *(1,-K 2 K 3 * * P N)-K 2 K 1 * * P N * 1$
DD $15 \mathrm{~L}=1,50$
PNK2K3 = K2K3**PN
PNK2K1= K2K1**PN
PN1 $=P N+(M U *(1,-P N K 2 K 3)-P N K 2 K 1+1) /(P N K 2 K 1 * D L O G(K 2 K 1)+M U * P N K 2 K 3 *$
1DLOG(K2K3))
PN1FP=(PN1-PN)/PN1
PN = PN1
$B=M U *(1,-K 2 K S * * P N 1)-K 2 K 1 * * P N 1 * 1$
PC(3) = PN1
IF (DABS (PN1FP)-DELTA) $16,16,15$
$15 \mathrm{FA}=\mathrm{B}$
14 PC(2) =2
RETURN
$16 \mathrm{PC}(1)=(C 2 * K 2 K 1 * * P N 1-C 1) /(K 2 K 1 * * P N 1-1$,
$P C(2)=0$
RETURN
ENU
SUBROUTINE SZA(OUT,FFR,FFI,GR,GI,ALPH,BET. GAMM,DELT,PIR,PII,
1 IN,CR,CI,DR,DI,YR,YI,N,ND,LI,LJ,NF,M,NP,NO,EPS,DELTAX)
IMPLICIT REAL* $B(A-H, O-Z)$
TO GET THE REAL AND IMAGINARY PART OF A COMPLEX DETERMINANT
SUBROUTINE SECT2BIOUT,FFR,FFI,GR,GI,ALPH, BET,GAMM, DELT,PIR,PII,
DIMENSION CR(250),CI(250), DR(250),DI(250),ER(350),EI(350)
DIMENSION ALPH(150), BET(150),GAMM(150), DELT(150)
DIMENSION FFR(350), FFI(350)
DIMENSION FR(350),FI(350),GR(350),GI(350)
DSQRT(D) =SQRT(U)
$D M A X I(A, B, C)=A M A X 1(A, B, C)$
$D A B S(D)=A B S(D)$
DATAN(D)=ATAN(D)
$D \cos (D)=\cos (D)$
$D E X P(D)=E X P(D)$
DLOG(D)=ALOG(D)
$D L O G 10(D)=A L O G 10(D)$
DSIN(D)=SIN(D)
DCOSH(D) $=C O S H(U)$
DSINH(D) $=$ SINH(D)
$A L F(F F R I, G K I J, F F I I, G I I J, A B) \quad=(F F R I * G R I J+F F I I * G I!J) * A B$
BETF(FFRI,GIIJ,FFII,GRIJ, AB)=(FFRI*GIIJ-FFII*GRIJ)*AB
FRF (YR,YI, R, CRMMI, DRMM) $\triangle Y R * * 3-3 ; * Y R *((2 ; * R+Y J) * * 2)+Y R * C R M M 1 \pm D R M M$
FIF (YR,YI,R,CRMM1) $=(2, * F+Y I) *(3, * Y R * Y R-((2 * R+Y I) * * 2)+C R M M 1)$
$G R F(Y R, Y I, S, C R M, C I M, D R M)=Y R * C R M=(2, * S * Y I) * C I M+D R M$
GIF(YR,YI,S,CRM,CIM,DIM)=YR*CIM+(2,*S+YI)*CRM+DIM
FHR(YR,YI,R,CRMM1,DRMM1) $=((Y R * Y R-(2, * R * Y 1) * * 2) * * 2) * Y R * C R M M 1=$
$1(4, * R * Y R+2, * Y R * Y I) * * 2+D R M M 1$
$F H I(Y R, Y I, R, C R M M I)=(2, * R+Y I) *(4 ; * Y R *(Y R * Y R *((2, * R * Y I) * * 2)) * C R M M 1)$
NIN=5
$N P=6$
ORDER=NO
NDP $1=N D+1$
ND2 $=2 * N D+1$
1F(ORDER-9,) 1, 2.1
1 IF (ORDER-12;)4,3,4
1005 FORMAT(41H1IN UELY NEITHER A 9TH OR 12TH ORDER CALL)
3 NOR=2
$L K=3-N F=2$
GOTO 8
2 NOR=1

```
    LK = 2*NF-1
    8 LJ1 23*(2*ND+1)
C LJI IS USED FOR 2 DIMENSION INDICES
    LM=LI
    LN=LJ
    LJ=LJ+1
    LK33 = LI*LJ*LK
    MD=-ND
    MZ=0
C
C NEGATIVE SUBSCRIPTING STARTS
C
    DO 89 MX=1,NLI2
    MR=MX-NDP1
    R=MR
    I E 3*(MR+ND)+M
    NIRM=3*(ND=MR)+M
23 GO TO (66,67),NOR
    DO }9\mathrm{ TH ORDER EUUATIONS
66 FFII=FIF(YR,YI,R,CRMM1)
    FFRI=FRF(YR,YI,R,CRMM1,DRMM1)
    AL.PH(I)=1./(FFKI*FFRI*FFII*FFI!)
    FRN=FRF(YR,-Y1,R,CRMM1,DRMM1)
    FIN=FIF(YR,-YI,R,CRMM1)
    BET(NIRM)=1,/(FRN*FRN*FIN*FIN)
    GAMM(NIRM)=FRN
    DELT(NIRM) =FIN
    FFI(I)=FFII
    FFK(I)=FFRI
    GO 10 89
67 FFRI=FHR(YR,YI,R,CRMM1,DRYM1 )
    FFII=FHI(YK,YI,R,CRMMI)
    FF!(l)=FF||
    FFR(|)=FFRI
    ALPH(I)=1,/(FFII*FFII FFFRI*FFRI)
    FRN=FHR(YR,-YI,R,CRMM1,DRMM1)
    FIN=FHI(YR,OYI,R,CRMMI)
    BET(NIRM)=1,/(FRN*FRN*FIN*FIN)
    GAMM(NIRM)=FRN
    DELT(NIRM)=FIN
89 CONTINUE
    DO 5 MY=1,ND2
    MS=MY-NDP1
    S=MS
    S2 = S+S
    MSND = ND=MS
    MSND3 = MSND*MSND+MSND
    NDMS=ND+MS
    NDMS3 = NDMS+NUMS*NDMS
    DO S MX=MY,ND2
    MR=MX-NDP1
    R=MH
    NDMH = ND-MR
    NDMP3 = NDMR+NUMR+NDMR
    MRNDI= MR+ND
    MRNDS = MRND+MKND +MRND
    MRMS1 = MR*MS+1
```

```
        DO 5 M=1,LM
        I E MRND3*M
C INDICES ARE IN THREE DIMENSIONS
    NIRM = NDMR3 + M
    BAFBET(NIRM)
    FRNEG EGAMM(NIRM)
    FINEG EDELT(NIRM)
    N\RM1=(NIRM+1)*LJI
C |RM= 3*(MR*ND)+M
    FFRI =FFR(1)
    FFII = FFI(I)
    AB=ALPH(I)
    IRM = I
        |RM1 = (|RM-1)*L\1
    DO }5\textrm{N}=1,L
    MN=(LI*M=LJ+N)*LK
    MNRS1=MN+MRMS1
    NJSN = MSND3+N
    NEGIJ = NIKM1*NJSN
    JSN # NDMS3+N
    IJ= \RM1*JSN
    IF(MRMS1-LK) 6177,6177,6117
    6117 GR(IJ) = 0.
    GI(lJ) = 0
    GR(NEGIJ)=0,
    GI(NEGIJ)=0,
    GO TQ 5
    6177 IF(M-N)2111,017.2111
    617 IF(MR-MS) 2111,2112,2111
2112GR(|J)=1,
    GI(IJ)=0
    GR(NEGIJ)=1,
    GI(NEGIJ)=0,
    GO TO 5
2111 CRMINRS=CR(MNRS1)
    CIMNRS = CI(MNRSI)
    DRMNRS= DR(MNR\1)
    DIMNRS= DI(IMNRS1)
    GRIJ=GHF (YR,YI,S,CRMNRS,CIMNRS,DRMNRS)
    GIIJ=GIF(YR,YI,S,CRMNRS,CIMNRS,DIMNRS)
    TEMPA =(FFRI*GRIJ + FFII*GIIJ)*AB
    GI(IJ)=(FFRI*GIIJ-FFII*GRIJ)*AB
    GR(IJ) = TEMPA
    3111 GRNEG =GRF(YR,-YI,S,CRMNRS,CIMNRS,DRMNRS)
    GINEG =GIF(YR,-YI,S,CTRMNRS,CIMNRS,DIMNRS)
    GI(NEGIJ)== BETF(FRNEG ,GINEG ,FINEG ,GRNEG ,BA)
    GR(NEGIJ)=ALF(FRNEG ,GRNEG ,FINEG ,GINEG ,BA)
        5 CONTINUE
8887 KKKKK=0
9999 KKKKK=0
    M=6*ND*3
C
    M1 = M=1
    DO 200 KM = 1,M1
    NST = 3
    M2J = KM
    MKM=M-KM
    M2=MKM+1
    M21M = (M2-1)*M
    MM=(M2-1)*M*M2
C
    GRMM=GR(MM)
```

```
            GIMM= GI(MM)
            D = GRMM*GRMM * GIMM*GIMM
            DII=1,/D
            |F(D-EPS)71,72,72
C
C
    71
    NA=M-KM
        DO 73 LL=1,NA
            LUVM=(LL-1)*M*J
            {F(GR(LUVM) -DELTAX) 91,91,92
    91 [F(GI(LUVM)-DELTAX) 733,733,92
    7 3 \text { CONTINUE}
    73 WRITE(NP,1002)UELTAX,D,M2J
1002 FORMAT(54H ****UNABLE TO FIND AN ALPHA OR BETA LARGER THAN DELTA//
    1 21H IN SUBROUTINE DELY
    2 10H DELTAX= , G20,8,17H OLD VALUE USED= G20,8,10H COLUMN
        1 (5)
            IF(U) 72.999.72
    92 DO 77 J=1,NA
            NAJ=(NA-1)*M*J
            KJ=(LL-1)*M+J
            GR(NAJ) = GR(NAJ) - GR(KJ)
            GI(NAJ) = GI(NAJ) + GI(KJ)
            NANA = (NA-1)*M + NA
            D=GR(NANA)*GH(NANA)*GI(NANA)*GI(NANA)
            7 7 \text { CONTINUE}
4007 FORMAT(21H ADJUSTMENT ON COLUMN 15)
            WRITE(NP,4007) M
            GO TO 72
    999 WRITE(NP,1009)
1009 FOHMAT(1HOSOHNECESSARY TO ABORT DUE TO SINGULARITY,
    STOP
C
    72 MONEY=0
        DO 2200 I=1,MKM
        |M= (I-1)*M
        |M= IIM+M2
        |M=(\=1)*M+M2
        GRIM=GR(IM)
        GIIM=GI(IM)
        GAM = GRIM*GRMM * GIMM*GIIM
        GA=DII*GAM
        DE= DII*(GIIM*GRMM-GRIM*GIMM)
        DO2200 J = 1. MKM
        \J= I1M+J
        MJE M21M+J
        BE=GI(MJ)
        AL=GR(MJ)
        GR(IJ):GR(IJ)-GA*AL*DE*BE
        GI(IJ)=GI(IJ) - GA*BE-DE*AL
2200 GONTINUE
    200 CONTINUE
    PI|N=GI(1)
    PIRN = GR(1)
    M1 = M-1
    DO 103 K = 2,M1
    KK=(K-1)*M+K
    GRKK = GR(KK)
    GlKKa Gl(KK)
    PIR =GRKK*PIRN-GIKK*PIIN
```

```
    PI! = PIIN*GRKK + GIKK*PIRN
    PIRN=PIR
    103 PI|N=P!I
    LJ=L\-1
