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A METHOD FDR DIGITAL IMAGE REGISTRATION USING A lVIATHEMATICAL PROGRAMMING 'IECHNIQUE

Stanton S. Yao

Lockheed Electronics Company, Inc.
NASA - Johnson Space Center

Houston, Texas

I. ABSTRACT

A new algorithm based on a nonlinear programming technique
to correct the geometrical distortions of one digital image with
respect to another is discussed. This algorithm promises to be
superior to existing ones in that it is capable of treating ,
localized differential scaling, translational and rotational errors
over the whole image plane. A series of piece-wise "rUbber-sheet"
approximations are used, constrained in such a manner that a
smooth approximation over the entire image can be obtained. The
theoretical derivation is included. The result of using the
algorithm to register four channel S065 Apollo IX digitized
photography over Imperial Valley, California, is discussed in
detail.

II. INTRODUCTION

In processing and analyzing remotely-sensed data, it is often necessary to make point to point
comparisons of data gathered from the same scene by different data-gathering platforms at different
times of the year over different spectral bands and from different vantage points. When 0 pattern
recognition techniques are applied to the analysis of multispectral remote sensing imagery, one
basic assumption is that corresponding data points from different channels of the images are
spatially aligned. The science of how to efficiently bring image data into spatial alignment is
called correlation/registration.

Correlation/registration of digital imagery is sometimes referred to as geometric corrections,
however the process involves more than merely a reassignment of data points to different geometric
locations. Inherent in correlation/registration are problems such as radiometric corrections, dif­
ferent resolution-cell sizes from different sensors, extrapolation from a small, overlayed image
strip between two images, etc. Solutions to most of these problems are not yet well developed.
This paper represents a preliminary attempt in trying to tackle some of these problems using well
established mathematical techniques.

Techniques for correlating images with approximately equal resolution-cell sizes are available
and numerous (1, 2). They will not be the SUbject of discussion in this paper. The number of image
registration techniques in existence, on the other hand, is rather limited (3, 4). In general, all
geometrical distortions are represented by a combination of the two-dimensional translation, rota­
tion and scaling problems. When matching points, or "checkpoints", are located on two images;

,mathematical functions based on certain goodness criterion can be used to model the distortions and
thereby bring the two images into registration according to the model established. The most corrmon
function used is the bi-variate polynomial, and the most tractable goodness criterion is the least­
squares process. The different terms in the bi-variate polynomial may or may not have geometrical
significance in relation to the distortions that exist, but they are not usually considered in
detail.
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For example, let (x,y) be the coordinate system of the reference image, and (u,v), the over­
lay image. Let it be assumed that a linear relationship exists between (x,y) and (u,v):

u = ax + by + C

v = dx + ey + f
Given three or more pairs of matching points «x ,y ),(u ,v », i~3, six coefficients in the

iii i
above equations can then be solved for by the standard least square process.

When the georretric distortions that exist between two sets of digital imagery are "smooth" or
slow varying in nature, a low-order bi-variate polynomial based on the least-squares criterion
usually yields a good approximation of the actual distortion. This assumes that the matching points
are uniformly distributed throughout both images as is required by any approximation scheme. When
distortions between two images have relatively large localized differential variations, higher­
order bi-variate polynomials normally are used in order to achieve minimum error bounds. The co­
efficients associated with the high-order terms in the polynomial often change appreciably as

-different sets matching points are used or an extra point is added or deleted in the calculation.
In other words, the approximation error often becomes a strong function of the location of the
matching points when there are high-order terms in the bi-variate polynomial with significant values
for the coefficients. This is clearly undesirable.

The algorithm proposed here is intended to alleviate this type of shortcoming. It does its
job over one "patch" of the image at a time, and only lower order bivariate polynomials are used.
The boundaries between the patches are constrained to be continuous. It is also desirable that ~he

directional derivati ve across the boundaries of adjacent regions be continuous in order to have a
smoothly registered image.

