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Abstract 

Gene set enrichment analysis (GSEA) is a widely employed method for analyzing gene 

expression profiles. The approach uses annotated sets of genes, identifies those that are 

coordinately up- or down-regulated in a biological comparison of interest, and thereby elucidates 

underlying biological processes relevant to the comparison. As the number of gene sets 

available in various collections for enrichment analysis has grown, the resulting lists of 

significant differentially regulated gene sets may also become larger, leading to the need for 

additional downstream analysis of GSEA results. Here we present a method that allows the 

rapid identification of a small number of co-regulated groups of genes – “leading edge 

metagenes” (LEMs) – from high scoring sets in GSEA results. LEM are sub-signatures which 

are common to multiple gene sets and that “explain” their enrichment specific to the 

experimental dataset of interest. We show that LEMs contain more refined lists of context-

dependent and biologically meaningful genes than the parental gene sets. LEM analysis of the 

human vaccine response using a large database of immune signatures identified core biological 

processes induced by five different vaccines in datasets from human peripheral blood 

mononuclear cells (PBMC). Further study of these biological processes over time following 

vaccination showed that at day 3 post-vaccination, vaccines derived from viruses or viral 

subunits exhibit patterns of biological processes that are distinct from protein conjugate 

vaccines; however, by day 7 these differences were less pronounced. This suggests that the 

immune response to diverse vaccines eventually converge to a common transcriptional 

response. LEM analysis can significantly reduce the dimensionality of enriched gene sets, 

improve the identification of core biological processes active in a comparison of interest, and 

simplify the biological interpretation of GSEA results. 
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Author Summary 

Genome-wide expression profiling is a widely used tool to identify biological mechanisms in a 

comparison of interest.  One analytic method, Gene set enrichment analysis (GSEA) uses 

annotated sets of genes and identifies those that are coordinately up- or down-regulated in a 

biological comparison of interest.  This approach capitalizes on the fact that alternations in 

biological processes often cause the coordinated change of a large number of genes. However, 

as the number of gene sets available in various collections for enrichment analysis has grown, 

the resulting lists of significant differentially regulated gene sets may also become larger, 

leading to the need for additional downstream analysis of GSEA results. Here we present a 

method that allows the identification of a small number of co-regulated groups of genes – 

“leading edge metagenes” (LEMs) – from high scoring sets in GSEA results. We show that 

LEMs contain more refined lists of context-dependent biologically meaningful genes than the 

parental gene sets and demonstrate the utility of this approach in analyzing the transcriptional 

response to vaccination.  LEM analysis can significantly reduce the dimensionality of enriched 

gene sets, improve the identification of core biological processes active in a comparison of 

interest, and facilitate the biological interpretation of GSEA results. 
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Introduction 

Changes in the state of a cell or tissue are often reflected by the alteration of large 

numbers of genes. Analysis of large-scale datasets from yeast [1] to humans [2] demonstrates 

that changes in gene expression accompanying a biological shift in the cell state are organized 

into “modules” or sets of genes that play a functional role in executing a particular biological 

process. However, the change in gene expression in many transcripts contained in such 

modules can be of such small magnitude that they would be hard to detect over experimental 

noise when considered individually [3,4]. As a result, several computational tools have been 

developed to detect the coordinate up-regulation of a program of genes [5] with robust statistical 

measures of significance, even though the absolute change in expression of any constituent 

gene in the set of genes may be small. 

One widely used approach is gene set enrichment analysis (GSEA) [6], which tests 

whether a set of genes of interest are randomly distributed throughout a rank-ordered list of 

genes (usually generated by comparison of the gene expression profiles of two phenotypic 

classes) or are over-represented at the top or bottom of the list. The latter finding then leads to 

the inference that this set of genes is related to the underlying biology of the two phenotypes in 

question. The power of GSEA and other analytic enrichment tools to yield insights into biology is 

critically dependent on the number and quality of databases of sets of genes, which are tested 

for enrichment in the phenotypic comparison of interest. Some databases, like Gene Ontology 

[7] or TRANSFAC [8], represent collections of genes generated a priori, without reference to 

specific experiments. Others, such as MSigDB [9] contribute a large number of gene sets 

curated from experimentally derived expression profiles corresponding to cell states and 

biological perturbations.  
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However, the increasing numbers of gene sets that become available for analysis can 

lead to the need for additional downstream analysis of GSEA results. The first challenge arises 

when a list of enriched gene sets contains considerable redundancy, i.e., multiple sets with a 

subset of genes – “sub-signatures” – in common. For example, results of GSEA may contain 

multiple gene sets each of which contains a signature of genes corresponding to a common 

biological process such as proliferation or interferon response, even though the experiments 

that elicited proliferation or interferon response were quite distinct. While the annotation of the 

gene sets themselves can provide considerable biological insights, it may not be immediately 

apparent whether the enrichment of two or more gene sets is due to the presence of the same 

set of sub-signatures in multiple gene sets that “explains” their enrichment.  

A second challenge is that as increasing numbers of gene sets become available for use 

with GSEA, the results of an analysis can sometimes include tens or hundreds of significantly 

enriched gene sets requiring considerable investigator review. The interpretation of GSEA 

results would therefore be facilitated by the development of tools to reduce the dimensionality of 

GSEA results. One way to do this would be to identify coordinately up-regulated sub-signatures 

contained within several enriched gene sets corresponding to the biological themes present in 

the phenotypic comparison of interest.  