    RETURN
    4 WRITE(NP,1005)
        RETURN
        END
    SUGROUTINE UP(PC,ND,NSTART,NP)
    |MPLICIT REAL&G(A=H,O-Z)
    DIMENSION PC(18)
    COMMON /AERR/ PD,PA,RATIO,IRRCD,MRRCD,NRRCD,IKX
    DSORT(D)=SQRT(U)
    DMAXI(A,B,C)=AMAXI(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(D)
    DCOS (D)=\operatorname{cos(D)}
    DEXP(D)=EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)=ALOG10(D)
    DS|N(D)=SIN(D)
    DCOSH(D)=COSH(D)
    DSINH(D)=SINH(D)
C SUBROUTINE TO ESTABLISH CRITERION FOR CONVERGENCE
C THE LAST THKEE DETERMINAVTS MUST bE MONOTONIC, CONVERGING
    |KX=0
    IRRCD=0
    NRRCD=0
    MRKCD=0
    EPSIL = .075
    EP2 = 2,*EPSIL
    51 ND1 F ND-1
    ND2 = ND-2
    PA = PC(ND1)-PC(ND2)
    PD = PC(ND)-PC(ND1)
    PA65=PA
    PA76=PD
    PA1= DABS(PA)
    PDI=DABS(PD)
    IF(PD1= PA1)8,55,55
    8 KKKK=0
    |F(PA) 1,2.2
    1 PA= -1,
    GO TO 3
    2 PA=1,
    3 1F(FD) 4,5,5
    PD==1,
    GOTO}
    5 PD=1,
    |F(PA+PD)7.55.7
    7 1RRCD=1
    PDEPD1/PC(ND1)
    |RRCD=0
    MRRCD=3
    PAFPA1/PC(ND2)
    MRRCD=0
    PAFDABS(PA)
    PD=DABS (PD)
    IF(PA-EPSIL) 17,17,55
    17 IF(PD-EPSIL) 18,18,55
18KKKK=0
    NRRCD=5
```

```
        RATIO=PA76/PA6S
        NRRCD=0
        IF(IKX,GT,O)
    1. WRITE (6,9876) IRRCD,MRRCD,NRRCD
9876. FORMAT (*O*,*DIVISION BY ZERO ERHOR *,I5,15,15)
    lF(RATIO)55,55,19
    19 IF(RATIO-,8)54,55,55
    5 4 ~ C A L L ~ P R E ( N D , P C , N P )
        NSTART = 0
        RETURN
    55 CONTINUE
    NSTART = 1
    RETURN
    END
    SUBROUTINE S3(OUT,PSI,ETA,YR,YI,N,IN,DD,CR,DR,NF,K,NR,NIMAG9)
C IMPLICIT REAL&B(A-H,O-Z)
    INTEGER OUT
    DIMENSION ROLY(6),POLY(6)
    DIMENSION PSI(1),ETA(1),YR(1),YI(1),CR(1),DR(1)
    DIMENSION ROOTK(12),ROOTI(12),RR(12),RRI(12)
    DSQRT (D)=SQRT(D)
    DMAXI(A,B,C)=AMAXI (A,B,C)
    DABS(D) =ABS(D)
    DATAN(D)=ATAN(D)
    DCOS(D)=COS(D)
    DEXP(D) = EXP(D)
    DLOG(D) =ALOG(D)
    DLOG10(D)=0LOG10(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(U)
    DSINH(D)=SINH(0)
    K IS THE ORDER
C N IS THE NUMBEH OF COMPLEX PAIRS
    NOUT=NP
C SUBROUTINE TO GET THE POLYNOMIAL ROOTS OF THE gTH AN 12TH ORDER
    DELTA= DD
    LI=3
    L=0
        LJ1=4
    NF3=3*NF-2
    |F(K=9) 1,2,1
    1\F(K-12) 99,3,99
    2 LK=2*NF-1
    NOROER=1
    NK=3
    GO TO }
    3 LK=3*NF-2
        NORDERE2
        NK=4
        KNF3=3*NF-2
    4 DO 20 M= 1,3
        L=(M-1)*NK
        NN1=(LI*M=LJI*M)*LK+1
        C = CR(NN1)
        D = DR(NN1)
        GO TO ( 9.12),NORDER
    9 ROLY(4)= 1,
        ROLY(3)=0,
        ROLY(2)= C
        ROLY(1)= D
        IK=4
        GOTO $0
```

```
    12 ROLY(5)=1
        ROLY(4)=0
        ROLY(3)=0
        ROLY(2)=C
        ROLY(1)= D
        IK=5
4242 FORMAT(1H ,6G20,6)
    10 CALG PROD(ROLY,IK,ROOFR,ROOTI,POLY,NUM&IER)
        WRITE(6,4242)ROOTI
        WRITE(6.4242)ROOTR
    14 [F(OUT) 21.21.16
    16 GO TO (919.912),NORDER
41112 FORMAT(*0*// POLYNOMIAL *5HX**3***F16,6,*X **F16,6/
    1. FEAL PART OF ROOT *F16,6,* IMAGINARY PART OF ROOT * F16.6/
    1 * REAL PART OF ROOT *F16,6,* IMAGINARY PART OF ROOT F16.6/
    1 * REAL PART OF ROOT F F16,6,* IMAGINARY PART OF ROOT * F16.6/)
1002 FORMATI3X,25HEKROR IN PRQD SUBROUTINE , 15/)
41113 FORMAT&*0*// * POLYNOMIAL *5HX**4 * * *F16,6,*X**F16,6/
    1 * REAL PART OF ROOT *F16,6.* IMAGINARY PART OF ROOT * F16.6/
    2 REAL PART OF ROOT F26,6.* IMAGINARY PART OF ROOT *F16.6/
    3 * REAL PART OF ROOT F16,6,* IMAGINARY PART OF ROOT * F16.6/
    4 * REAL PART OF ROOT FF16,6,* IMAGINARY PART OF ROOT F16.6/I
    919 WRITE(NP,41112JC,D,(ROOTR(J),ROOTI(J),JEI,NK)
        GO TO 21
    912 WRITE(NP,41113)C,D,(ROOTR(J),ROOTI(J),J#1,NK)
        21 DO 26 LM=1,NK
            LMLELM*L
            RR(LML) = ROOTK(LM)
        26 RRI(LML) = ROOTI(LM)
            MML=(M-1)*4
        20 CONTINUE
            WRITE (6,4242) RR,RRI
C ALL TWELVW ROOTS OF THE 12TH ORDER SYSTEM HAVE BEEN FOUND
C ALL NINE ROOTS HAVE BEEN DETERMINED
    SEARCH FOR THE LERO IMAGINARIES
        KTOP=K
            KLOW E 1
            DO 30 M=1.K
            IF(RRI(M))31,32,31
        32 PSI(KTOP)=RR(M)
            YR(KTOP)=RR(M)=DELTA
            YI(KTOP)=0,
            ETA(KTOP)#0,
            KTQF = KTOP-1
                GO TO 30
    31 YR(KLOW)=RR(M)=DELTA
            PSI(KLOW)=RR(M)
            ETA(KLOW)=RRI(M)
            YI(KLOW)=RRI(M)
            KLOW=KLOW+1
        30 CONTINUE
            NIMAG9EKLOW-1
        47 N= KLOW/2
            ALL TWELVW ROOTS OF PHE 12TH ORDER SYSTEM HAVE BEEN FOUNC
            IF(OUT) 100,100.98
    98 DO 140 M=1,K
            WRJTE(NP,1015) M,RSI(M)
            WRITE(NP,1016) M,ETA(M)
            WRITE(NP,1017)M,YR(M),YI(M)
1016 FORMAT(1H ,GHETA ( [5,4H) = E20,8)
1017 FORMAT(1H 6HYR (,15,4H) F E2O,B,7H IMAG, E20,8)
1015 FORMAT(1H0,6HPSI (.I5.4H)= E20.8)
```

```
    140 CONTINUE
    GO TD 100
    99 |N=1
    100 RETURN
    END
    SUBROUPINE SIB(OUT,CR,CI,IN,AR,BAR,AI,BAI,BR,BI,LI,LJ,LK,NF:NP)
    IMPLICIT REAL*&(A=H,O-Z)
    DIMENSION CI(250),C゙R(250),AR(250),BAR(250),BAI(250),AI(125)
    DIMENSION BR(250).B|(25)
    DSQRT(D) =SORT(D)
    DMAXI(A,B,C)=AMAXI(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(D)
    DCOS(D)=COS(D)
    DEXP(D) EEXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)mALOG1O(D)
    DSIN(D)ESIN(D)
    DCOSH(D)=COSH(0)
    DSINH(D)=SINH(D)
    FOR THE CALCULATION OF THE CR(I.J.K) AND FHE CI(I.N.K) USE,..
    CALL SECTI(CR,Cl,AR,AR,AI,AI,BR,BI,LI,LN,LK,NF)
    FOR THE CALCULATION OF THE DR(I,J,K) AND THE DI(I,J,K) USE,.,
    CALL SECTI(DR,DI,AR,BR,AI,BI,DUM,DUM,LI,LJ,LK,NF)
    WHERE DUM IS A VECTOR AS LONG AS BI AND BR 日UT = TO ZERD EVERYWHE
    LJFLJ*1
    LJL F LJ=1
    LK=NF
    N2F1 = 2 * NF -1
    NFI = NF * 1
    KL=2*NF-1
    DO 5 \`1, L!
    DO5 J = 1, LJ1
    IKL m(L! | I-LJ*J)*KL
                \J=(L! * l -LJ*J)*LK
    FOR K # 1, 2, !,',NF
            DO 55 K = 1,NF
    AK = Ko1
    |JKL = IKL*K
    |JK ! IJ * K
    Cl(lJKL) # 2,* AK * BAR(|JK) + BI(|JK)
    CR(IJKL)= 2.**K*BAI(IJK) * BR(IJK)
    PERFURM THE SUMMATIONS
    CONSTR =0
    CONSTI = 0
C
    DO 7 L= 1. 3
    IL= (LI*I=LJ * L)*LK
        J.= (LI*L -LJ+J)*LK
    CONST1 =0
    CONSTAEO.
C
    DO 15 N:1 *K
    ILN=|L+N
    LJKIN = JL + K *1 -N
    ARILN AR(ILN)
    BALJK1:BAR(LJKIN)
```

```
        AlILNEAI(ILN)
    BILJK1EBAI(LJKIN)