These boundary-continuity conditions turn out to be easily met due to certain properties of
bi-variate polynomials. If constraints are placed on the coefficients of the polynomials calculated
in different regions, an optimum solution based on the goodness criterion, can be obtained utilizing
the mathematical programming technique. In this sense, the geometrical distortion modeling problem
can be considered as a series of constrained approximations with the coefficients of the bi-variate
polynomial in each region so computed that they not only approximate the distortion in that region,
but also effect a smooth transition across the boundaries of adjacent regions. Mathematical formula­
tion of this constrained approximation problem for a second-order bi-variate polynomial with six
unknown coefficients over rectangular regions are discussed in detail.

The registration technique described in this paper assumes that, initially, the two images are
fairly closely correlated. A set of matching points which may be arranged in the form of a grid
structure over the image plane is computed using well-established correlation methods such as the
Fast Fourier Transform Technique. Based on the correlation reSUlts, the registration algorithm is
applied point-by-point to bring one image into spatial alignment with the other.

III. THEORETICAL DERIVATION

Consider a one-dimensional problem where the theory can most easily be demonstrated. Let p (t ~
be the original geometrically distorted 'function and p (t ) be the "correct" or "registered" function
after the distortions on the axis t' has been removed. Let f(t) be the reference function. For
simplicity, consider f(t) = p(t) (see Figure 3). The distortion is characterized by performing
a cross correlation of p(t) with f(t) at t = 0, t , t , t , ..• etc. The correlation procedure

1 2 3

generates a table showing the deviation of the t t from t at t = 0, t , t , t , ... etc. If a rela-
1 2 3

tion t' = g(t) + t can be found based on the correlation results, where g(t) indicates the error
in registration, then p(t) = p(t' - g(t» can be computed, and p(t) and f(t) are thus in registra­
tion.

The task is to find a suitable functional representation of the error g(t) based on the cor­
relation results at discrete points t = 0, t , t , t , ••• etc. It is reasonable to assume that

1 2 3

the nature of the geometrical distortion is smooth. In other words, referring to Figure 4, the
functional relationship between t and t' looks more like the smooth solid line than the broken
piece-wise linear line. In order to approximate closely this function g(t) between t = ° and
t = 14 based on the correlation results at t = 0, t , t , t , ••• etc. using a polyn,omial in t,

1 2 3

a relatively high order polynomial would be required. If this polynomial approximation problem is
tWo-dimensional in nature, and a close fit for all matching points are needed, going to higher and
higher order two-dimensional polynomials will not be the answer. An alternate method is to
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be minimized subject to the constraint that

lB-IO

J=wllg(t) - z/::,11 2+llg(t)_z/::,11 2
22223 3

g (t ) g' (t ) = g' (t )
2 +' 1 + 2 +

at t = t. The generalization of this approach to the two dimensional case will be discussed in
+

detail later.

approximate get) (the error function) between t = 0 aro t = tl by a low order polynomial gl (t),

and between t = t 1 and t = t 2 by another low order polynomial g2(t), and to make sure that the two

polynomials join smoothy at t =t ,a point somewhere in the vicinity of t 1. That is, g (t) =
+ 1 +

where the prime denotes the derivative of the two functions evaluated

g' (t ) = t'
21+

Since both g(t) and f(t) are digital images, the assumption that g(t), the error function
between t and t' is not zero at t , is a reasonable one. The correlation results at t are

1 1

always written in terms of an integral number of the sample-spacing s, The actual misregistration
may be anywhere within ±/::,/2. The requirement that not only g(t) itself, but that also its
derivative be continuous at the "breakpoint" t, insures that a smooth transition can be brought

+
about for the error function between one region and the next.