To meet this need, we have developed an analysis approach to identify sub-signatures 

of genes which we term “leading edge metagenes” (LEMs) that are both common to multiple, 

significantly enriched gene sets and coordinately enriched in a phenotypic comparison of 

interest. The “leading edge” of a gene set consists of those genes that “drive” the enrichment 

score in a GSEA analysis, and represent a rich source of biologically important genes (see 

Methods). We show that the LEMs are more significantly enriched for biologically related genes 

than the parent gene sets or their leading edges. We apply this approach to the analysis of the 

transcriptional response induced by five different vaccines measured in peripheral blood 

mononuclear cells (PBMC). By examining the results of a GSEA analysis in the space of the 
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LEMs, we can more clearly see that while different vaccines initially elicit distinct, biologically 

coherent patterns of gene expression three days after vaccination, these transcriptional patterns 

of response become more similar over time. 
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Results 

Overview of the leading edge metagene method 

We developed an approach to identify groups of genes – termed “leading edge 

metagenes” (LEMs) – that are both associated with a phenotype of interest and shared between 

multiple gene sets enriched in that phenotypic comparison. We reasoned that groups of genes 

that are co-regulated in the phenotype of interest and also present in multiple gene sets are 

likely to represent the core sub-signatures of genes related to distinct biological processes or 

pathways. Our approach leverages the notion of the “leading edge genes” in a GSEA analysis 

[6], which are the genes whose expression profiles are most highly correlated with the 

phenotype distinction in a comparison of biological states and thus drive the GSEA enrichment 

statistic. We present here an overview of the leading edge metagene (LEM) method that is 

summarized in Fig. 1, and give more details in Methods. The LEM method and source code are 

available on GitHub (https://github.com/lamarck2008/LEM). 

 Step 1: Use GSEA to identify the enriched gene sets in a phenotypic comparison of 

interest, such as gene expression profiles of PBMC samples before and after vaccination. 

Extract the leading edge genes from each enriched gene set. 

 Step 2: Construct a sparse n by m matrix M of genes by gene sets. The entries in each 

column give the corresponding leading edge gene’s correlation with the phenotype distinction in 

the data set. Note that if a gene is not in the gene set’s leading edge its entry will be 0. 

 Step 3: Apply nonnegative matrix factorization (NMF) [10,11] to M. This will yield a 

product of two matrices W x H that approximates M, where the entries of the columns of W 

indicate the contribution of each gene to the corresponding metagene and the H matrix 

represents the gene sets in the space of metagenes.  

 Step 4: Filter the metagenes, (columns of the matrix W), i.e., set to 0 the entries with a 

coefficient that falls below a threshold. As each metagene is a positive linear combination of all 
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the genes, a small coefficient indicates negligible contribution to the metagene. This has the 

effect of removing the corresponding genes from that metagene. 

 Step 5: Define the leading edge metagenes (LEMs) for each column in the W matrix by 

assigning each gene with non-zero entries in its row to the leading edge metagene with the 

largest coefficient. 

 

Gene set enrichment analysis of the transcriptional response to YFV vaccination. 

We applied this approach to the gene set enrichment analysis of the transcriptional 

response to vaccination. Transcriptional profiling of the vaccine response has been used to 

identify biological processes associated with different vaccines and to develop predictors of 

protective immunity following vaccination [12-15]. The changes in gene expression in PBMC 

following yellow fever vaccine (YFV) vaccination of healthy volunteers have been well-studied 

[12,14], and provided a useful test case in which to apply LEM analysis. We studied a dataset of 

gene expression profiles of PBMC from healthy volunteers (n = 15) either before (day 0) or after 

(day 7) vaccination with YFV-17D, a live attenuated viral vaccine. We ranked genes by their 

differential expression in day 7 vs. day 0 and performed GSEA using the Immune Signatures C7 

collection of MSigDB (ImmuneSigDB), a compendium of almost 2,000 signatures [16] curated 

from experimentally derived gene expression profiles in the immunology literature. We identified 

481 gene sets that were significantly enriched at day 7 following YFV vaccination relative to day 

0 (Fig. 2 A). Many of the enriched gene sets were those that would be expected to correlate with 

vaccination-induced changes in gene expression, such as those related to inflammation, cell 

proliferation, and response to virus. 

We extracted the leading edge genes from all 481 enriched gene sets and assessed the 

frequency of co-occurrence of genes in gene sets (Fig. 2 B). Of the 2821 leading edge genes 

present in any of the enriched gene sets, the vast majority (75%) were present in 10 or fewer 
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gene sets, and the resulting matrix of gene sets and leading edge genes was sparse with 98% 

of the entries equal to 0. (S1 Fig.) 