        APPLE= BALJKI*ARILN
    PEAR = AIILN*BILJKI
    CONST1 F CONST1*APPLE*PEAR
C. CONST1 CONST1.
C CONST4 E CONST4 - AR(ILN) 
    CONST4 = CONST4 - AR(ILN) - BAI(LJKIN) * Al(ILN) - BAR(LNKIN)
    PEAR = AlILN*BALJKI
    CONST4=CONST4*APPLE*PEAR
    15 CONTINUE
        CONST2=0
        CONSTS=0
        |F(NF~K) 17, 1%,16
    16 NFK=NF-K
    DO 20 N=1, NFK
    ILN1 = IL +N + 1
    LJNK*JL+N+K
    ILNK=IL + N + K
    LJN1 = JL *N + 1
    ARILNI=AR(ILNI)
    BRL JNK=BAR(LJNK)
    AlILN1=AI(ILNI)
    BILJNK=BAI(LJNK)
    ARILNK=AR(ILNK)
    8RLJN1=RAR(LJNI)
    AIILNK=AI(ILNK)
    BILJN1=BAI(LJN1)
    APPLE=ARILNI*BKLJNK
    PEAK = AIILNI*BILJNK
    PEACH=ARILNK*BKLJN1
    PLUM = AIILNK*BILJNI
    CONST2 = CONST2+APPLE*PEAR*PEACH*PLUM
    APPLE=ARILNI*B|LJNK
    PEAR = AIILNI*BRLJNK
    PEACH = ARILNK*BILJNI
    PLUM = AIILNK*URLJNI
        CONST5 = CONSI5 + APPLE-PEAR-PEACH+PLUM
    CONST5 = CONSTh+ARILNI*BILJNK=AIILNI*BRLJNK-ARILNK*RILJNI*AIILNK*
    20 CONTINUE
    17 CONSTR = CONSTR + CONST1 * CONST2
    CONSTI = CONST1 + CONST4 + CONST5
    7 CONTINUE
    CR(IJKL)= CR(IJKL)= CONSTR
    CI(IJKL)= CI(IJKL)= CONSTI
    55 CONTINUE
    DO 9 K = NF1,N2F1
    CONSTR=0.0
    CONSTI = 0.0
    IJKL =IKL +K
        UO 8 L= 1.3
    IL=(LI*I-LJ+L)*LK
    JL=(LI*L-LJ+J)*LK
    CONST3 = 0.0
    CONST6 = 0,0
    K1N=K + i NF
C
    22 DO 30 N=K1N ,NF
    ILN=IL+N
    LJKIN=JL+K+1-N
```

```
    ARILN=AR(ILN)
    BRLJK1xBAR(LJK1N)
    AIILN=AI(ILN)
    BILJKI=BAI(LJKIN)
    CONS干3 = CONSTS*ARILN*BRLJKI-AIILN*BILJKI
    CONST6 = CONSTO+ARILN*BILJKI+AIILN*BRLJK1
    30 CONTINUE
    21 CONSTR = CONSTR + CONST3
    8 CONSTI=CONSTI+CONST6
    CI(lJKL)=-CONSTI
    CR(IJKL)= - CONSTR
    9 CONTINUE
    5 ~ C O N T I N U E ~
    LJ= LJ=1
        RETURN
    END
    SUBROUTINE SIC(AR,AI,CR,CI,ACR,ACI,DR,DI,ER,EI,LI,LJ,LK,NF)
C IMPLICIT REAL*S(A-H,O-Z)
    DIMENSION CR(250),CI(250),DR(250),DI(250),ER(350),EI(350)
    DIMENSION AR(125),AI(125),ACR(250),ACI(250)
    DSQRT(D)=SQRT(U)
    DMAXI(A,B,C)=AMAK1(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(D)
    DCOS(D)=COS(D)
    DEXF(D)=EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)=ALOG10(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(D)
    DSINH(D) =SINH(D)
    CALL SECYIC(BR,BI,CR,CI,DR,DI,DUM,DUM,FR,FI,LI,LJ,LK,NF)
C LKALS THE LENGTH OF K
C = -
    LK=3*NF-2
    LK2NF=2*NF-1
    LKNF = NF
    LJ=LJ+1
    LJ3=LJ*1
    LJI=LJ=1
    DO 5 I=1.LI
        DO 5 J F 1,LJ1
    lJ=(LI*I-LJ+J)*LK
    |J2=(L|*l-LJ+J)*LK2NF
    DO 45 K=1,NF
    A = K+K-2
    |JK=!J*K
    |JK2= = J2*K
    ER(IJK)=-AK*ACI(!JK2)+DR(IJK2)
    EI(IJK)=AK*ACR(IJK2)*DI(IJK2)
C ER(IJK)==AK*ACI(IJK)*DR(IJK)
C EI(IJK)=AK*ACR(IJK)+DI(IJK)
    CONSTR=0
    CONSTI=0
    DO 55 LF1,3
    |L=(L|*|=L\*L)*LK2NF
    JL=(LI*L=LJ+J)*LKNF
        JL (LI*L-LJ+J)*LK
        IL = (LI*I-LJ+L)*LK
    CONST1=0
    CONST7=0
    NFK=NF-K
```

```
    IF(NFK) 3.3.4
    4 DO 15 N = 1;NFK
    LLN1=IL+N+1
    LJKNEJL*K*N
    CONST1#CONSTI*CR(ILNI)*AR(LJKN) +CI{ILNI)*AI(LJKN)
    CONST7= CR(ILNI) * AI(LJKN) - CI(ILNI)*AR(LJKN) * CONST7
    15 CONTINUE
    3 CONST2=0.0
    CONST8EO
    NFIFNF-1
    DO 20 Ns 1, NFI
    |LKN=1L*K*N
    LJN1=JL*N+1
    CONST2=CR(ILKN) AR(LNN1) CI(ILKN)* AI(LJNI) * CONST2
    CONST8 = CONST8 - CR(ILKN)* AI(LJNI) * CI(ILKN)*AR(LJNI)
    2O CONTINUE
        CONST3 EO
    CONST9 =0
    DO 25 N=1,K
    ILKIN = IL*K+I-N
    LJNz JL+N
    CONST3*CONST3 *R(ILKIN) * AR(LJN) CI(ILKIN) * AI(LJN)
    CONST9# CONST9 * CR(ILKIN) * AI(LJN) * CI(ILKIN) * AR(LJN)
    25 CONTINUE
    CONSTR=CONSTR* CONST1+CONST2+CONST3
    CONSTIFCONST7 * CONST8 + CONST9 +CONSTI
    55 CONTINUE
    ER(IJK) = ER(IJK)- CONSTR
    EI(IJK)= EI(IJK)- CONSTI
    4 5 \text { CONTINUE}
C
    NF1=NF+1
    NF21 = 2*NF-1
    DO 60 K = NF1,NF21
    IJK={J+K
    |JK2 = \J2*K
    AK EK * K -2
    EI(IJK)=AK* ACR(\JK2)+DI(IJK2)
    ER(IJK)=-AK*ACI(IJK2) * DR(IJKZ)
    EI(IJK)=AK*ACR(IJK)*DI(IJK)
    ER(IJK)=*AK*ACI(IJK)*DR(IJK)
    CONSTR=0
    CONSTI=0
    DO 65 LE1,3
    NN=2*NF-1-K
    IL=(LI*I-LJ*L)*LK2NF
    JL=(LI|L*LJ+J)*LKNF
C ll
    CONST4 =0,0
    ONST10ミ0,
    IF(NN)66,66,67
    6 7 D 0 7 0 N = 1 , N N
        ILKN=IL+K+N
        LJN1 = JL+N+1
        ONST10=-CR(ILKN)*AI(LJNI) + CI(ILKN) * AR(LJN1) * ONST10
        CONST4 = CR(ILKN) * AR(LJNI) * CI(ILKN) * AI(LJNI) * CONST4
    70 CONTINUE
    66 CONST5=0,0
        ONST11 = 0
C
    DO 80 N=1,NF
```

```
    ILK1N=1L+K+I-N
    LJN=NL&N
            ONST11 = ONST11 * CR(ILKIN)*AI(LJN)*C\(ILKIN)*AR(LJN)
            CONST5=CONST5+CR(ILKIN)*AR(LJN)-CI(ILKIN)*AI(LJN)
            8O CONTINUE
6 5 \text { CONTINUE}
    ER(IJK) : ER(IJK) - CONSTK
    EI(IJK) = EI(IJK) - CONSTI
    60 CONTINUE
    NF2 2*NF
    NF32: 3*NF=2
    DO 100 K=NF2,NF32
    |JK=1J+K
    I JK2 = I J2*K
    CONSTR = 0
    CONSTI=0
C
G IL=(I*LI-LJ+L)*LK
    IL=(I*LI-LJ+L)*LK2NF
    JL=(LI*L-LJ+J)*LK
    JL=(LI*L*LJ+J)*LKNF
    CONSTG: 0
        ONST12=0
        NN=K-2*NF - 2
    lF(NF=NN) 101, 102, 102
C
    102 DO 110 N = NN ,NF
    ILK1N= IL*K*I*N
    LJN=JL*N
    CONST6 = CR(ILKIN) * AR(LJN) - CI(ILKIN) * AI(LJN)
            ONST12 = CR(ILKIN) - AI(LJN) - CI(ILKIN) • AR(LNN)
    110 CONTINUE
C
    101 CONSFR= CONSTR * CONST6
    CONSTI = CONST1 * ONSTI2
    105 CONTINUE
        ER(|JK)E CONSTR
        EI(IJK)=E CONSTI
    100 CONTINUE
C
        5 \text { CONTINUE}
C
        LJ=LJ-1
        RETURN
        END
        SUBROUTINE PRGD(XCOF,M,ROOTR,ROOTI,COF, NUM,IER)
    IMPLICIT REAL,* (A-H,O-Z)
    DIMENSION XCOF(13),COF(13),ROOTR(13),ROOTI(13)
    DSQRT(D)=SQRT(D)
    DMAXI(A,B,C)=AMAXI(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D) =ATAN(U)
    DCOS(D)=COS(D)
    DEXP(D) =EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D) #ALOG10(D)
    DS|N(D)=S|N(D)
```

```
        DCOSH(D)=COSH(U)
        DS|NH(D)=S\NH(D)
C COMPUTES THE REAL AND COMPLEX RDOTS OF A POLYNOMIAL
    IFIT:0
    N=M=1
    1ER=0
    IF(XCOF(N+1))10,25,10
    10 |F(N)15,15,32
15 lER=1
20 RETURN
25 IER=4
    GO TO 20
30 lER=2
    GO TO 20
    32 IF(N=36) 35,35,30
35 NX=N
    NXX=N+1
    N2=1
    KJ1=N+1
    DO 40 L=1,KJ1
    MTEKJ1-L*1
40 COF(MT)=XCOF(L)
45 XO= .00500101
    YO=,01000101
    IN=0
50 X=X0
    XO=-10,*Y0
    YO= =10,*X
    X=X0
    Y=YO
    IN=IN+1
    GO TO 59
55 FFIT=1
    XPR=X
    YPR=Y
59 ICT= 0
60UX=0.
    UY=0,
    V=0,
    YT=0,
    XT=1,
    U=COF(N+1)
    IF(U) 65,130,65
65 DO 70 IEI,N
    LEN+I+1
    TEMP= COF(L)
    XT2= X*XT-Y*YT
    YT2= X*YT*Y*XT
    V=V+TEMP*YT2
    U=U*TEMP*XT2
    FI=I
    UX¥UX+FI*XT*TEMP
    UY=UY-FI*YT*TEMP
    XT=XT2
70 YT=YT2
    SUMSQ= UX*UX*UY*UY
    IF(SUMSQ) 75,110.75
75 DX= (V*UY-U*UX)/SUMSQ
    X=X+DX
    DY= - (U*UY*V*UX)/SUMSO
    YEY+DY
78 IF(DABS(DY)+DABS(DX)-1,D007) 100,80,80
```

```
    80 \CT=\CT*1
    IF(ICT-500) 60,85,85
    85 IF(IFIT) 100:90.100
    90 IF(IN-5) 50.95.95
    95 IER=3
    RETURN
    100 DO 105 L=1,NXX
    MT=K\I-L+1
    TEMP=XCOF(MT)
    XCOF(MT)=COF(L)
    105 COF(L)= TEMP
    ITEMP=N
    N=NX
    NX=ITEMP
    IF(IFIT) 120,55.120
    110 IF(IFIT) 115,50,115
    115 X=XPR
    Y=YPR
    120 |FIT= 0
    IF(X) 122,125,122
    122 IF (DABS (Y/X)-1,E-05) 135,125,125
    125 ALPHA = X+X
    SUMSQE X*X*Y*Y
    N=N-2
    GO TO 140
    130 x=0.
    NX=NX&1
    NXX= NXX-1
    135 Y=0,
    SUMSO=0.
    ALPHA=X
    N=N-1
    140 COF(2)= COF(2)+ALPHA*COF(1)
        IF (N,LT,2) GO TO 155
    145 DO 150 L=2,N
    150 COF(L+1)=COF(L+1)+ALPHA*COF(L)-SUMSO*COF(L-1)
    155 ROOTI(N2)=Y
    ROOTR(N2) = X
    N2=N2+1
    IF(SUMSQ) 160,165,160
    165 IF (N) 20,20,45
    160 Y=-Y
        SUMSO=0
        GO TO 155
        END
    SUBROUTINE SIMQ(A,N,Y)
C IMPLICIT REAL*४(A=H,O-Z)
    DIMENSION A(150),Y(15),ICHG(15),SV(15)
    DSQRT (D)=SQRT(U)
    UMAX1(A,B,C)=AMAX1(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(U)
    DCOS(D)=COS(D)
    DEXP(D) = EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)=ALOG10(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(0)
    DSINH(D)=SINH(D)
C SUBROUTINE FOR SOLVING SIMULTANEOUS EQUATIONS USING KROUTS METHOD
    DO 1000 l=1.N
    II=(I-1)*N+I
```

```
    SV(I) = A(JI)
    IF(SY(1))5,46,5
    5. Y(I) EY(I)/SV(I)
    DO 1000 , \#1,N
        IJ=(I-1)*N+J
    A(|J)=A(|J)/SV(I)
1000 CONTINUE
    DO 101 K=1,N
    KK = (K-1)*N+K
    AMX=DABS(A(KK))
    IMX=K
    DO 15 I=K,N
    |K = (! -1)*N+K
    {F(DABS(A(IK))=AMX) 15,15,14
    14 AMX=DABS(A(IK))
    \MX=1
    15 CONTINUE
        IF(AMX)27,46,21
    27 IF(IMX=K)8,9,8
    8 DO 22 J=1,N
    KJ=(K=1)*N*J
    TEMP=A(KJ)
    IMXJ = (IMX=1)*N*J
    A(K|) = A(IMXJ)
    22 A(IMXJ)=TEMF
    ICHG(K)=1MX
    TEMP=Y(K)
    Y(K)= Y(IMX)
    Y(IMX)= TEMP
    GO TO 10
    9 1CHG(K)=K
    10 A(KK) = 1./A(KK)
    DO 33 J=1,N
    IF (J-K) 6,33,6
        6 KJ = (K=1)*N*J
    A(KJ)=A(KJ)*A(KK)
    33 CONTINUE
    Y(K) = Y(K)*A(KK)
    DO 44 I=1.N
    |K=(I-1)*N+K
        7 DO 45 J=1:N
            IF(I-K)17.44,17
    17 IF(K-J)18,45,10
    18 |J = (I-1)*N+J
    KJ = (K-1)*N+J
    A(IJ)=A(IJ)=(A(IK)*A(KJ))
C 18 A(I,J)=A(I,J)-(A(I,K))*(A(K,J))
    45 CONTINUE
C Y(I) = Y(I)-A(1,K)*Y(K)
    Y(I) = Y(I)-A(IK)*Y(K)
    44 CONTINUE
    DO 99 I=1,N
    IF(I-K)26,99,26
    26 lK = (1-1)*N+K
    A(IK) = NA(IK)*A(KK)
    99 CONTINUE
    101 CONTINUE
    DO 70 K=1,N
    L=N+1=K
    KI=ICHG(L)
    IF (L=KI) 68,70,68
    68 DO 69 l=1,N
```

```
        IL=(I-1)*N+L
        TEMF = A(IL)
        \K\ =(I-1)*N+K\
        A(IL) = A(IKI)
        A(IKI) = TEMP
    6 9 ~ C O N T I N U E ~
    70 CONTINUE
    DO 1001 I=1,N
    DO 1001 J=1,N
    |J = (I-1)*N+J
    A(lJ)=A(IJ)/SV(J)
1001 CONTINUE
    RETURN
    4 6 N = - N
    RETURN
    END
    SUGROUTINE S4(CC,BIGA,A,B,C,XR,XI,U,SI,E,NO,K,PI,DYR,DYI,YR,YI)
C
C INPUT PARAMETERS
C A(I), B(I),C(I) ARE DUMMY STORAGE
C MAXIMUM LENGTH IS 12 FOR A,B,C
C DELTY IS RHE PARAMETER TO BE USED IF DENOMINATOR BECOMES SMALL
C CC(I) IS THE RETURNED SET OF SUMULTANEOUS EQUATIONS
C Y arE THE INPUT DETERMINANT VALUES
C DY ARE THE DELTA Y VALUES
C X IS DUMMY STORAGE OF SIZE 12
C E(I) IS ETA(J) MAX SIZE IS 12
C U (I) IS DUMMY UF S|ZE 12
    XMX=150.