Next consider the problem of mathematically determining the "best" approximating second order
polynanial in a region between the two correlation grid points t and t shown in Figure 5. Let

1 r 2

the misregistrations at t ,t ,and t be z /::', z /::, and z /::, respectively, where /::, is the sample
1 2 3 1 2 3

spacing and z. = 0, ±l; ±2, "', i = 1, 2, 3. It is required that the coefficients of the ap­
1

proximating polynomial, g (t) between t and t be determined in such a way that
• 2 1 2

g2 (t ) = t
1 +

where II 11 2 irrlicates square norm in a metric space, and
W~ 1 is a scaler weighting factor .

t is the value of the previous approximating function g (t ) between t and t evaluated
+ 1 0 1

at t (functional continUity)
1

t' is the derivative of the previous approximating function g (t ) between t and t
+ 1 0 1

evaluated at t (derivative continuity).
1

Let g2 (t) = at2 + bt + c, be a second order polynomial in t, and let A •A be the Lagrange
1 2

multipliers. It is required that the stationary points of the following equation be found.

H = Wllg (t ) - z /::,11 2 + Ilg
t

(t ) - z /::,11 2 + A (g (t ) - t ) + A (g'(t ) _ t ")
222 33 121 + 221 +

=Wl/at
2+bt

+c-z/::,1/2 +lIat2 +bt +c-z/::,1I 2+A(at2 +bt +c-t )+A(2at +b-t')
22 2 33 3 11 1 + 21 +

Taking partial derivatives of H with respect to a, b , c, A and A ,the following is
9btained: 1 2



A few corrrnents about the ·method are in order before generalizing it into two-dimensions:

grid points t and t , and so on.
2 3

lB-ll

(2)

(3)

(4)

(1)

o

o

cannot be set~o zero, since t is
1

between t and t are to be computed
2 3

Setting t = 0, equations
1

+ 2 ( at 2 + bt + c - z ~) + A = 0
3 3 3 1

- \ = t 2' that is, equally spaced grid points with t 3

2 at + b
1

t'
+

o => 2W(at2 + bt + c Z ~
2 2 2

o => t = at2 + bt + c
+ 1 1

o

a =

or
2W(at2 + bt + c - Z ~)t2 + 2(at 2 + bt + c - Z ~)t2 + At + 2A t

2 2 2 2 3 3 3 3 1 21

/

2t , then it follows that
2

Wt4 + t 4
2 3

A special case occurs when t - t = t
3 2 2

follows if t
1

just a reference "time mark" with respect

therefore,
Wt2(z~ - t ) + t 2(z ~ - t ) - t'(Wt 3 + t 3)

22 + 33 + + 23

In order to determine the coefficients a, b, and c , the above five independent linear
equations with five unlmowns (a, b, c, A , A ) must be solved. However, a particular easy solution

1 2

is set to zero. There is no restriction why t
1

to g (t). When g (t)
2 3

then t could very well be set to zero to simplify the computation.
2 ~

(4) and (5) yield c = t , b = t' and from equation (1) it follows that
+ +

4 4
a(t W+t )~ Z ~Wt2 + Z ~t2 - Wt2(bt + c) - t 2(bt + c)

23223322 33

o => 2W(at2 + bt + c -z ~)t2 + 2( bt +at 2 + c - z ~)t + A t + A
2 2 2 2 3 3 3 3 11 2

2. The reason that the correlation result at t is used when determining the error
3

approximating polynomial between t and t is to guarantee that a smooth~ transition
·12

takes place from one region of the approximation to another. The method can be easily
extended to the case where t or t are also used in the compution of g (t) . The

452

1. Almost exactly the sane approach can be used to determine the coefficients of a third
or even higher order approximating polynomial if so desired.

After coefficients a, b, and c have been calculated. g (t ) = t and g'(t) = t' could be
2 2 +2 2 2 +2

evaluated so that the same procedure can be used to find the approximating polynomial g (t ) between
3

(W + 16)t2
2

W(z ~ - t ) + 4(z ~ - t ) - t't (W + 8)
a= 2 + 3 + +2

aH 0
aa

an
IT

1

aH
rr-

2



can both be bivariate polyn~mials in x,y.
form:

where the sUbscript c stands for column, and

IB-12

v = g (x,y) + y
r

g (x,y) and g (x,y), the two-dimensional error fun~tions,

r c
A second order bivariate polynomial has the following

ax2 + by2 + cxy + dx + ey + fg(x,y)

stands for row.r

The reference image where p(u,v) is to be registered.