 

Identifying LEMs in the transcriptional response to YFV vaccination 

We applied an NMF consensus clustering method to estimate the appropriate number of 

metagenes in the leading edge sparse matrix [11]. As is suggested by the consensus matrix in 

Fig. 3 A, there are three gene clusters represented in the leading edge sparse matrix suggesting 

that a rank 3 W matrix is the best low dimensional approximation. A simple inspection of 

coefficients in each of the columns of the W matrix suggests that most genes have very small 

coefficients and only a small fraction of genes have significantly large coefficients (Fig. 3 B). To 

filter out genes with negligible contributions to the metagenes, we fit three exponential 

distributions to the coefficients of each metagene in W. As is shown in Fig. 3 B, genes with 

coefficients below the cutoff of 1 are colored white and genes with coefficients above the cutoff 

are masked with a color gradient where more red indicates higher coefficient values. Genes that 

fall in the white regions were then filtered from the W matrix and the remaining genes were 

assigned to one of the three LEMs based as described in Methods. 

 

LEMs are highly enriched for genes associated with biological processes 

We reasoned that genes contained in LEMs would be a more refined list of biologically 

related genes than those in the gene sets from which they were extracted. Experimentally 

derived gene sets are generated from the comparison of two phenotypic classes, and as such 

are likely to entrain genes related to multiple, different biological processes as well as a variable 

degree of experimental noise. In contrast, LEMs, are “filtered” by virtue of appearing at the 

leading edge of enrichment in a phenotype of interest (here, day 7 post-vaccination) across 

multiple experimentally-derived gene sets. We therefore tested whether LEMs were more highly 

enriched for genes related to biological processes (as annotated by Gene Ontology) than their 
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parental gene sets (Fig. 4). We tested the set of 3 LEMs for overlap with the collection of GO 

annotated gene lists, and determined the significance of each GO term’s overlap. We compared 

the P-values generated by GO term overlap with LEM genes, an equivalent number of genes 

randomly sampled from the original pool of leading edge genes, and genes sampled from the 

entire transcriptome. We found that the significance of GO term overlap was much higher in the 

LEMs than in the original leading edge genes or in a random set of genes. GO terms that were 

enriched included many with known roles in the vaccine response to attenuated viral vaccines 

including those related to virus response, cytokine production and proliferation. We note that 

these enriched GO terms are not directly interchangeable with the LEMs themselves. While the 

overlaps between metagenes are significant, GO term annotated genes account for only a small 

fraction of all the genes in each LEM (Fig. 5). LEM analysis therefore provides an effective 

approach to refine GSEA results to a subset of genes most related to defined biological 

processes. 

 

LEM analysis identifies conservation and divergence of biologic kinetics in human 

vaccines 

We extended LEM analysis to an additional four previously published datasets of gene 

expression profiles from PBMC following vaccination [14]. The vaccines studied differed in 

immunogens and adjuvant, mechanism of action, and targeted disease. They included both 

polysaccharide and conjugate vaccines targeting meningococcal disease (MPSV4 and MCV4, 

respectively), trivalent influenza vaccine (TIV) and live attenuated virus vaccines targeting 

influenza (LAIV).  

For each vaccine, we compared the transcriptional response at day 3 or at day 7 

post-vaccination to the baseline time point at day 0 prior to vaccination for a total of 10 

comparisons (2 time points × 5 vaccines). We identified significantly enriched gene sets in the 

post-vaccination samples again using the ImmuneSigDB [16] and extracted LEMs associated 
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with the vaccine response for each vaccine at both time points. Initial GSEA results returned 

between 0 and 550 significantly gene sets that were enriched in each of the post-vaccination 

datasets relative to pre-vaccination samples. In nine of our ten comparisons, LEM analysis 

reduced these large collections of gene sets to three LEMs; analysis of the MCV4 vaccine 

response at day 0 versus day 7 post vaccination yielded four LEMs. We annotated this set of 

thirty-one LEMs using Gene Ontology (GO) terms based on the strongest overlap of a LEM with 

one of the ten representative GO terms (Fig. 6) identified by REVIGO [7,17]. We identified LEMs 

related to biological processes that have previously been shown to be involved in the PBMC 

transcriptional response to vaccination. For example, we found that LEMs comprised of genes 

related to cell cycle, immune response, and response to virus and stress were induced by 

several vaccines and at different time points. This is consistent with previous reports that found 

similar biology to be important in vaccine-induced responses [12,13,15,18,19]. 

We next compared the LEMs that were identified at day 3 post vaccination to those 

found at day 7 for each vaccine by comparing the fraction of shared genes in each. We found 

that the degree of overlap of LEMs at day 3 and day 7 varied widely in different vaccines (Fig. 

6). For example, the transcriptional response to MCV4 at day 3 induced LEMs that had minimal 

overlap with those for day 7. However, the closely related vaccine, MPSV4 showed a striking 

overlap in the LEMs between day 3 and day 7. In the case of TIV, a LEM representing cell cycle 

progression evident at day 3 persisted into day 7, whereas LEMs related to intracellular 

transport and immune response observed at day 3 showed minimal overlap with LEMs found at 

day 7 in the same vaccine. This suggests that while proliferation is a prominent part of the 

transcriptional response to TIV at day 3 and day 7, other transcriptional features shifted in this 

time frame. This contrasts with the LEMs elicited by vaccination by LAIV, which showed no 

evidence of proliferation until day 7. This is potentially related to the fact that TIV is administered 

intramuscularly and thus may elicit a more rapid response when measured in the blood than 

LAIV, which is given by the intranasal route. 
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Diverse vaccines elicit distinct transcriptional responses at day 3 but become more 

similar at day 7.  