    NO1=NO-1
    NK=K*2
    DOS N=2,NK,2
    A(N)=PI#SI(N)
    B(N)=P!*E(N)
    5 CONTINUE
    N1=NK+1
    NKI=NK-1
    DO 10 N=N1,NO
10 C(N) = PI*SI(N)
    DO 25 MM=1,NK1,2
    XR(MM)=-PI*YR(MM)
    XI(MM)=P\*(-YI(MM))
    XXR=XR(MM)
    XXI= XI(MM)
    DO 15 N=1,NK1,2
    NN=N+1
```

```
        BNN=B(NN)+XXI
            X!B=B(NN)-XXI
        AA=A(NN)
        XAA = XXR+AA
        XAA=DABS(XAA)
        IF(XMX,LT,XAA) GO TO 200
        COSHY=DCOSH(XAA)
        U(N)=((DSIN(BNN)/(COSHY-DCOS(BNN)))*(DSIN(XIB)/(COSHY-DCOS(XIB))))
    1*,5
    G0 TO 15
200 U(N)=0.
    15 CONTINUE
        DO 20 N=2,NK,2
        AA=A(N)
        XAA=XXR*AA
        BNN=B(N)
        XIE=XXI*BNN
        XIBN=XXI +BNN
        BNXI=BNN-XXI
        XXX=DABS (XAA)
        IF (XMX,LT,XXX) GO TO 201
        SINHY=DSINH(XAA)
        COSHY=DCOSH(XAA)
        U(N)=((SINHY/(COSHY-DCOS(XIBN)))*(SINHY/(COSHY-DCOS(BNXI))))*.5
        GO TO 20
201U(N)=XAA/XXX
            CONTINUE
            DO 21 N=NI,NO
    XAA=XXR+C(N)
    XXX=DABS (XAA)
    IF (XMX,LT,XXX) GO TO 202
    SINHY=DSINH(XAA)
    COSHY=DCOSH(XAA)
    go TO 203
202 U(N)=XAA/XXX
    GO TO 21
203 XIBN=XXI
    U(N)= SINHY/(COSHY-UCOS(XIBN))
    21 CONTINUE
    0O 30 N=1,NO
    MN=(MM-1)*NO*N
    30 CC(MN)=U(N)
    25 CONTINUE
    DO 125 MM=2,NK,2
    XXH=-P{*YR(MM)
    XXI=-PI*YI(MM)
    DO 130 N=1,NK1,2
    XAA=XXR+A(N+i)
    XAA=DABS (XAA)
    IF (XMX,LT,XAA) GO TO 204
    SINHY=DSINH(XAA)
    COSHY=DCOSH(XAA)
    BNXI=B(N+1)-XXI
    XIENN= B(N+1)+XXI
    U(N)=(SINHY/(COSHYODCOS(BNXI)) o(S\NHY/(COSHY-DCOS(XIBN))))*,5
    GO TO 130
204U(N)=0,
    BNXI=B(N+1)-XXI
    XIEN= B(N+1)+XXI
230 CONTINUE
    DO 135 N=2,NK,2
    XAA=XXR+A(N)
```

```
    XAA=DABS (XAA)
    |F (XMX,LT,XAA) GO TO 205
    BNXIEB(N)-XXI
    XIBN = B(N)*XXI
    COSHY=DCOSH(XAA)
    U(N) =(-DSIN(BNXI)/(COSHY=DCOS(BNXI))+DSIN(XIBN)/(COSHY-DCOS(XIBN))
    1)*:5
    GO TO 135
    205U(N)=01
    1,35 CONTINUE
    DO 140 NFN1,NO.1
    XAA=XXR+C(N)
    XAA=DABS (XAA)
    IF (XMX,LT,XAA) GO TO 206
    COSHY=DCOSH(XAA)
    U(N)=DSIN(XXI)/(COSHY-DCOS(XXI))
    GOTO 140
    206 U(N)=0,
    140 CONTINUE
C140U(N)=DSIN(XXI)/(COSHY-DCOS(XXI))
    DO 145 N=1,NO
    MN=(MM-1)*NO+N
145 CC(MN) = U(N)
125 CONTINUE
    DO 150 MM=N1,NU1
    M=(MM=1)*NO
    XXK= -PI*YR(MM)
    DO 155 N= 1,NK1,2
    XAA=XXR+A(N+1)
    XAA=DABS(XAA)
    IF (XMX,LT,XAA) GO TO 207
    COSHY=DCOSH(XAA)
    MN=M+N
    XIBN=B(N+1)
    CC(MN)=DSIN(XIBN)/(COSHY-DCOS(XIBN))
    GO TO 155
207 MN=M+N
    XI }8N=B(N+1
    CC(MN)=0,
155 CONTINUE
    DO }160\quadN=2,NK,
    MN=M+N
    XAA=XXR+A(N)
    XXX=DABS (XAA)
    IF (XMX,LY,XXX) GO TO 208
    COSHY=OCOSH(XAA)
    SINHY=DSINH(XAA)
    XIBN=B(N)
    CC(MN)=SINHY/(COSHY-DCOS(XIBN))
    GO TO 160
208 CC(MN) =XAA/XXX
160 CONTINUE
    DO 165 N=N1,NU
    MN=M+N
    XAA=(XXR*C(N))*,5
    XXX=DABS (XAA)
    IF (XMX,LT,XXX) GO TO 209
    CC(MN)=DCOSH(XAA)/DS\NH(XAA)
    GO TO 165
209 CC(MN)=XAA/XXX
165 CONTINUE
150 CONTINUE
```

```
    DO 40 N=1,NK1,2
    MN=NO*(NO-1)*N
    MN1= MN+1
    CC(MN1)=1.
    CC(MN)=0,
40 CONTINUE
    DO }70\mathrm{ N=NK,NO
    MN= NO*NOL+N
7 0
    DO 50 M=1,NK1,2
    BIGA(M)= DYR(M)-1.
        BIGA(M+1)= DYI(M)
    DO 60 M=N1,NO1
        BIGA(M)= DYR(M)-1,
    BIGA(NO) = O
    RETURN
    END
    SUBRQUTINE S5A(OUT,AK,IN,K,MORDER,F,PB,PA,PC,IERR)
    IMPLICIT REAL*B(A-H,O-Z)
    IN\EGER R21.
    INTEGER R1
    INTEGER R,R2,R22
    DIMENSION BIGA(13,13),A(13,13),B(13,13),C(13,13)
    DIMENSION BIGAP(13,13,6), BP(13,13,6),CP(13,13,6),AP(13,13,6)
    DIMENSION F(13),AC(13)
    DIMENSION AR(13),AS(13),P(13),Q(13)
    DIMENSION AK(13),PC(13),PA(13),PB(13)
    DSQRT(D)=SQRT(U)
    DMAX1(A,B,C)=AMAX1(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(U)
    DCos(D)=Cos(D)
    DEXP(D)=EXP(D)
    DLOG(D)=ALDG(D)
    DLOG10(D)=ALOG10(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(U)
    DSINH(D)=SINH(U)
    NP=6
    DO 45 M=1,K
    M2= 2*M
    M21=M2-1
    PBM2 = PB(M2)
    COSB2M =DCUS(PםM2)
    PAM2 = PA(M2)
    EAZM = DEXP(-PAM2)
    F2M = F(M2)
    E2AZM = I)EXP(-2,*PAM2)
    F2M1=F(M21)
    AR(M)=2.*EA2M*(F2M1*DSIN(PBM2)*F2M*COSB2M)
    AS(M) = =2,*F2M*E2A2M
    P(M) = -2,*EA2M*COSB2M
    Q(M)=E2A2M
    WRITE(NP,2000)P(M),Q(M),AR(M),AS(M)
45 CONTINUE
K1=K+1
DO 10 MEK1,MORUER
M2 = 2*M
M21 = M2-1
PCM2 = -PC(M2)
ECZM =DEXP(PCMC)
PCM21 =-PC(M21)
```

```
    EC2M1 =DEXP(PCM21)
    F2M = F(M2)
    F2M1 = F(M2:)
    AR(M)=2.*(F2M1*EC2M1+F2M*EC2M)
    CC9 = PCM21*PCM2
C CC9 = -PCM21-PCM2
    ECC9 = DEXP(CC9)
    AS(M) = -2,*ECC9*(F2M1+F2M)
        P(M) = - {EC2M1+EC2M)
    Q(M)= ECC9
    WRITE(NP,20000)M
20000 FORMAT(5H M = ,151)
    WRITE(NP,2000)P(M),O(M),AR(M),AS(M)
2000 FORMAT(1H0,/15X,4HP(M),15X,4HQ(M),15X,4HR(M),15X,4HS(M),/
    1 /3X,4G19.6)
        10 CONTINUE
            NORDER=MORDER*2 +1
            NL1 = NORDER +1
            DO 25 1 = 1,13
            DO 25 R = 1,15
        25A(1,R)=0.
C ADJUSTED TO AVUID ZERD INOICES A,1,2) AND A(2,2)
    A(2,2)=O(1)
    A(1,2) = P(1)
    R=MORDER
    MR2 = 2.*MORDEK
    MR21= MR2*1
    00 5 I = 1,MR2
    KI=1
    KII=KI-1
    KI2=KI-2
    DO 5 R = 1,MORUER
    R2 = 2*R
C R2Z = 2*R-2+1
C ADJUSTED TO AVOID ZERO INDICES
    R22=R2-1
    IF(KI2) 1,2,3
        1 BIGA(I,R)= 0,
            GO TO 7
        2 BIGA(I,R)= 1.
        7 1F(KI1) 4,6,3
        4 B(1,R)=0.
            GO TU 3
        6 B(I,R)=1.
        3 IF(KI2,GT,0) BIGA(I,R)=A(K12,R22)
            IF(K|1,GT,0) B(I,R)=A(KI1,R22)
    3 C(I,R)=A(KI,RC2)
            R21 = R2+1
            A(KI,R21) = BIGA(I,R)*Q(R) + B(I,R)*P(R) + C(I,R)
            5 CONTINUE
            A(3,3)=0.0
            A(2,3) =0,0
            A(1,3)=0
            DO 21R=4,R2,2
            R1 = R+1
            DO 21 I = 1,R2
            A(I,R) = A(I,R1)
        21 A(I,R1)=0
            WRITE (NP,300) ((1, J,A(1,J),I=1,13),J=1,13)
    300 FORMAT(1X,2HA(,15,1H,15,2H)=G20,6)
C NEXT, DEFINE THE SUCCESSION OF MODIFIED TRAINGULAR ARRAYS
G AP(I,2R,M) I= 1,2,\ldots.,.2R R=1,2,...MORDER=1 M = 1,2,...MORDER
```


NORUER=13

DO $301=1$. NORDER
DO $30 \mathrm{R}=1$, NORDER
DO $30 \mathrm{M}=1$, MORDER
$30 \mathrm{AP}(I, R, M)=0,0$
DO 58 M $=1$, MORDER
$T M P P=P(M)$
$T M P Q=Q(M)$
$Q(M)=Q(M O R D E R)$
$P(M)=P(M O R D E K)$
$A P(2,2, M)=Q(1)$
$A P(1,2, M)=P(1)$
ML1 $=$ MORDER - 1
MR2 $=2 *$ MORDER
MR21 = MR2+1
DO 50 I $=1$, MR2
$K I=I$
$K I I=K I=1$
$K 12=K l-2$
DO $50 \mathrm{R}=1, \mathrm{ML} 1$
$R 2=2 * R$
R22 $=\mathrm{R} 2-1$
1F(KI2) 51,52.53
51 BIGAP (1,K,M)=0,
GO 1057
$52 \operatorname{BlGAP}(I, R, M)=1$,
57 1F(Kl1) 54,56.53
$54 B P(I, R, M)=0$.