The output "registered" version of p(u,v). x,y are the geometrically corrected (or
reference) coordinate system.

When g (t) is computed for the functional approximation between t and t
2 1 2

Ig (t" )-z til should be also evaluated to make sure that Ig (t ) - z til
2 2 2 2 2 2

< t::./2. If the inequality does not hold, which means that the approximating function
g (t) is not satisfactory, either the weighting factor Wshould be increased or a

2

higher than second order polynomial approximating function should be employed.

weighting factor W is used to emphasize the importance of a good approximation at
t as compared to that at t .

2 3

p(x,y) :

f(x,y):

3.

where the subscript

Six coefficients are to be determined instead of only three coefficients as in the one­
dimensional case. If a third order bivariate polynomial is used, 10 coefficients must be determined.

u = g (x,y) + x
C

The functional relationships between the input and output coordinate systems are assumed to
have the following form:

4. The amount of computational effort used in the determination of the coefficients
of the error approximating functions in different regions is indeed rather small.

Consider the correlation grid structure obtained for errors in "column" registration shown in
Figure 6. For simplicity, a regularly spaced grid with horizontal and vertical grid spacing of
o and V respectively is used.

Before discussing how the error approximating functions are used for image registration, the
two-dimensional version of the above derivation will be presented.

Assume that a two-dimensional bivariate polynomial in (x,y) is to be used. Then g (x,y) is
c

the error function approximating the column geometrical distortion in region A surrounded by four
grid points A ,A ,A ,A with registration errors Z , Z , Z , Z respectively (see

11 12 21 22 11 12 21 22

Figure 6). Assume further that the error functions approximating the distortion in regions C and
B to the left and above A, both two-dimensional bivariate polynomials, have been computed. These
two functions determine the upper and left boundaries of region A since boundary continuity is
required. It will be shown that this continuity requirement determines five out of the six co­
efficients that uniquely define the function g (x,y) in region A.

c

In order to solve the problem of the two-dimensional geometric correction using the technique
discussed above, some modifications are necessary. The most obvious fact is that a two-dimensional
region involves boundary continuity instead of point continuity. Nevertheless, the same philosophy
and reasoning will govern the derivation. Let the following functions be defined:

p(u, v): The two dimensional geometrically distorted image to be corrected. u, v represent
the geometrically distorted input coordinate system.



then the

Again, a convenient or-igin for the coordinate system for region A is assigned as shown in
Figure 7. A is at the origin, A is at (e,O), etc. if

11 12
g (x,y) = ax 2 + by2 + cxy + dx + ey + f

c
equation of the upper boundary is given by

g (x,O) = ax2 + dx + f
c

and the equation of the left boundary is given by

g (O,y) = by2 + ey + f
c

Because of the reqUirement that these boundaries be continuous between B and A and C and A,
the five coefficients a, b, d , e, and f can be determined from the previously computed coefficients
for the functions approximating the distortions in regions B and C.

The remaining coefficient c in g (x,y) can be determined by formUlating and solving the fol­
c

lowing simple minimization problem:

J = wi Ig(e,v) - z ~I 12 + 1Ig(2e,V) - z ~I 12 + 1Ig(e,2V) - z ~I 12
22 23 32

where II 11 2 denotes the square norm in a metric space.

W> 1 is a scalar weighting factor

z ~,z ~,and z ~ are the column misregistrations at A A, A respectively, obtained
22 23 32 22' 23 32

from the correlation results.

The reason that grid points A and A are used in determining the coefficients in region A
23 32 ..

lies in the fact that once again, very smooth "surfaces" that extend from region A to the
neighboring regions are desired.