The vaccines examined vary in their composition and include live attenuated viral 

vaccines (YFV and LAIV), inactivated virus (TIV), carbohydrate (MPSV4), and polysaccharide-

conjugate (MCV4). We therefore examined the shared and unique LEMs induced by different 

vaccines at day 3 and at day 7 post vaccination. We computed the significance of each pairwise 

overlap of LEM membership using a hypergeometric test, and visualized these comparisons as 

a heatmap (Fig. 7 A).  

At day 3, we found that the LEMs elicited by a meningococcal carbohydrate vaccine 

(MPSV4) and a meningococcal polysaccharide conjugate vaccine (MCV4), showed significant 

overlap of LEMs related to T cell activation, stress response and metabolism. Surprisingly 

although both meningococcal vaccines elicited LEMs containing genes related to proliferation, 

the sets of genes comprising the proliferation LEMs themselves showed minimal overlap, 

possibly suggesting different mechanisms or kinetics of cell cycle progression induced by these 

different vaccines. In contrast, neither meningococcal vaccine showed significant overlap with 

any of the LEMs in the constituent genes elicited by viral vaccines. However, there was 

significant overlap in the LEMs elicited by the inactivated and live attenuate viral vaccines 

including LEMs related to cell cycle, intracellular transport, and the immune response. We 

visualized the relative distance between two vaccines using hierarchical clustering based on a 

distance derived from the P-values calculated by all pairwise overlap comparisons of LEMs from 

each of the two vaccines (see Methods). This analysis demonstrated that the meningococcal 

vaccines clustered in a distinct branch of the dendrogram separate from the viral vaccines (Fig. 

7 B, left). 

At day 7, however, we observed a much broader degree of overlap in the constituent 

genes between metagenes induced by different types of vaccines. In contrast to day 3, we 
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found that multiple LEMs elicited by meningococcal protein vaccines showed similarity to those 

elicited by viral vaccines. For instance, the proliferation LEM induced by YFV (live attenuated 

vaccine) showed significant similarity to the proliferation LEM elicited by MPSV4 (P=8.65x10-6), 

MCV4 (P=6.65 x10-8), as well as to LAIV (P=2.2x10-5) and TIV (P=9.16x10-6). Similarly an 

immune response and protein-folding LEM elicited by MCV4 showed significant overlap with 

LEMs elicited by TIV and YFV. As a result, hierarchical clustering showed a much closer degree 

of relatedness between all five vaccines at day 7 than was seen at day 3 (Fig. 7 B, right). Thus 

the patterns of LEM expression elicited by carbohydrate and protein conjugate vaccines are 

distinct from those elicited by viral vaccines at day 3, but become more similar at day 7. 
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Discussion 

Identifying the coordinate up- or down-regulation of biologically meaningful sets of genes 

has become an important tool for the analysis of gene expression data. Several large collections 

of biologically informative gene sets enable comprehensive annotation of experimental datasets 

using gene set enrichment analysis (GSEA). However, the results of GSEA may include large 

numbers of gene sets that are enriched in the experimental dataset and the manual biological 

interpretation of every one of them can prove challenging and time consuming. Our method 

allows the rapid identification of a small number of LEMs common to multiple gene sets and 

coordinately regulated in the experimental dataset of interest. This approach complements 

standard GSEA by identifying LEMs that “explain” the enrichment of multiple gene sets. It starts 

with a large group of enriched gene sets and reduces them to a smaller number of LEMs that 

correspond to specific biological themes present in the phenotype of interest and that are 

specific to the data set studied. We applied this approach to identify the biological processes 

that are elicited by five different vaccines, and identified both shared and vaccine-specific 

components of the immune response to vaccination at different time points. 

Many gene sets in MSigDB are curated from expression profiles derived from 

experimental comparisons. As such, they often represent complex biological events, such as 

signatures induced by genetic perturbation or based on comparison of distinct differentiation 

states. It is therefore likely that many of these gene sets include multiple sub-signatures, each 

representing distinct biological processes. For instance, during the differentiation of effector 

CD8+ T cells from their naive precursors, there is marked up-regulation of sets of genes related 

to proliferation and also other genes related to effector T cell function. The 

GSE9650_NAIVE_VS_EFF_CD8_TCELL_DN gene set in the ImmmuneSigDB collection within 

MSigDB, therefore, contains genes related to mitosis (e.g., CDK1 and CDC34) as well as 

effector genes (e.g., GZMB and IFNG). The former class of genes is likely to be shared with 
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activated and proliferating B cells, but not the latter. This heterogeneity can present a challenge 

to interpretation of multiple high scoring gene sets. The approach that we have developed 

extracts core sub-signatures, or leading edge metagenes (LEMs), relevant to the context of the 

investigator’s data set. This approach achieves two goals: first, it reduces the complexity of the 

results of GSEA by reducing the number of gene sets that need to be evaluated, and second, it 

creates a refined set of LEMs in which key biological themes present in a phenotypic 

comparison of interest can be readily identified.  