GOTO 53
$56 \quad B P(I, R, M)=1$.
$53 \quad \operatorname{lF}(K I 2, G T, 0) \quad B I G A P(I, R, M)=A P(K I 2, R 22, M)$
$1 F(K \rrbracket 1, G T, 0) \quad B P(I, R, M)=A P(K \mid 1, R 22, M)$
$63 C P(I, R, M)=A P(K I, R 22, M)$
$R 21=R 2+1$
$A P(I, R 21, M)=B I G A P(1, R, M) \star Q(R)+B P(I, R, M) \star P(R) * C P(I, R, M)$
50 CONTINUE
$Q(M)=T M P Q$
$P(M)=T M P P$
58 CONTINUE
NOW BACK SHIFT
$R=$ MORDER-1
$R 2=2 * R$
DO $121 \mathrm{I}=1$ NORDER
DO $121 \mathrm{M}=1$, MORUER
DO $121 R=4, R 2,2$
$R 1=R+1$
$A P(I, R, M)=A P(I, R 1, M)$
$121 A P(I, R 1, M)=0$
DU $122 \mathrm{M}=1$, MORDER
$A P(1,3, M)=0$
$A P(2,3, M)=0$
122 CONT 1 NUE
400 FORMAT(2X,3HAP(,I5,1H,I5,1H,I5,3H)= G20,6)
CONST1 $=0$
1F(MORDER-4) 199,200,201
201 IF (MORDER-6)199,202.199
200 DO $100 \mathrm{M}=1$, MURDER
100 CONSF1= CONST1+AR(M)
$A C(1)=A(1,8)+\operatorname{CONST} 1$
CONST1 $=0$
DO $110 \mathrm{M}=1.4$

```
110 CONST1 = CONST1 + AR(M) * AP(1,6,M) + AS(M)
    AC(2) = A(2.8) + CONST1
    DO 1200 MSE3.7
    CONST1 = 0
    00:120 Mx1,4
        MS1 = MS-1
    MS2 = MS-2
    CONST1 = CUNST1 * AR(M)*AP(MS1,6,M)*AS(M)*AP(MS2,6,M)
12O CONTINUE
    AC(MS) = A(MS,8) - CONST1
1200 CONTINUE
    WRITE (NP,500) (1,AC(I),I=1,8)
500 FORMAT(1HO, 1X,3HAC(,I5, 3H)=,G20,6)
    CONST1 = O
    DO 130 M = 1,4
    CONST1 = CONST1 * AS(M)*AP(G,6,M)
130 CONTINUE
    AC(8)=A(8,8) + CONST1
    AK1 =DEXP(#PC(y))
    AKG = 2.*F(9)*AK1
    AK(1) = AC(1) =AK1+AKD
    DO 150 MS = 2.8
    MS1 = MS-1
    AK(MS) =AC(MS) -AK1*AC(MS1) + AKO*A(MS1,8)
150 CONTINUE
    AK(9) = AKO * A(8,8) - AKI * AC(8)
550 FORMAT(3X,/1,3X4HAK0=,G20,6,5X,4HAK1=,G20.6/)
650 FORMAT(1H,1X,1,2X,4HAK(, 15,3H)= G20,6)
        WRITE(NP,650)( 1,AK(1) ,I=1,9)
    1 ERK=0
    RETURN
202 CONST1 = 0
    DO 205 M=1,MURUER
    CONST1 = CONST1 * AR(M)
205 CONTINUE
    AK(1) = A(1,12) + CONST1
    CONST1 = 0
    DO 210 M = 1. MORDER
    CONST1 = CONST1 + AR(M)*AP(1,10,M)*AS(M)
210 CONTINUE
    AK(2) = A(2,12) + CONST1
    DO 215 MS=3,11
    MS1 = MS-1
    MS2 = MS-2
    CONST1 = 0
    DO 212 M= 1,MOHDER
    CONST1 = CONST1 + AR(M)*AP(MS1,10,M)*AS(M)*AP(MS2,10,M)
212 CONTINUE
    AK(MS) = A(MS,12) + CONSF1
215 CONTINUE
    CONST1 = 0
    DO 220 M=1,MORUER
    CONST1 = CONST1 * AS(M) * AP(10,10,M)
220 CONTINUE
    AK(12) = A(12,12) + CONST1
    WRITE(NP,650) (I,AK(I) , I=1.12)
    |ERR: 0
    RETURN
199 LERR=MORDER
    RETURN
    END
    SUBHOUTINE TEA(NO,NP,ROOTR,ROOTI,XI,ETA)
```

IMPLICIT REAL* $8(A-H, O-Z)$
DIMENSION ROOTR(13),RDOTI(13),XI(13),ETA(13)
DSQRT(D) $\operatorname{ISORT}(\mathrm{U})$
DMAXI(A,B,C)=AMAX1(A, 目,C)
DABS(D)=ABS(D)
DATAN(D)=ATAN(D)
$D \operatorname{Cos}(D)=\operatorname{Cos}(D)$
DEXP(D) FEXP(D)
$\bar{D} \bar{O} G(D)=A L O B(D)$
DLOG10(D) =ALOG10(D)
DSIN(D) =SIN(D)
$D \operatorname{CoSH}(D)=\operatorname{COSH}(D)$
DSINH(D) $=\operatorname{SINH}(\mathrm{L})$
PI $=3.1415926$
PITWO = PI/2.
P12 $=2$, P1
PIONE $=1,1 P 1$
PINV=1, /PI2
DO $15 \quad I=1$, NO
SQS = ROOTR(I)*ROOTR(I)+ROOTI(I)*ROOTI(I)
XI(I) $=-P I N V * U L O G(S Q S)$
1F(RDOTR(I))14,50.14
14 GAMMA=DATAN(ROUTI(I)/ROOTR(1))
ETA(!) = GAMMA
JF(ROOPR(I)) 10.50.15
50 IF(ROOTI(I)) 51.52.53
51 ETA(1) =-PITWO
60 TO 15
$52 \mathrm{~K}=\mathrm{K}$
53 ETA(I) = PITWO
GO TO 15
10 JF(KOOTI(I)) 3u,40,35
40 ETA(I) $=3.1415926$
GO 1015
35 ETA(I) $=E T A(I)+P I$
GO TO 15
30 ETA(1) $=E T A(1)-P I$
15 ETA(I) $=-P I O N E * E T A(I)$
RETURN
END
SUBROUTINE SG(OUT,SS,IN,K,KHAT,NP)
IMPLICIT REAL* © (A-H:O-Z)
DIMENSION K(12), KHAT(12),S(12),SS(12)
c Subroutine for uetermining the common polynomial coefficients
REAL KHAT.K
REAL KHAT1, KHAT2, KHAT3,KHAT4,KHAT5,KHAT6, KHAT7, KHAT8

1. KHAT9,KHAT10,KHAT11,KHAT12,

1 K1,K2,K3,K4,Kל,K6,K7,K8,K9,K10,K11,MU1,MU1SQ,MUMU,
2 L4,L3,LS,MU3,MU2,MUU,MUUU,K12,MU2SO
DSQRT(D) $=\operatorname{SQRT}(\mathrm{U})$
DMAX1 (A, B, C) =AMAX1 (A,B,C)
DABS(D)=ABS(D)
Datan(D)=atan(D)
$\operatorname{DCos}(D)=\cos (D)$
DEXP(D) $=$ EXP (D)
DLOG(D) =ALOG(D)
DLOG10(D) $=A L 0 G 10(D)$
DSIN(D)=SIN(D)
DCOSH(D)=COSH(D)
DSINH(D) $=\operatorname{SINH}(D)$
$N P=6$
KHAT1 $=$ KHAT(1)

```
    KHAT2=KHAT(2)
    KHAT3 = KHAT(3)
    KHAT4 = KHAT(4)
    KHAT5=KHAT(5)
    KHAT6=KHAT(6)
    KHAT7=KHAT(7)
    KHAT8=KHAT(8)
    KHAT9=KHAT(9)
    KHAT10=KHAT(10)
    KHAT11= KHAT(11)
    KHAT12=KHAT(12)
    K1= K(1)
    K2= K(2)
    k3 = K(3)
    K4 = K(4)
    K5 = K(5)
        K6 = K(6)
    K7 = K(7)
    K8=k(8)
    K9 = K(9)
    MU1 = K9 / KHAT12
    MU2 = (K8-KHAT11*MU1)/KHAT12
    MU2SG=MU2*MU2
    MU3 = (K7-KHAT10*MU1*KHAT11*MU2)/KHAT12
        MU1SQ = MU1 * MU1
    MUMU = MU2/MU1SQ
    MUUU = MU2SQ/MU1SQ : MU3/MU1
    H11 = KHAT1 - K1
    H10= KHAT2 = K2
    L4 = H10 *K1*H11
    A11 = K7 +K4/MU1 -K5*MUMU + K6/MU1)*MUUU-KHAT7
    A12 = K7*H11 + K8 + K5/MU1 - K6*MUMU - KHAT8
    L5 = H11
    L3 = KHAT3-K3 -K1*H10 + H11*(K1*K1 - K2)
    A13 = K7*(H10*K1*H11) *K8*H11 +K9 +K6/MU1 - KHAT9
    A21 = K5 - K2/MU1 - K3*MUMU +K4*MUUU/MU1 -KHAT5
    A22 = K2*H11 + K6 + K3/MU1 = K4*MUMU - KHAT6
    A23 = K5*(H10-K1*H11)*K6*H11+K7+K4/MU1-KHAT7
        =K3*1/MU1 = K1*MUMU*(K2*MUUU)/MU1 * KHAT3
    A32 = KS*H11 + K4 +K1/MU1 - K2*MUMU-KHAT4
    A33 = K3*(H10-KI*H11) * K4*H11 * K5 + K2/MU1 * KHAT5
    B1 = KHAT10 -K7*L3 - K8 * L4 - K9*L5
        B2 = KHAT8-Kb-K5*L3-KG*L4-K7*L5
    B3 # KHAT6 - K6 = K3*L3 - K4*L4 - K5*L5
C FROM CRAMERS RULE...
C D1 = DELTA1/D, D\dot{C}= DELTAZ/D, D3 = DELTA3/D
    A2233 = A22*A3S * A32 * A23
    A1233 = A12*A3S * A32*A13
    A1223 = A12*A23 - A22 *A13
    D = A11*A2233 - A21*A1233 * A31*A1223
        IF(D) 15,5,15
1002 FORMAT(1HI,46H***DENOMINATOR D FOR CRAMERS RULE IS ZERO EOJ
    5 WRITE(NP,1002)
    15 CONTINUE
        DELTA1 # B1*A2233 - B2*A1233 + B3 *A1223.
        A2133 = A21*A3S - A31*A23
        A1133 = A11*A33 - A31*A13
        A1123=A11*A23-A21*A13
        DELTA2 = -B1*A2133 * B2 * A1133 = B3 *A1123
    A2132 = A21*A32 - A31*A22
    A1132 = A11 * A32 - A31*A12
    A1122 = A11*A22 - A21*A12
```

```
    DELTA3 = B1 *A2132 * B2*A1132 * B3 *A1122
    D1 = DELTA1/D
    D2 = DELTA2/D
    D3 = DELTA3/D
    thg coefficients then are given by .,.