A simple calculation yields the formula for computing" c as

c = (w +18)e~ [wz ~++ 2(z ~ + z ~) - (W + 10) (ae 2 + bV2) - (w + 6) (de + eV) - (W + 4)fJ.
22 23 32

When the correlation results which indicate the magnitude of the mis-registration are obtained
not at the four corners of the region A, but rather, at K points scattered inside region A, and
L points outside region A; a similar formulation yields:

K L
J = w}]lg(x ,Y ) - Z ~112 + 2:11 g(x .s ) - Z ~112

k=l ik ik k 1=1 ml nl 1

where o~ i ~ eand m>6

o~ j ~Vand n>V

After g (x,y) in quantities should be computed in
c

order to determine not only how good the approximation has turned out, but also to provide informa­
tion concerning the continuation of the procedure to other neighboring regions, in particular, to
the right and below region A

1. [z ~ - f(6,V)! < ~/2. f(6,V) is equivalent to t in the one-dimensional case. If
22 - +

this inequality is satisfied, the approximating function g (x,y) should be considered
c

acceptable. Otherwise the weighting factor W would be increased.
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2. g (x,V) = ax 2 + xed + cV) + (f + bV2 + eV) = ax 2 + d'x + f. I

C
g (x,V) is the equation of the lower boundary of region A at y = V. The coefficients

c
a, d', and f' , so calculated become the coefficients of the upper boundary equation of
the region immediately below A

3. g (e,y) = by2 + y(e + ce) + (f + .ae2 + de) =by2 + e'y + f"
c

g (e,y) is the equation of the right boundary of region A at x = e. The coefficients
c

b, e ", and f"' so calculated become the coefficients of the left boundary equation of the
region to the right of region A .

To summarize, the following steps are needed in ord0.r to compute the coefficients of a second
order bivariate polynomial approximating the distortion errors in row or in column in region A de­
fined by four grid points A ,A ,A and A (This polynomial must be determined in order to be

11 21 22 12

able to carry out the proposed registration procedure.):

1. From the previously calculated and stored coefficients of the equations for
the upper and left boundaries of the region, obtain values a, b, d, e, and
f of the bivariate polynomial.

2. Compute coefficient c based on a, b, d, e, and f, the weighting factor W
and the correlation information at A ,A and A ,or other points inside

22 23' 32

and outside region A.
.

3. Compute Iz ~-f(e,v)1 to check the validity of the polynomial approximation at (e,v),
22

if z is available.
22

4. Compute and store coefficients a, d ", f' , for the upper boundary equation of the
region immediate below A.

5. Compute and store coefficients b , e', f" for the left boundary equation of the region
immediately to the right of A.

6. Repeat steps I to 5 either for regions immediately to the right of A or immediately
below A.

Thus, within a certain region A the following relationships between the coordinate frameworks
will be available after modeling the row and column distortion errors with two functions g (x,y)
and g (x,y): c

r
u = g (x,y) + x, x from 0 to e

c
v = g (x,y) + y, Y from 0 to V

r
where gc (x,y) and ~(x,y), which are valid only in region A, are both second order bivariate

polynomials whose coefficients have been already calculated. At each position (x o,y 0) on the

"output" image plane, a corresponding pair of values (uo,vo)' are computed based on the above

equations. When the data value at p(uo,vo) is placed on (xo,yo)it becomes p(xo,Yo), which is in

registration with the reference image f(x,y) at (xo'Yo)'

Before the raw data for the distorted and reference images are read in line-by-line from tape,
all coefficients of the bivariate polynomials approximating the column and row distortion errors
in different regions are stored in arrays. These arrays are ordered so that the coefficients cor­
respond to regions over the image to which they apply. Then, with respect to one line of the
reference data just read in, a cyclic buffer containing several lines of the distorted image is
filled. The number of lines in the buffer depends on the maximum expected line misregistrations
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to (u ,v ) is then fetched from the buffer.o 0

between the two images. Next, for each column sample on the reference line, say at (xo'Yo), the

corresponding line and column values (u ,v ) are determined using the above equations and the know­o 0
ledge concerning the particular region where (x ,y ) is located. A data value at a location closesto 0

This process is continued through all column samples

on the reference line before the next reference line is read in and the buffer refilled.