The problem of finding intersecting subgroups of genes in the leading edge of multiple 

gene sets is challenging because the overlaps consist of a relatively small number of genes 

(Fig. 2 B), resulting in very sparse gene by gene set matrices that require proper analysis to 

extract the relevant gene subgroups. This type of analysis can be done, for example, using 

matrix decomposition techniques with the important requirement that the decomposition 

produces binary sparse matrices so that the “components” representing the most important 

overlaps can in turn be interpreted as sub-signatures. Traditionally, methods such as singular 

value decomposition (SVD) [20] and PCA [21] have been used to decompose input matrices 

into relevant components that represent the most salient relationship between variables and 

data points. However, these methods do not produce sparse representations and are therefore 

less suitable for this task. Non-negative matrix factorization (NMF) produces non-negative 

sparse decompositions whose coefficients may be bimodally distributed but not binary as we 

require. We overcome this limitation by discretizing the matrix coefficients after factorization 

based on their distribution. Imposing additional explicit sparsity constraints on the NMF 

projection, e.g., using the approach of Gao et al. [22] did not improve the representation in any 

significant way. 

The LEM approach we have described results in the generation of a small number of co-

regulated sub-signatures of genes. Several reference collections of coordinately expressed 

groups of genes are currently available for the analysis of gene expression data. For instance, 
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an analysis of 246 subsets of mouse immune cells identified modules of genes with coordinated 

expression across diverse lineages, and was able to infer regulatory mechanisms controlling 

particular modules of genes [23]. In the human immune system, several studies have applied 

similar approaches to identify groups of co-regulated gene modules from expression profiles 

derived from PBMC samples representing a range of states of health and disease [24,25]. 

These PBMC modules have proven to be powerful tools for analyzing the human PBMC 

transcriptional response to infection, autoimmunity, and vaccination. However the difference 

with these existing collections is that the statistical interdependence of the genes in a particular 

module is defined a priori and the module collections are context dependent and static. These 

approaches assume that that interdependence of gene expression in the previously defined 

modules will be maintained in all future experiments, an assumption that has not been 

exhaustively tested. In contrast, our approach adaptively defines the association of genes based 

on their co-regulation in the experimental dataset being studied. Context-specific differences in 

the co-regulation of genes will therefore be captured by our approach, allowing the construction 

of a set of LEMs tailored to the specific experimental setting of interest. Additional studies will 

help define the extent of variation in the structure of LEMs from one biological context to 

another. 

We applied our approach to defining LEMs to the problem of identifying features of the 

transcriptional response to vaccination. We showed that different vaccines elicit distinct kinetics 

of gene expression changes at day 3 and day 7 post vaccination compared to the pre-

vaccination state. Vaccines such as YFV show marked similarity in gene expression at both 

time points, while MCV elicits a pattern of LEMs at day 3 that is quite distinct from that seen at 

day 7. This difference in the progression of biological changes elicited by vaccines underscores 

the difference in the biologic basis by which protein-conjugate and live viral vaccines elicit 

protective immune response. Consistent with this, the profile of LEMs elicited at day 3 by the 

five vaccines studied showed clear differences between vaccines comprising of protein-
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conjugates (MPSV and MCV4) and those derived from viruses. However, by day 7 the pattern 

of LEMs elicited by the different viruses started to converge. This suggests that while different 

mechanisms may be responsible for the initial events in the priming of an immune response, 

common patterns of immune response begin to emerge at later time points. These findings have 

implications for the point at which gene-expression-based predictors of vaccine response should 

be measured. 
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Methods 

Overview 

The goal of the LEM algorithm is to identify component biological sub-signatures present in a 

group of gene sets that are enriched in a phenotypic comparison of interest. This algorithm 

starts with m gene sets from a GSEA analysis and yields a small number of groups of genes, 

which we term leading edge metagenes (LEMs), that capture the biological processes 

differentially present in the phenotypic comparison. There are five key elements in this method: 

 

Step 1: Identify enriched gene sets and their leading edges 

We first identify gene sets that are enriched in a phenotypic comparison of interest, such as 

gene expression profiles of PBMC samples before and after vaccination. GSEA has been 

extensively described [6] and typically queries a list of genes ranked by their differential 

expression in two phenotypes with gene sets from databases such as MSigDB [9]. GSEA 

calculates an enrichment score (ES) that reflects the degree to which a set of genes is 

overrepresented at the extremes (top or bottom) of the ranked list. The statistical significance of 

this overrepresentation is estimated using an empirical phenotype-based permutation test. 

Enriched gene sets are considered to be those that exceed a statistical threshold set by the 

user, and can, in typical experiments include dozens or even hundreds of gene sets. The 

leading edge subset of genes in an enriched gene set are defined as those which appear in the 

ranked list before the point at which the running sum of the ES is greatest ([6], Fig. S3). Leading 

edge genes therefore represent the most enriched subset of genes in a gene set. 

 

Step 2: Construct the leading edge sparse matrix 

We consolidate the leading edges of the m top-scoring gene sets into a sparse n by m matrix M, 

where the number of rows is the cardinality of the union of genes from all the leading edges in 
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the m top gene sets, and the columns correspond to the genes in the m enriched gene sets. 

The value of each entry in the matrix is the signal to noise ratio of the corresponding gene 

between two conditions in comparison (Eq. 1) and 0 if the gene is not in the leading edge of that 

gene set. A large signal to noise ratio indicates a great difference in the gene’s expression 

between the two conditions. 