    SS(1)=K1-D3
    SS(2) = K2=D2-H3*SS(1)
    SS(3) = K3-DI-U2*SS(1)-D3*SS(2)
    SS(4)=K4 - D1*SS(1) " D2 *SS(2)-D3*SS(3)
    SS(5) = K5 = D1*SS(2) - D2*SS(3)0D3 *SS(4)
    SS(6) = K6 -D1*SS(3)-D2*SS(4)-D3*SS(5)
    RETURN
    END
    SUBRQUTINE PAT(A,B,X,Z,X9,X12,X6,D,E,E9,E12,E6,G,MU,NF,RR9,RI9,
    1 RF12,RII2,RK6,RI6,ND9,ND12,Y9,Y12,PIROLD,PIRNEW,PIIOLD,PIINEW,
    2
                S,T,NDI9,NDI12,YI9,Y[12)
    IMPLICIT REAL*&(A-H,O-Z)
    REAL MU
    SUBROUTINE FOR THE GENERATION OF THE SUMMARY TABLES FOR THE NASA FLU
    DIMENSION S(8,14), T(11,14)
    DIMENSION A(8,14),B(11,14)
    DIMENSION NDI12(13),P1IOLD(13),PIINEW(13),NDI9(10),YI9(10)
    DIMENSION YI12(13),PIROLD(13),PIRNEW(13),X9(13),X12(13),X6(7)
    DIMENSION D(013),E9(013),E12(013),E6(013),RR9(13),RI9(13)
        DIMENSION RR12(13),R112(13),RR6(7),RI6(7),Y9(10),E(013),X(013)
    DIMENSION Z(013),ND9(10),ND12(13),Y12(13)
    DSQRT(D)=SGRT(D)
    GMAX1(A,B,C) =AMAX1(A,B,C)
    DABS(D)=ABS(D)
    DATAN(D)=ATAN(D)
    DCOS(D)=COS(D)
    DEXP{D)=EXP(D)
    DLOG(D)=ALOG(D)
    DLOG10(D)=ALOG1O(D)
    DSIN(D)=SIN(D)
    DCOSH(D)=COSH(U)
    DSINH(D)=SINH(D)
    ND=6
    NP=6
    WRITE(NP,50) NF, (X(J),D(J),Y9(J),YI9(J),J=1,9), (Z(J),
    1 E(J),Y12(J),Yi12(J),J=1,12)
    WRITE(NP,54)
    DO 25 J = 1,8
    L = ND9(J)
    L=3
    WRITE(ND,51) Y9(J),A{J,L*1),A(J,L=2),A(J,L=1),A(J,L),ND9(J),
    1 PIRNEW(J)
    WRITE(ND,551) YI9(J),S(J.L*1),S(J,L-2),S(J,L-1),S(J,L),ND9(J),
    1 PIINEW(J)
25 CONTINUE
54 FORMAT(55X,24HNINTH ORDER SYSTEM /)
55 FORMAT(55X,24HTWELFTH ORDER SYSTEM /)
    WRITE(NP,55)
    DO 20 Ma1.11
    L=ND12(M)
    L=3
    JMB= M
    WRITE(ND,51)Y42(JMB), B(JM8,L+1),B(JM8,L-2),B(JMB,L=1),
    1 B(JM8,L),ND12(M),P{ROLD(JM8)
    WRITE(ND,551)Y|12(JM8),T(JMB,L*1),T(JMB,L-2),T(JM8,L*1),
    1T(JM8,L),ND12(M) ,PI|OLD(JM8)
20 CONTINUE
```

```
    WRITE(NR,53) (X9(J),E9(J),R月9(J),RI9(J.),JE1,9),( X$2(J),E12(J).
```



```
    IMETERS
    2 /49X,40H
    3/55X,7H /55X,7H /55X,7H NF :15/
    452X,GOHSINGULARITIES AND EVALUATION POINTS
    5 30X, XI EM ETA
    2
                            Y I*
                            /
```



```
    4/12(30X,4020,8/)/60X,18HDETERMINANT VALUES
    5/15X ; 1HY,18X,7HD, EST,14X,7HDELTA 1;14X,7HDELTA 2
    6 14X,7HDELTA 3.10X,7HND MAX 10H P P N
51 FORMAT (1X,*REAL*5020,8,112,F10,5)
5F1.FORMAT(1X,GIMAG*5G201,8,2X,110,F10,55)
    se.fORMAT(1X,5G20,8,2X,715,F10,5)
```



```
        2 //19X,2HXI,19X,3HETA,9X,18HREAL PART OF ROOT % SX,
    4 19HIMAG, PART OF ROOT /, 9(10X,4G20,8/).
    3/.55X,2&HTWELFTH ORDER SYSTEM.
    4//19X,2HXIT19X, 3HFYAOX, 1-GHREAL PART OF ROOT SXP
    519HIMAG, PART OF ROOT: /12G10X.4G20,B/LT
    6/55x,24HS1XTH-ORDER SYSTEM
    7//19X,2HXI,19X, JHETA9X,18HREAL PART OF ROOT, 3X,
    819HIMAG, PART OF ROOT /6(10X,4020,8/),/1H1)
        RETURN
    END
```

These programs also use the standard IBM subroutine DPRQD, as given in IBM System / 360 Scientific Subroutine Package (360A-CM-03X) Version III Programmer's Manual, IBM publication H20-0205-3, Fourth Edition.

```
C PROGGRAM TO COMPUTE A'S AND.B'S
    REAL MU,MB,KM,MT;MODFR,MBAR
C REAL*B MU,MB,KM,MT,MODFR,MBAR
    INTEGER OUT
    OIMENSION AR (3,3,12), AI (3,3,12), BR(3,3,12), B1(3,3,12)
    DIMENSION XIBARO(17)
    DIMENSION ZBARA(17),CBAR(17),PSI(17)
    DIMENSION MDDFR(3)
    DIMENSION PHI(17), XLBARZ(17),MBAR(17),EBAR(17)
    COMMON COSAS,COSQAS,RMUSQ,MU,AS,CT,CTSQ,SINAS,SINETA,RMUMWB,
    1 XMUCSE,SINZA,COSZA,RMUCSA
    COMMON /A1/ TERM(50),ANU(17,3),AH(17,3),APHI(17,3),ATH(17,3),
    1 APSI(17,3)
    COMMDN /AZ/ CIJR,CIJI,DIJR,DIJI,FAC,NFTW
    COMMON /A4/ IN,OUT,MB,R,KM,MT,MODFR,NR,NF, XIBARO,CBAR,ZBARA,
    1 PHI, XLBARZ,MBAR,EBAR,PI,ETA,ETAI
        COMMON /A5/ XBAR(17)
        COMMON /AG/ TX(17,24,16),NSW
9876 FORMAT ('1'/(' ',09G12.4))
    IN=5
    IN1=5
    IN2=5
    OUT=6
    NSW=0
    1 FORMAT (10(010.7/1,2(15/))
        READ (IN,I) MU,AS,MB,CT,R,KM,MT,MODFR,NR,NF
        AS=AS*.0174532
        READ (INI,98.74) (I,XBAR(I),MBAR(I),XIBARO(I),CBAR(I),EBAR(I),
    1 XLBARZ(I),ZBARA(I),PHI(I),J=1,NR)
        READ (IN2,9874) (I,ANU(I,1),ANU(I,2),ANU(I,3),AW(I,1),
    l AW(I,2),AW(I,3),APHI(I,1),APHI(I,2),J=1,NR)
        READ (IN2,9874) (I,APHI(I,3),ATH(I,1),ATH(I,2),ATH(I,3),
    l APSI(I, 1),APSI(I,2),APSI(I, 3),X,J=1,NR)
        READ (IN2,9873) ((APHI(I,J),ANU(I,J),ATH(I,J),I=1,NR),J=1,3)
9873 FORMAT (9X,E9.3,1X,E9.3.1X,E9.3)
9874 FORMAT (6X,12,8E8.7)
    DO 5 I=1,NR
    ANU(I,1)=ANU(I,1)/R
    ANU(I, 2)=ANU(I, 2)/R
    ANU(I,3)=ANU(I,3)/R
    5 PHI(I)=PHI(I)*.0174532
    PI=3.141592
    COSAS= COS(AS)
    COSQAS=COSAS*COSAS
    SINAS= SIN(AS)
    CTSO=CT*CT
    RMUCSA=MU*COSAS
    RMUSQ=MU*MU
    RMUSNA = MU*SINAS
    RMUCA4=R MUCSA*R MUCSA
    RMUCA4=RMUCA4*RMUCA4
    IF (CT) 6,7,6
    6 WBARI= SQRT(.5*( SQRT(RMUCA4+CTSQ)-RMUSQ*COSOAS))
    GO TO 8
    7 WBARI=0.
    8 \text { RMUMWB=RMUSNA-WBARI}
    ETA=PI/NF
    RSQ=R*R
    NFTW=2*NF
    XMMBRQ=-MB*RSQ/NF
```

```
            TWMBRQ= 2.*(-XMMBRQ)
            WRITE (OUT,9876) MU,AS,MB,CT,R,KM,MT,MODFR,NR,NF
            WRITE (OUT,9876) (I,XBAR(I),MBAR(I),XIBARO(I),CBAR(I),EBARII),
            1 XLBARZ(I),ZBARA(I),PHI(I),I=1,NR)
            WRITE (OUT,9876) (I,ANU(I,1),ANU(I,2),ANU(I,3),AW(I,1),
            1 AW(I, 2), AW(I,3),APHI(I,1), APHI(1,2),I=1,NR)
            WRITE (OUT,9876) (I,APHI(I,3),ATH(I,1),ATH(I,2),ATH(I,3),
            1 APSI(I,1),APSI(I,2),APSI(I,3),X,I=1,NR)
            DO 100 I=1,3
            FOURWQ=4.*MODFR(I)*MODFR(I)
            DD 100 J=1,3
            DO 100 K=1,NF
            FAC=ETA* (K-1)
            CALL CDIJ (I,J,K)
            AR(I,J,K)=XMMBRQ*DIJR
            AI(I,J,K)=-XMMBRQ*DIJI
            BI(I,J,K)=TWMBRQ*CIJI
            IF (K.EQ.1.AND.J.EQ.I) GO TO 10
            BR(I,J,K)=-TWMBRQ*C.IJR
            GO TO 100
        10 BR(I,J,K)=FOURWQ-TWMBRQ*CIJR
    lOO CONTINUE
            DO 200 I= 1.3
            DO 200 J=1,3
            DO 200 K=1,NF
            ARR=AR(I,J,K)
            AII=AI(I,J,K)
            BRR=BR(I,J,K)
            BII=BI(I,J,K)
            WRITE (8) I,J,K,ARR,AII,BRR,BII
            WRITE (7,9779) ARR,AII,BRR,BII
9779 FORMAT (4E14.7)
    200 WRITE (6,9875) I,J,K,AR(I,J,K),AI(I,J,K),BR(I,J,K),BI(I,J,K)
9875 FORMAT ('0'/(' ', I5,IX,I5,IX,I5,4X,G12.5,IX,G12.5,
    1 1X,G12.5,1X,G12.5))
            END FILE 8
            STOP
            END
            SUBROUTINE CDIJ (L,K,M)
C IMPLICIT REAL*8(A-H,O-Z)
C REAL*8 MU,MB,KM,MT,MODFR,MBAR
    REAL MU,MB,KM,MT,MODFR,MBAR
    INTEGER OUT
    DIMENSION XIBARO(17)
    DIMENSION
                                    ZBARA(17),CBAR(17),PSI(17)
                            DIMENSION MODFR(3)
                            DIMENSION PHI(17), XLBARZ(17),MBAR(17),EBAR(17)
                            DIMENSION XINTER(17),XINTR1(17),Z(17)
                            COMMON /A1/ TERM(50), ANU(17,3),AW(17,3),APHI(17,3), ATH(17,3),
1 APSI(17,3)
                            COMMON /AZ/ CIJR,CIJI,DIJR,DIJI,FAC,NFTK