IV. EXPERIMENTAL VERIFICATIONS

A set of four Apollo IX 70 rrm S065 photography were separately digitiZed by a microdensitorneter
with 25 micrometer resolution cells and 25 micrometer distance between cells. The four sets of
digital data were then combined to form four channels on a data tape. It was' found by correlation
that misregistration exists between channels. To illustrate this, let A, B, and C be three (out
of the four) frames of the supposedly same scene. Let frame A be the reference frame, with respect
to which, frame B and C are to be registered. Along line 1800, for example, it was found after
performing a correlation procedure, that the error curves for column registration shown in Figures
1 and 2 exist.

It should be noted that there exists no registration error at columns 100 and 2100. However,
there are localized distortions close to the center of line 1800. The misregistration between
frames B and C can be as many as eight pixels. The average agriculture field is, however, only 4
pixel by 4 pixel.

The row-wise misregistration of the S065 digitized photography is found to follow almost the
same pattern as column by column misregistration. Clearly, a more subtle nonlinear two-dimensional
geometrical correction scheme is called for.

In order not to be over--turden by the amount of data involved, only a portion of the image is
coroidered. Approximately the first 400 lines of the data are found to be useful in identifying
agriculture features. Each line of data consists of 222 sample points, and each sample point is re­
presented by one of 256 levels of gray. Using channell as reference, channels 2, 3 and 4 are
separately correlated with channel 1 to form the grid structures shown in Figures 8, 9 and 10.* An
automatic correlation technique (1) is used so that the grids are equally spaced with 52-pixel
column spacing and 70-pixel line spacing. A total of 20 pairs of "matching points" is thus
established over the image. It is shown from the correlation grid structures that channel 2 is
fairly well spatially aligned with channell; on the other hand channels 3 and 4 are not. In
addition, considering row deviations, channels 3 and 4 register opposite errors with respect to
channel 1 in the lower portion of the image, and the error can be as large as 4 lines either way.
It is also noted that the registration error propagates rather smoothly over the grid structure.
Also noted in Figures 9 and 10 is the fact that the correlation coefficients at grid points in the
upper portions of the images, where the registration error is smaller, are higher in absolute values.
These values tend to become smaller toward the lower end of the images. The correlation coef­
ficients between channels 1 and 3 are generally small and negative, showing that a negative cor­
relation peak indicated the best fit. The explanation is that channel 3 is an infrared channel
while channel 1 covers mostly the visible region of the spectrum. It is well known that vegetation
shows opposite contrast in infrared as compared to that in the visible. Channel 4, being a "red"
channel, shows much better correlation with channelL

Due to the small registration errors between channels 1 and 2, only channels 3 and 4 are
considered to be misregistered with respect to channelL The algorithm discussed in the previous
section is employed to bring the columns and the rows in these two channels in spatial alignment
with those of channelL A new data tape with all channels in registration is generated in LARSYS
II format. The same correlation procedure as before is next used to correlate channels 3 and 4
with respect to channelL The row and column correlation resujt.s , with the same grid structures
as those in Figures 9 and 10, are shown in Figures 11 and 12 with the exception that no data is
available on line 330. Note that particular good registration is obtained for channel 4.

Also worth emphasis is the increase in correlation coefficients over the entire image for
Channel 4 data. This increase in correlation coefficients supplementing the zero registration error

*Numerals in parenthesis are row and column misregistration in units of sample-spacings at the
particular grid points shown.. The number- below the parenthesis shows the correlation coefficient
at that location.
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....

gives confidence to the conclusion that channels 4 and 1 are indeed spatially aligned. Channel 3
also shows improvement in registration, especially in the lower portion of the imagery, but the
results are not as prominent as those in channel 4. The explanation lies partly in the difficulties
encountered in trying to correlate essentially a negative image to a positive counterpart. The
correlation values in the grid structure upon which the whole registration procedure depends are
not reliable.

Finally, correlation procedures are used on different grid structures to serve as a double
check for the validity of the registration, especially in areas far from the original "matching
points." The overall small error, in particular for channel 4, where all but one place the row
deviation registers a "1" instead of "0" indicates the success of this algorithm.