𝑠2𝑛 = 𝜇𝐴 − 𝜇𝐵𝜎𝐴 − 𝜎𝐵  (1) 

 

Step 3: Estimate the number of clusters in the leading edge sparse matrix via NMF 

We use nonnegative matrix factorization (NMF) to identify clusters of genes with a similar 

pattern of leading edge membership in multiple gene sets and up- or down-regulation in the 

phenotype of interest. NMF is an efficient method for identifying hidden structure within a 

dataset [26]. Here we use NMF coupled with a model selection mechanism to estimate the 

number of clusters within the leading edge sparse matrix. Specifically, for a given leading edge 

sparse matrix M with n rows and m columns, we can approximate the original gene sets as 

positive linear combinations of these metagenes. The described procedure is equivalent to 

factoring the matrix M into two matrices such that 𝑀 ≈ 𝑊 ×𝐻 [10,26]. The W matrix is a low-

dimensional (rank k and k << m) representation of the M matrix and each dimension of W is a 

positive linear combination of n genes, termed a metagene. Each entry in the W matrix 

represents the contribution of each gene to the metagene and each entry in the H matrix 

represents the amount of each metagene required to recapitulate the gene’s expression in each 

of the m gene sets. To find the best rank k of the W matrix, we use a consensus clustering 

method framework as previously described [11,27]. 
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Step 4: Adaptively filter coefficients in the W matrix  

Inspection of the W matrix shows that in each metagene, the coefficients of most genes are very 

small, and only a small number of genes have a coefficient significantly larger than 0. As each 

metagene is a positive linear combination of all the genes, a small coefficient indicates 

negligible contribution to the metagene. Thus the next step of our algorithm involves filtering out 

genes with small coefficients in each metagene. To do this, we first assume that the background 

distribution of coefficients fulfills an exponential distribution (S2 Fig.). We set a filtering threshold 

at the 95% quantile of the fitted exponential distribution and set all coefficients below this 

threshold to zero. 

 

Step 5: Assign genes to the leading edge metagenes 

As each gene can contribute to more than one metagene, we next need to assign each gene to 

a single metagene. The assignment of genes to metagenes uses the following rules: 1) if one 

gene has no contribution to any of the metagenes, it is not included in any metagene; 2) each 

gene with a coefficient above the threshold defined in Step 4 is assigned to the metagene in 

which it has the largest coefficient.  

 

Data preprocessing 

We analyzed 5 existing datasets of gene expression profiles of PBMC from vaccinated subjects 

at three time points, day 0, day 3 and day 7 respectively. The GenePattern module 

“CollapseDataset” was used to extract the expression values of genes from the raw data file and 

to map Affymetrix probes to gene symbols [28]. We then applied quantile normalization and a 

log2 transformation to the expression data. The GEO accession ID of the five datasets are: 

GSE52245 for MPSV4 and MCV4; GSE13485 for YF-17D; GSE29617 for TIV and GSE29615 

for LAIV [12,13,14]. 
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Gene set enrichment analysis 

GSEA yields an enrichment score (ES) to quantify the overrepresentation of a set of genes S 

(e.g. genes coordinately up- or down-regulated in previous experiments) at the top or bottom of 

a ranked list of genes L. Candidate genes are ranked by their differential expression between 

two phenotypes, day 0 vs. day 3 and day 0 vs. day 7 in our case. The statistic is a weighted 

Kolmogorov-Smirnov-like statistic and significance is calculated using an empirical permutation 

test [6]. We used the desktop version of the GSEA software (http://www.gsea-msigdb.org) to 

conduct the leading edge analysis and extract the leading edge sparse matrix [6]. The GSEA 

software recommends an FDR < 0.25 as the cutoff to select significantly enriched gene sets for 

leading edge analysis. The number of gene sets satisfying this criterion ranged from 0 to 600 

depending on the data set. The number of gene sets satisfying this criterion was less than 5 for 

six of the GSEA analyses, 186 for another, and between 186 and 550 for the remaining three. 

Thus, to maintain consistency in metagene detection, we used 500 as the number of top scoring 

gene sets for leading edge analysis for all the GSEA results. 

 

Calculate frequency of genes in the leading edges 

After generating a leading edge sparse matrix, we enumerated the frequency of each gene in all 

leading edges by converting the leading edge sparse matrix into a binary matrix and summed 

up the values in each column.  

 

Annotate biological themes of the leading edge metagenes 

To systematically annotate all the metagenes generated in our analysis, we used the DAVID 

annotation tool together with REVIGO [5,17,29] to calculate the overrepresentation of genes 

related to specific biological processes in each of the metagenes.  
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Circos plots  

To visualize the overlap in gene membership between metagenes, we generated Circos plots 

based on the number of genes in each metagene and the number of genes shared by two 

metagenes (http://mkweb.bcgsc.ca/tableviewer/). 