                            COMMON /A4/ IN,OUT,MB,R,KM,MT,MODFR,NR,NF, XIBARO,CBAR,ZBARA,
l PHI,XLBARZ,MBAR,EBAR,PI,ETA,ETA1
    COMMON /A5/ XBAR(17)
    COMMON /A6/ TX{17,24,16},NSW
    CIJR=0.0
    CIJI=0.0
    DIJR=0.0
    DI JI=0.0
```

```
        DO 200 J=I,NFTW
        XAC=J-1
        ETAl=ETA#}XA
        XAC=FAC}#XA
        SINFAC= SIN(XAC)
        COSFAC= COS{XAC)
        DO 100 I=1,NR
        IF (NSW.NE.O) GO TO 50
        CALL VECTOR (I)
        TX (I,J,I) =TERM(2)
        TX (I,J,2) =TERM(3)
        TX (I,J,3) =TERM(4)
        TX (I,J,4) =TERM(5)
        TX (I,J,5) =TERM(6)
        TX (I,J,6) =TERM(8)
        TX (I,J,7) =TERM(9)
        TX (I,J,8) =TERM(10)
        TX (I,J,9) =TERM(11)
        TX (I,J,10)=TERM(12)
        TX {I,J,11)=TERM(29)
        TX (1,J,12)=TERM(39)
        TX (I,J,13)=TERM(40)
        TX (I,J,14)=TERM(42)
        TX (I;J;15)=TERM(43)
        TX (I,J,16)=TERM(44)
    9876 FORMAT (' 1/(: ',10G12.4))
C XINTER(I)=ANU(I,L)*XMUNU(I,K)+AW(I,L)*XMUWJ(I,K)+APHI(I,L)*
C 1 XMUPHJ(I,K)+APSI(I,L)*XMUPSI(I,K)
    50 XINTER(I)=ANU(I,L)\starXMUNU(I,J,K)+APHI(I,L)*XMUPHJ(I,J,K)
C 100 XINTRI(I)=ANU(I,L)*XLMBNU(I,K)+AW(I,L)*XLAMWJ(I,K)+APHI(I,L)*
C 1 XLMPHJ(I,K)+APSI(I,L)*XLMPSJ(I,K)
    100 XINTRI(I)=ANU(I,L)*XLMBNU(I,J,K)+APHI(I,L)*XLMPHJ(I,J,K)
        NRPTS=NR
        CALL QTFG (XINTER,Z,NRPTS)
        CIJI=SINFAC*Z(NR)+CIJI
        IF (M.EQ.I.AND.L.EQ.K) GO TO. 120
        CIJR=CIJR+COSFAC*Z(NR)
        GO TO 150
    120 CIJR=CIJR+Z(NR)
    150 CALL QTFG(XINTR1,Z,NRPTS)
        DIJI=SINFAC*Z(NR)+DIJI
    200 DIJR=COSFAC*Z(NR)+DIJR
        NSW=1
        RETURN
        END
        SUBROUTINE VECTOR (I)
C IMPLICIT REAL*8(A-H,D-Z)
C REAL*8 MU,MB,KM,MT,MODFR,MBAR
    REAL MU,MB,KM,MT,MODFR,MBAR
    INTEGER DUT
    DIMENSION XIBARO(17)
        DIMENSION
                                ZBARA(17),CBAR(17),PSI(17)
    DIMENSION MODFR(3)
    DIMENSION PHI(17),XLBARZ(17),MBAR(17),EBAR(17)
        COMMON COSAS,COSQAS,RMUSQ,MU,AS,CT,CTSQ,SINAS,SINETA,RMUMWB,
        1 XMUCSE,SINZA,COSZA,RMUCSA
            COMMON /A1/ TERM(50),ANU(17,3),AW(17,3),APHI(17,3),ATH(17,3),
        1 APSI(17,3)
            COMMON /A4/ IN,OUT,MB,R,KM,MT,MODFR,NR,NF, XIBARO,CBAR,ZBARA,
```

```
    I PHI,XLBARZ,MBAR,EBAR,PI,ETAI,ETA
    COMPON /A5/ XBAR(17)
9876
    FORMAT ('0',G15.7)
    coseta= COS(ETA)
    SINETA= SIN(ETA)
    AO=PHI (I)+ZA(ETA,I)
    XBMSEA=XBAR(I)+MU*SINETA
    CALL SERIES (I,J,NCODE,MT,XBMSEA,V,AO,CL,ASLOP,CM,CD,CMA,CDA)
    SINAO= SIN(AO)
    COSAD= COS(AD)
    CLCDA=CL-CDA
    CDCLA=CD+ASLOP
    S I GD=CLCDA*S INAO-CDCLA*COSAO
    SIGL=CL*COSAO+CD*SINAO
    VO= SGRT(RMUMWB*RMUMWB+XMUC SE*XMUCSE)
    GAML=CLCDA*COSAO+COCLA*SINAO
    GAMD=CL*SINAO-CO*COSAO
    DELTA=CBAR(I)*CM-ZBARA(I)*CL
    DELTAP=CBAR(I)*CMA-ZBARA(I)*ASLOP
    PICBAR=PI*CBAR(I)
    SIGL2=2.*SIGL
    2BAMLZ=ZBARA(I)-XLBARZ(I)
    COSASE=COSAS*CDSETA
    VOKM=KM*VO
    OCKV=CBAR(II*VOKM
    TERM(10)=.5*OCKV
    TERM(1)=TERM(10)*VO
    TERM(2)=TERM(1)*SIGD
    TERM(3)= COS(PHI(I))
    TERM(4)= SIN(PHI(I))
    TERM(5)=SIGD*(MU*COSZA*COSASE-ZBAMLZ*COSAO) +SIGL2*(ZBAMLZ*
l SINAD-MU*SINZA*COSASE)+PICBAR/2.*COSAO
    TERM(6)=-2.*MBAR(I)*EBAR(I)*TERM(4)
    TERM(7)=PI/4.*OCKV
    TERM(8)=TERM(7)*COSAO*CBAR(I)
    TERM(9)=TERM(10)*(SIGD*COSAO-SIGL2*SINAO)
    TERM(11)=ZBARA(I)
    TERM(12)=TERM(10)*(SIGD*SINAO+SIGL2*COSAO)
    TERM(13)=TERM(1)*GAML
    TERM(14)=MU*COSASE
    TERM(15)=TERM(14)*COSZA
    TERM(16)=ZBAMLZ*COSAO
    TERM(17)=TERM(15)-TERM(16)
    TERM(18)=GAML*TERM(17)
    TERM(19)=TERM(14)*SINZA
    TERM(20)=ZBAMLZ*SINAO
    TERM(21)=2.0*GAMD*(TERM(19)-TERM(20))
    TERM(22)=PI/2.0*CRAR(I)
    TERM(23)=TERM(22)*SINAD
    TERM(24)=TERM(18)+TERM(21)-TERM(23)
    TERM(25)=2.0*NBAR(I)*EBAR(I)
    TERM(26)=-TERM(25)&TERM(3)
    TERM(27)=OCKV*CBAR(I)*PI/4.0
    TERM(28)=TERM(27)*SINAD
    TERM(29)=TERN(27)*2BARA(I)
    TERM(30)=TERM(10)*(GANL*COSAO+2.*GAMD*SINAO)
    TERM(31)=TERM(10)*(-GAML*SINAO+2.*GAMD*COSAO)
    TERM(32)=2.0*DELTA
    TERM(33)=DELTAP六COSZA
```

```
    TERM(34)=TERM(32)#SINZA
    TERM(35)=DELTAP*COSAO
    TERM(36)=TERM(32)*SINAO
    TERM(37)=TERM(33)+TERM(34)
    TERM(38)=TERM(35)+TERM(36)
    TERM(39)=TERM(1)*DELTAP
    TERM(40)=TERM(10)*(TERM(14)*TERM(37)-2BAMLZ*TERM(38) +TERM(22)*
    1 ZBARA(I))
    TERM(41)=2.0*XIBARO(I)
    TERM(42)=TERM(41)*TERM(4)
    TERM(43)=TERM(10)*TERM(38)
    TERM(44)=TERM(10)*(-DELTAP*SINAO+TERM(32)*COSAO)
    RETURN
    END
    SUBROUTINE QTFG (Y,Z,NDIM)
    IMPLICIT REAL#8(A-H,O-Z)
    DIMENSION Y(1),Z(1)
    COMMON /A5/ X(17)
C
C
    SUMP=0.
    IF (NDIM-1) 4,3,1
    1 DO 2 I=2,NDIM
    SUM1=SUM2
    SUM2=SUM2+0.5*(X(I)-X(I-1))*(Y(I)+Y(I-1))
    2 Z(I-1)=SUM1
    3 Z(NDIM)=SUM2
    4 \text { RETURN}
        END
        FUNCTION ZA(ETA.II
    IMPLICIT REAL*8(A-H,O-Z)
    REAL*8 MU,MB,KM,MT,MODFR,MBAR
    REAL MU,MB,KM,MT,MODFR,MBAR
    COMMON COSAS,COSQAS,RMUSQ,MU,AS,CT,CTSQ,SINAS,SINETA,RMUMWB,
    1 XMUCSE,SINZA,COSZA,RMUCSA
        COMMGN /A5/ XBAR(17)
        XMUCSE=XBAR(I)+RMUCSA*SINETA
        IF (RMUMWB.EQ.O..AND.XMUCSE.EQ.O.) GO TO 2
        ZA= ATAN2(RMUMWB,XMUCSE).
        GO TO 3
    2 ZA =0.
    3 SINZA= SIN(ZA)
        COSZA= COS(ZA)
        RETURN
        END
        FUNCTION XMUNU (I,J,L)
        IMDLICIT REAL*8(A-H,O-Z)
        COMMON /A1/ TERM(50),ANU(17,3),AW(17,3),APHI(17,3),ATH(17,3),
    1 APSI(17,3)
        COMMON /A6/ TX(17,24,16),NSW
        XMUNU=TX(I,J,1) #APHI(I,L)+TX(I,J,8)*(TX(I,J,2)*ATH(I,L)+
    1 TX(I,J,3)*APSI(I,L))*TX(I,J,4)
        RETURN
        END
        FUNCTION XLMBNU (I,J,L)
    IMPLICIT REAL*8(A-H,O-Z)
    COMMON /A1/ TERM(50),ANU(17,3),AW(17,3),APHI(17,3),ATH(17,3),
    1 APSI(17,3)
```

```
        COMMON /A6/ TX(17,24,16),NSW
        XLMBNIJ=TX(I,J,5)*APSI(I,L)-TX(I,J,6)*APHI(I,L)+TX(I,J,7)*
        1 (TX(I,J,9)*APHI(I,L)+ANU(I,LI)-TX(I,J,lO:*AW(I,L)
        RFTURN
        END
        FUNCTION XMUPHJ (I,J,L)
C
C
    IMPLICIT REAL#8(A-H,O-Z)
    COMMON /A1/ TERM(50),ANU(17,3),AW(17,3),APHI(17,3),ATH(17,3),
    l APSI(17,3)
        COMMON /AG/ TX(17,24,16),NSW
        X:4UPHJ=TX(I,J,12)*APHI(I,L)+TX(I,J,13)*(ATH(I,L)*TX(I,J,2)+
    1APSI(I,L)*TX(I,J,3))
    PETURN
    END
    FUNCTION XLMPHJ (I,J,L)
    IMPLICIT REAL*8(A-H,O-Z)
    C\capMMON /AL/ TERM(50),ANU(17,3),AW(17,3),APHI(17,3),ATH(17,3),
    1 APSI(17,3)
    CDMMON /AG/ TX(17,24,16),NSW
    XLMPHJ=TX(I,J,14)#APSI(I,L)-TX(I,J,11)*APHI(I,L)+TX(I,J,15)*
    l (TX(I,J,9)#APHI(I,L)+ANU(I,L))+TX(I,J,16)*AW(I,L)
    RETURN
    END
    SUBROUTINE SERIES(I,J,NCODE,EMT,U,V,APHIJ,CLIFT,ASLOP,CMOME,CDRAG,
    1 CMA,CDA)
    IMPLICIT REAL*g(A-H,O-Z)
```



```
    SUBROUTINE TO COMPUTE CLIFT=LIFT COEFFICIENT
                                    ASLOP=LIFT CURVE SLODE
                                    CMOME=MOMENT COEFFICTENT
                                    CDRAG=DRAG COEFFICIENT
    CDA=0.
    CMA=0.
    CLIFT=0.
    ASLOP=0.
    CMOME=0.
    CDRAG=0.