V. DISCUSSION

In the preceding two sections, the mathematical foundation of the newly proposed registration
scheme was derived together with the discussion of the results of an experiment verification using
the s065 digitized photography. The proposed registration scheme, which makes use of the mathe- ­
matical programming technique, is not advantageous for all image registration problems. For
example, when ERTS MSS imageries are to be overlaid on base maps made from rectified, scaled
photography, a first order bi-variate polynomial correction applied over the entire image frame
will suffice. The reason is that the ERTS MSS imageries are geometrically well-corrected. To look
at the problem from a different point-of-view, the proposed image registration scheme necessitates
the division of an image into several regions. Each individual region has its own characteristic
distortion and is approximated by a bi-variate polynomial tailored to that distortion. The number
of regions that must be subdivided cannot be determined until the whole image is first examined.
If the image, after examination, is so "smooth" in nature that only one region-the entire image
frame--needs to be considered, then the proposed registration scheme is no different from the
ordinary low order bi-variate polynomial correction applied over the entire image. On the other
hand, when different types of distortions resulting, for example, from pitch and yaw of an in­
herently unstable low-flying aircraft scanner platform were present in the image, then the proposed
registration scheme should yield a much better error approximation than possible with a.global
bi-variate polynomial fit over the entire image. Some typical aircraft scanner data with these
types of distortion present are currently under investigation.

Finally, some questions concerning-the implementation of the proposed algorithm are answered
in the following:

Question 1: How does one start up the coefficients computation in a region where no boundary in­
formation from adj acent regions is as yet available?

Answer: There are two possible methods one can use.

(a): The first method is to use the one-dimensional approach discussed in the first portion
of the theory section to approximate the distortion error on the first grid line
(upper-most) and the first grid column (left-most) of the grid structures. This
provides enough information to get started on the upper-left region of the image.
Th~ process for computing the rest of the coefficients then proceeds in a left to
right, up then down, region-by-region fashion. This approach is compatible with
most of the eXisting data tape formats where the image is stored line-by-line on tape.

(b): One can also begin the one-dimensional approximation at some line and column where
enough correlation information is available to give a good estimate of the distortion
along that line and column. One then proceeds in all four directions from the inter­
section of that line and column. Note that for any given region, the distortion error
can be modeled if the equations of any two adjacent boundaries are known, The
boundaries do not have to be the upper and the leftmost ones as discussed in the Theory
section of this report.

Question 2: Does the formula given in the Theory section of this report for calculating coefficient
c of the second order bivariate polynomial no longer valid if one reaches the right­
most grid column or the lowest grid line?

Answer: Yes, but the formula can be modified in a straight-forward manner. For example, when
reaching one of the right column grids, by lettering Z236 equal zero, coefficient c
can be computed by the following formula:
c = 1 [Wz226 + 2z23 - (W + 8)aa2 - (W + 4)da - (W + 2) (bV2 + eV + f)]

va(W + 4)
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Again the answer to "update" is yes, if one is careful. For example, region B has
an updated upper boundary. Region P which is directly above region B now has
three out of its four boundaries known. In region P ,in order to provide continuity
at the lower boundary, a higher order bivariate polynomial with more unknown coeffi­
cients must be used to model the distortion error. These extra coefficients are
necessary so that all the known coefficients in the boundary equations can be satisfied.
The appendix discusses such a case. It is to be noted, however, that same of the
given coefficients in the boundary equations must be consistent among themselves to
begin with. Higher order bivariate polynomials can also be used if in addition to
boundary continuity, the directional derivatives across the boundaries are also re­
qUired to be continuous. The formulas for calculating these extra coefficients can
be derived in a straight forward manner.

Can boundaries of a region be "updated" independently from their neighboring regions
and still be continuous? This update may become necessary when two different types
of distortions on the same image are encountered in or near that particular region. An
example is the sudden drop in altitude of an aircraft which causes the image scale to
undergo an abrupt change in that particular region.

Answer:

Figure 1. - Column registration error between frame A and B
at line 1800.