 

Calculate the significance of overlaps between metagenes  

We used Fisher’s exact test to assess the significance of the number of genes shared by two 

metagenes. For example, to test the significance in gene sharing between Metagene 1 of LAIV 

at day 3 (M1.D3) versus Metagene 1 of LAIV at day 7 (M1.D7), we constructed a contingency 

table. Under the null hypothesis, the probability of obtaining a shown set of values follows a 

hypergeometric distribution:  

 𝑝 = (𝑎+𝑏𝑎 )(𝑐+𝑑𝑐 )( 𝑛𝑎+𝑐)  

Where n = a + b + c + d 
 

 Genes in M1.D3 Genes not in M1.D3 
Genes in M1.D7 a b 

Genes not in M1.D7 c d 
 
 

Calculate the distance between two gene signatures based on metagenes 

Each phenotypic comparison (e.g., gene expression profiles of PBMC at day 0 versus day 3 

post-vaccination) generates a set of metagenes that represents a unique signature associated 

with that comparison. To calculate the distance between two gene signatures, we first compute 

the P-values of Fisher’s exact test for each pairwise comparison of metagenes. The distance is 

then calculated as the sum of all the P-values normalized to the total number of pairs [30]. We 

used this metric as an input for hierarchical clustering. 

(2) 
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Data availability 

The Leading Edge Metagene analysis method and source code are available as a Git repository 

hosted on GitHub (https://github.com/lamarck2008/LEM) 

Funding 

This work was supported by NIAID, award number U19AI090023, of the National Institutes of 

Health to WNH; by NHGRI, award number U41HG007517, NCI, award number R01CA121941, 

and NIGMS, award number R01GM074024, of the National Institutes of Health to JPM; by NCI, 

award number R01CA154480, of the National Institutes of Health to PT; by the Bill & Melinda 

Gates Foundation, award number OPP50092, to JPM; and by the Cancer Research Institute 

Predoctoral Emphasis Pathway in Tumor Immunology to JG. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/043158doi: bioRxiv preprint 

https://github.com/lamarck2008/LEM
https://doi.org/10.1101/043158
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

References 

1. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, et al. (2003) Module networks: identifying 
regulatory modules and their condition-specific regulators from gene expression data. 
Nat Genet 34: 166-176. 

2. Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of 
expression modules in cancer. Nat Genet 36: 1090-1098. 

3. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, et al. (2003) PGC-1alpha-
responsive genes involved in oxidative phosphorylation are coordinately downregulated 
in human diabetes. Nat Genet 34: 267-273. 

4. Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, et al. (2005) An oncogenic 
KRAS2 expression signature identified by cross-species gene-expression analysis. Nat 
Genet 37: 48-55. 

5. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths 
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 
1-13. 

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide 
expression profiles. Proc Natl Acad Sci U S A 102: 15545-15550. 

7. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the 
unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-29. 

8. Wingender E, Chen X, Hehl R, Karas H, Liebich I, et al. (2000) TRANSFAC: an integrated 
system for gene expression regulation. Nucleic Acids Res 28: 316-319. 

9. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, et al. (2011) 
Molecular signatures database (MSigDB) 3.0. Bioinformatics 27: 1739-1740. 

10. Lee S (2000) Algorithms for Non-negative Matrix Factorization. Proceedings of Neural 
Information Processing Systems. pp. p. 556-562. 

11. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern 
discovery using matrix factorization. Proc Natl Acad Sci U S A 101: 4164-4169. 

12. Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, et al. (2009) Systems biology 
approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 
10: 116-125. 

13. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, et al. (2011) Systems biology 
of vaccination for seasonal influenza in humans. Nat Immunol 12: 786-795. 

14. Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, et al. (2014) Molecular 
signatures of antibody responses derived from a systems biology study of five human 
vaccines. Nat Immunol 15: 195-204. 

15. Obermoser G, Presnell S, Domico K, Xu H, Wang Y, et al. (2013) Systems scale interactive 
exploration reveals quantitative and qualitative differences in response to influenza and 
pneumococcal vaccines. Immunity 38: 831-844. 

16. Godec J, Tan Y, Liberzon A, Tamayo P, Bhattacharya S, et al. (2016) Compendium of 
Immune Signatures Identifies Conserved and Species-Specific Biology in Response to 
Inflammation. Immunity 44: 194-206. 

17. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long 
lists of gene ontology terms. PLoS One 6: e21800. 

18. Li S, Nakaya HI, Kazmin DA, Oh JZ, Pulendran B (2013) Systems biological approaches to 
measure and understand vaccine immunity in humans. Semin Immunol 25: 209-218. 

19. Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, et al. (2014) Vaccine activation of 
the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343: 
313-317. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/043158doi: bioRxiv preprint 

https://doi.org/10.1101/043158
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

20. Klema VL, A.J. (1980) The singular value decomposition: Its computation and some 
applications. IEEE Transactions on Automatic Control 25: 164 - 176. 

21. Jolliffe IT (2002) Principal Component Analysis: Springer. 
22. Gao Y, Church G (2005) Improving molecular cancer class discovery through sparse non-

negative matrix factorization. Bioinformatics 21: 3970-3975. 
23. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, et al. (2013) Identification of transcriptional 

regulators in the mouse immune system. Nat Immunol 14: 633-643. 
24. Ramilo O, Allman W, Chung W, Mejias A, Ardura M, et al. (2007) Gene expression patterns 

in blood leukocytes discriminate patients with acute infections. Blood 109: 2066-2077. 
25. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, et al. (2008) A modular analysis 

framework for blood genomics studies: application to systemic lupus erythematosus. 
Immunity 29: 150-164. 

26. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix 
factorization. Nature 401: 788-791. 