C
C
    TWPI=2.*2.1415926
    IF (APHIJ.LT.-TWPI) STOP 100
    IF {APHIJ.GT.2.*3.1415926) STOP 101
180 NEG=1
    EMIJ=EMT* ABS(U)
    SQT= SQRT(1.-EMIJ*EMIJ)
    Cl=1.-EMIJ
    C.2=.22689*C1
172 IF (APHIJ+3.1415926) 173,181,182
173 APHIJ=APHIJ+3.1415926*2.
    GO TO 186
182 IF(APHIJ-3.1415926) 184,186,183
183 APHIJ=APHIJ-3.1415926*2.
    GO TO 181
184 IF(APHIJ) 181,186,186
181 APHIJ=-APHIJ
```

```
    NEG=-1
186 IF(APHIJ-C 2) 185,187,187
185 ASLOP=5.7296/SQT
    CLIFT=ASLOP*APHIJ
    CDRAG=.006*.13131%APHIJ*APHI J
    CMOME=1.4324*APHIJ/SOT
    CDA=.26262*APHIJ
    CMA=1.4324/SQT
    GO TO 250
187 IF(APHIJ-.34906) 189,191,191
189 CLIFT=.29269*C1+(1.3*EMIJ-.59)*APHIJ
    CMOME=CLIFT/{SQT*(.48868+.90756*EMIJ))
    C2=(.12217+.22689*EMIJ)*SQT
    CLIFT=CLIFT/C2
    ASLOP=(1.3#EMIJ-.59)/C2
    CMA=(1.3*EMIJ-.59)/((.48868+.50756*EMIJ)*SQT)
    GO TO 210
191 IF(APHIJ-2.7402) 193,195,195
193 S= SIN(APHIJ)
    S2= SIN(2.*APHIJ)
    S3= SIN(3.*APHIJ)
    S4= SIN(4.*APHIJ)
    CLIFT=(.080373*S+1.04308*S2-.011059*S3+.023127*S4)/SQT
    CMOME=(-.02827*S+.14022*S2-.00622*S3+.01012*S4)/SOT
    C= COS(APHIJ)
    C2= COS(2.*APHIJ)
    C3= COS(3.*APHIJ)
    C4= COS(4.*APHIJ)
    ASLOP=(.080373*C+2.08616*C2-.033177*C3+.092508*C4)/SOT
    CDRAG=(1.1233-.C29894*C-1.00603*C2+.003115*C 3-.091487*C4)/SQT
    CMA={-.02827*C+.28044*C 2-.01866*C3+.04048*C4)/SQT
    GO TO 240
195 IF(APFIJ-3.0020) 197,199,199
197 CLIFT=-(.4704+.10313*APHIJ)/SQT
    ASLOP=-. 10313/SQT
    CMOME=-(.4786+.02578*APHIJ)/SQT
    CMA=-.02578/SQT
    GO TO 210
-199 IF(APHIJ-3.1415926) 200,200,260
200 CLIFT= (-17.550+5.5864*APHIJ)/SQT
    ASLOP=5.5864/SQT
    CMOME=(-12.5109+3.9824*APHIJ)/SQT
    CMA=3.9824/SQT
210 C= COS(APHIJ)
    C2= COS(2.*APHIJ)
    C3= COS(3.*APHIJ)
    C4= COS(4.*APHIJ)
    CDRAG={1.1233-.C29894*C - C .00603*C2
    1 +.003115%C3
        -.091487*C4
        I/SQT
240 S= SIN(APHIJ)
    S2= SIN(2.#APHIJ)
    S3= SIN(3.*APHIJ)
    S4= SIN(4.*APHIJ)
    CDA={.029894*S +2.01206*S2 -.009345*S3
    l +.36595*S4
        I/SQT
250 IF(NEG) 255,255,260
255 CLIFT=-CLIFT
    CMOME=-CMOME
    APHIJ=-APHIJ
```

$C D A=-C D A$
260 CONTINUE
C
300 CONTINUE
RETURN
END
-

APPENDIX B

Listing of Computer Program for Determining Characteristic Modal Functions

 DIMENSION \(A(3,3,12), B(3,3,12)\)
 DIMENSION DUM(216), EVALUE(41)
 DIMENSION NTIT(20)
 DIMENSION T(41,41),TS(41,41),C(41),TSRET(41,41)
 \(\operatorname{EQUIVALENCE}(A(1,1,1), \operatorname{DUM}(1)),(B(1,1,1)\), \(\operatorname{DUM}(109))\)
 COMMON DUM, EIGENC, N, NP
 \(I R O W(N, N R)=3 \neq N+N R\)
 ICOL \((N, N C)=3 * N+N C\)
 C
 C
READ PROGRAN CONTROL CONSTANTS
C
READ (5.9991) NTIT
WRITE (6,9992) NTIT
READ (5,2) N,NS,NG,NLANB
C
C
C
PROGRAN CONSTANTS
ZERD $=$ CMPLX $(0 ., 0.1)$
ONE $=\operatorname{CMPLX}(1 ., 0$.
DO $199 \quad \mathrm{I}=1,216$
199 DUM (I)=ZERO
$N P=2 * N+1$
NAUSEC $=3 *(2 * N+1)$
NAUSER $=3 *(2 * N+1)$
NBUSEC=NAUSEC-1
NBUSER=NAUSER-1
NADIC $=41$
NADIR $=41$
NBDIC $=41$
NBDIR $=41$
THREEN $=3 * N$
$K T H=I C O L(N, N Q)$
$L T H=I R O W(N, N S)$
LTHM1 $=\mathrm{LTH}-1$
$L T H P 1=L T H+1$
INPUT PRCGRAM VARIABLES
READ (5,9871) (((A(I,J,K), B(I,J,K),K=1,NP),J=1,3),I=1,3)
WRITE(6,9874$)((1, J, K, A(I, J, K), B(I ; J, K), K=1, N P), J=1,3), I=1,3)$
ITERATE ON THE NUMBER OF ROOTS, NLAMB
DO 1000 IZZ=1, NLAMB
EVALUE (IZZ)=ZERD
READ (5,9877) EIGENC
WRITE $(6,9882)$ EIGENC
DEFINE A NEW T ARRAY AND C VECTOR
C
C
c

9886 FORMAT (/'OT MATRIX'/(10',2E16.7.5X,2E16.7.5X,2E16.7))

WRITE (6.9881) LTH
CALL REMV (T,TS,LTH,KTH,NAUSEC,NAUSER,NADIC,NADIR,NBDIC,NBDIR)
IF (LTH.EQ.1) GO TO 12
DO 10 II $=1$,LTHM1
$10 \mathrm{C}(\mathrm{II})=-\mathrm{T}(\mathrm{II}, \mathrm{KTH})$
IF (LTH.EQ.NAUSER) GO TO 16
12 DO 14 II=LTHP1, NAUSER
$\mathrm{N}_{\mathrm{i}}=\mathrm{I} \mathrm{I}-1$
$14 C(M)=-T(I I, K T H)$
16 WRITE (6,9875) (C(M), $M=1$, NBUSER)
c
c
C
SELVE THE RESULTING EQUATIONS FOR EPS
CALL CMAT(TS,NEUSER,C,DET)
WRITE (6,9875) (C(M), M=1,NBUSER)
WORKI=REAL (DET)
WORK2=AIMAG(DET)
IF (HORK1.EQ.O..AND.WORK2.EG.0.) WRITE (6,9876)
1000 CONTINUE
STOP
c
FORMAT (8I 2,2E14.7)
9871 FORMAT (4E14.7)
9872 FORMAT (2E14.7)
9873 FORMAT (1HI/(1HO,I5,2E16.7))
9874 FORMAT ('0.,3I5,4E16.7)
9875 FORMAT ('1'/('O', 2E16.7))
9876 FORMAT ('O','VALUE OF DET IS ZERO'l
9877 FORMAT \{2E13.7)
9881 FORMAT (/'OEXTRACTED ROW ', I3)
9882 FORMAT (/'OTHE STARTING EIGENVALUE IS ',2E16.7)
9991 FORMAT (20A4)
9992 FORMAT ('1:,20X,20A4)
END
SUBRCUTINE MAKET (T)
COMPLEX A,B,C,CLAM,CMPLX,CONJG,T,CZ,CY
DIMENSION T(41,41),A(3,3,12), B(3,3,12)
COMMON A,B,CLAN,N,NP
${ }_{c}^{c}$
clam is the eigenvalue
NADO1 $=\mathrm{N}+1$
C=CMPLX(0.,2.)
DO $20 \mathrm{M}=1$, NP
C2 $=\mathrm{M}-\mathrm{NADD1}$
$C Y=C L A M+C \neq C M P L X(C 2,0$.
$I M=\{M-1\}+3+1$
IMAD2 $=1 M+3-1$
DO $20 \mathrm{~K}=1, \mathrm{NP}$
$C \bar{I}=\bar{K}-N A D D 1$
$C Z=C L A M+C * C M P L X(C 1,0$.
$I K=(K-1) * 3+1$
IKADZ $=1 K+3-1$
IF(K-M)25,30,35
25 LZ $=M-K+1$
0027 II = IM.IMAD2
$I M M=M O D\{I, 3$)
IFIIMM.EQ.OIIMM=3
OO $27 \mathrm{JJ}=1 \mathrm{~K}, \mathrm{IKAD} 2$
$1 K K=\operatorname{MOD}(J J, 3)$
IF\{IKK.EQ.O)IKK=3
27 T(II,JJ) $=C Z * A(I M M, I K K, L Z)+B(I M M, I K K, L Z)$
GO 1020
30 DO $32 \mathrm{I}=\mathrm{IM}, I \mathrm{MAD} 2$
IMM=MOD(I,3)
IF (IMM.EQ.O)IMM=3
DO $32 \mathrm{~J}=\mathrm{IK}$, IKAD2
IKK=MOD(J,3 I
IF (IKK.EQ.O) IKK=3
$32 \mathrm{~T}(I, J)=C Y * A(I M M, I K K, 1)+B(I M M, I K K, 1)$
DO $34 \mathrm{NZ}=\mathrm{IM}, \mathrm{IM}$ MD2
$34 T(N Z, N Z)=T(N Z, N Z)+C Y * C Y$
GO TO 20
35 L $S=K-M+1$
0038 IX=IM,IMAD2
$I M M=M O D\{X, 3$)
IFIIMM.EQ.OIIMM=3
$0038 J X=1 K, I K A D 2$
$I K K=M O D(J X, 3)$
IFIIKK.EQ.OIIKK=3
38 T(IX,JX)=CZ*CONJG(A)IMM,IKK,LSI)+CONJG(B(IMM,IKK,LS))
20 CONTINUE
RETURN
END
SUBROUTINE REMV (A,B,I,J,NAUSEC, NAUSER,NADIC,NAOIR,NBDIC,NBOIR)
COMPLEX*B AINADIR,NADICI,B(NBDIR,NBOICI
$11=0$
DO 2 II $=1$, NAUSER
IFIII.EQ.I) GO TO 2
$11=11+1$
$J 1=0$
DO $1 \mathrm{JJ}=1$, NAUSEC
IF (JJ.EQ.J) GO TO I
$\mathrm{J}=\mathrm{J} 1+1$
B(II, JI) $=A(11, J J)$
1 CONTINUE
2 CONTINUE
RETURN
END
SUBROUTINE CMAT(A,N,Y,DET)


```
C Y = COMPLEXX*8, VECTCR TO SOLY AX=Y
C DET = COMPLEX*8, VARIABLE FOR DETERMINANT OF A
    IMPLICIT COMPLEX (A-H,O-Z)
    REAL*4 CABS
    DIMENSION A(41,41),Y(41)
    OIMENSION ICHG(41)
    DET=1.0
    DO 118 K=1,N
    AMX = A(K,K)
    IMX=K
    DD 100 I=K,N
    IF(CABS(A(I,K)).LE.CABS(AMXI) GO TO 100
    AMX = A(IFK)
    IMX=I
    100 CONTINUE
    IF(CABS(AMX).GT.0.1E-70) GO TO 102
    DET=0.0
    GO TC }12
    102 IF (IMX.EQ.K) GO TO 106
    00 104 J=1,N
    TEMP=A(K,J)
    A(K,J)=A([MX,J)
    104 A(IMX,J)=TEMP
    ICHG(K)=IMX
    TEMP=Y{K)
    Y(K)= Y(IMX)
    Y(IMX)= TEMP
    DET=-DET
    GO TO 108
    106 [CHG(K)=K
    108 DET=DET*A(K,K)
    A(K,K)=1.0/A(K,K)
    DO 110 J=1,N
    IF (J.NE,K) A(K,J)=A(K,J)*A(K,K)
    110 CONTINUE
    Y(K) = Y(K)*A(K,K)
    00 114 I=1,N
    DO 112 J=1,N
    IF. (I.EQ.K) GO TO 114
    IF (K.NE.J) A(I,J)=A(I,J)-A(I,K)*A(K,J)
    112 CONTINUE
    Y(I) = Y(I)-A(I,K)*Y(K)
    114 CONTINUE
    DO 116 I=1,N
    IF (I,NE.K) A(I,K)=-A(I,K)*A(K,K)
    116 CONTINUE
    118 CONTINUE
    DO 122 K=1,N
    L=N+1-K
    KI=ICHG(L)
    IF (L.EQ.KI) GO TO 122
    DO 120 I=1,N
    TEMP=A(I,L)
    A(I,L)=A(I,KI)
    120 A(I,KI) = TEMP
    122 CONTINUE
    124 RETURN
    END
```


REFERENCES

1. Crimi, P.: A Method for Analyzing The Aeroelastic Stability of a Helicopter Rotor in Forward Flight. NASA CR-1332, August 1969.
2. Whittaker, E.T., and Watson, G.N.: Modern Analysis, Cambridge University Press, New York, 1962.
3. Gates, C. A. and DuWaldt, F.A.: Experimental and Theoretical Investigation of the Flutter Characteristics of a Model Helicopter Rotor Blade in Forward Flight. ASD TR 6l-712, February 1962.
4. Sadler, S. G.: Rotating Blade Natural Frequency and Mode Shape Program for Coupled and Uncoupled Modes. Rochester Applied Science Assoc., Inc., RASA Report 69-3, April 1969.
5. DuWaldt, F.A.; Gates, C.A.; and Piziali, R.A.: Investigation of Helicopter Rotor Blade Flutter and Flapwise Bending Response in Hovering. WADC TR 59-403, August 1959.