3. Anuta, P. E.: Spatial Registration of Multispectral and Multitemporal Digital Imagery Using
Fourier Transform Techniques. LARS Information Note 052270, Purdue University, June 1970.

4. Barnea, D. 1., Silve:nnai1., H. F.: A Class of Algorithm in Fast Digital Image Registration.
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1. Anuta, P. E.: Guide to Use of the Fast Fourier Transform Algorithm for Two-Dimensional Imagery
Correlation. LARS Information Note 121069, Purdue University, January 1970. ~

2. Yao, S.: Notes on Image Correlation and Registration System Improverrent;s , LARS Technical
Memorandum, Purdue University, June 1972.

The author concludes that the proposed digital image registration scheme using the mathematical
programming technique is effective in treating certain geometrical distortion correction problems
encountered in remote sensing applications. In particular, it is useful when the images from un­
stable sensor platforms such as an aircraft scanner are encountered.

Question 3:
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Figure 2. - Column registration error between frame A and C
at line 1800.
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Figure 6. - Correlation grid structure showing regions A, B, and C.
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Figure 8. - Correlation Grid for Channels

1 & 2 before registration

•
(0,0)------------------(0,0)--------- (0,0)
0.847 0,772 0.785

(0, 0)-------------------(0,0) ---------------( 0,0)
0.822 0.818 0.844

(0,0)------ (0,0) (0,0)
0.749 0.773 0.865

CORRELATION COEFFICIENTS FOLLow ROW AND COLUMN MIS-REGISTRATION

260

190

330

I
L COLUMNS- 41 111 181
I
N

I
E
S

I"t
(0,0) (0,0) (0,-1)
0.829 0.769 0.841

I
·1,.

120 (0,0) (0,-1) (0,-1)
0.798 0.770 0.852



Figure 9. - Correlation grid for Channels

1 & 3 before Registration
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Figure 10. - Correlation grid for Channels

1 & 4 before registration
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Figure 11. - Correlation grid for channels

1& 3 after registration

Figure 12. - Correlation grid for channels

1 & 4 after registration
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VII. APPENDIX
In t r.Ls appendix it is shown that, given a rectangular region on an Irnage plane where the geo­

metric distortion can be approximated by a bivariate polynor.lial, all coefficients of the polynomial
can be determined even if the equations of' three out of the four boundaries surrounding the region
are predete~ined.

Let g(x,y) be the bivariate polynomial. Let the oragan of the coordinate system be located
at the upper-leftmost corner of the region. In addition,

Let the upper boundary equation be o

Let the left-hand boundary equation be b y2 + b y + c 0
1 2 1

Assume the equation of the lower boundary at y 7 is determined by some other means to be
d x2 + d x + f = 0

1 2 1

Note all coefficients a, a , b ,b , c , d , d and f are known constants.
1 2 12 1 1 2 1..

Modeling the distortion in this region by a third order bivariate. polynomial
g(x,y) ax 3 + by3 + cx3y + dxy2 + ex2 + f y2 + hx + iy + j

Then g(x,O) = ax 3 + ex2 + hx + j a XL + a X + c => a = 0 , e = a h = a j c1 2 1 i ' 2' 1

g (O,y) = by3 + f y2 + iy + j b y2 + b y + c => b = 0, f = b i = b
1 2 1 1 2

h = a
2

b
1

fe = a, 1

known constants.
d - a

2 2

IB-23

initially, all the coefficients of g(x,O) can be

'i/

d x + f = ax 3 + b73 + cx27 + dX7 2 + ex2 + fV2 + i7 + j
2 1

+ x(d7 2 + h) + (f72 + i7 +j)

d a
c + e d c 1 1

1 7
d -a

d72 + h d d 2 2
2 -rrr-

b 7 2 + b 'i/ + C
1 2 1

C
1

j

Comparing coefficients

Further, g(x,7)

i b
2

Therefore, provided f b V2 + b 7 + C
1 1 2 1

expressed on the following as a function of the
d - a

a=O b 0,c=1 1,a=

and f - f7 2 + i7 + j
1

and the fourth boundary will have the equation
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