27. Tamayo P, Scanfeld D, Ebert BL, Gillette MA, Roberts CW, et al. (2007) Metagene 
projection for cross-platform, cross-species characterization of global transcriptional 
states. Proc Natl Acad Sci U S A 104: 5959-5964. 

28. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, et al. (2006) GenePattern 2.0. Nat Genet 
38: 500-501. 

29. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57. 

30. Meinicke P, Brodag T, Fricke WF, Waack S (2006) P-value based visualization of codon 
usage data. Algorithms Mol Biol 1: 10. 

 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2016. ; https://doi.org/10.1101/043158doi: bioRxiv preprint 

https://doi.org/10.1101/043158
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Figure Legends 

Figure 1. Schema of leading edge metagene analysis. 

 

Figure 2. GSEA of the transcription response to YFV vaccination identifies leading edge 

genes. (A) GSEA of genes up-regulated in PBMC after YFV vaccination in healthy volunteers 

using the MSigDB C7 Immune Signatures Database. Each gene set in the top 20 of gene sets 

are shown as rows of “barcodes” representing the position of each gene the gene set on the 

ranked list of genes differentially expressed post- vs. pre-vaccine (X-axis). Leading edge genes 

(red) are those that occur before the maximal enrichment score for each gene set. (B) 

Frequency histogram of the number of leading edge genes co-occurring in multiple gene sets. 

 

Figure 3. LEM analysis identifies three leading edge metagenes in the transcriptional 

response to YFV vaccination. (A) Consensus cluster matrix for gene sets membership values 

averaged from 100 matrices using 2821 leading edge genes from 482 gene sets enriched in day 

7 post-YFV profiles compared to pre-vaccine profiles computed at k = 3. Red values are highly 

correlated; blue uncorrelated. (B) Coefficients of the contribution of each leading edge gene to 

the three clusters of genes identified in (A). Dotted red line shows the threshold of 1 which is 95 

quantile based on a fitted exponential distribution. (C) Heatmap of the coefficients (post vs. pre 

vaccine) of genes assigned to each of three metagenes present in the YFV vaccine signature. 

Representative genes indicated on the right. 

 

Figure 4. Leading edge metagenes are more enriched for biological signatures than the 

unrefined set of leading edge genes. Violin plots of the distribution of –log10 hypergeometric P 

values calculated from overlap of GO term-annotated genes with LEMs (right), randomly 

selected groups of genes of similar size from the leading edges (middle) of enriched gene sets, 
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or the whole genome (left). Black dots represent the –10 * log10 P value for GO terms that enrich 

with a P value < 1e-5. 

 

Figure 5. GO annotations of leading edge metagenes are not interchangeable. (A) Venn 

diagrams of gene overlaps between YFV LEMs and significantly enriched Gene Ontology terms 

– Immune Response (blue), Cell Cycle (red), and Response to Virus (green) – at day 3 and day 

7 post-vaccination. Circles are drawn in relative proportion to the number of genes in the 

metagene or term. (B) Bar plots indicating the fraction of YFV LEM genes annotated by a 

particular GO term at day 3 and day 7 post-vaccination. Bar colors correspond to the colors of 

GO term circles in the Venn diagrams above. 

 

Figure 6. Comparison of leading edge metagenes elicited three and seven days after 

vaccination by five vaccines. Circos plots indicating overlap in gene membership of 

metagenes elicited by five vaccines (indicated in the box at the center of the plot) on day 3 (grey 

band) vs. day 7 (black band) post-vaccination. Breadth of the connecting ribbon is proportional 

to the fraction of genes shared between metagenes. Predominant biological process present in 

each arbitrarily-numbered metagene indicated in text beside each segment. 

 

Figure 7. The transcriptional response in five different vaccines becomes more similar 

over time. (A) Pairwise overlap of metagenes elicited by five vaccines on day 3 post vaccine 

(left) or on day 7 post vaccine (right). Heatmap values correspond to the significance of the 

overlap (shown as –log10 hypergeometric P values). Each metagene is given an arbitrary 

number, and the predominant biological process present in each metagene indicated by the 

color key. (B) Hierarchical clustering of vaccines calculated by similarities in the significance of 

metagene overlap at day 3 post vaccine (left) or on day 7 post vaccine (right).  
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Supplementary Figure Legends 

Supplementary Figure 1. Leading edge sparse matrix. The genes by gene sets matrix 

generated by taking the leading edge analysis results of gene sets significantly enriched in 

PBMC samples of subjects 7 days after vaccination with YF-17D.  

 

Supplementary Figure 2. Distribution of coefficients in W matrix and fitted exponential 

distribution. (A) Density distribution of coefficients in W matrix (black dashed line) and fitted 

exponential distribution (red dashed line). (B) Accumulative distribution of coefficients in each 

column of W matrix (black dashed line) and the corresponding fitted exponential distribution (red 

dashed line). 

 

Supplementary Figure 3. Gene set enrichment analysis schema and Leading edge subset 

of gene sets. (A) GSEA yields a quantitative measure of the overrepresentation of a set of 

genes S (e.g. genes encoding products in a same metabolic pathway) at the top or bottom of a 

ranked list of genes L. Genes in L is ranked by their signal to noise ratio with respect to the 

phenotype of comparison. (B) A running sum is calculated when computing the enrichment of 

each gene set. Leading edge subset of a gene set is highlighted in red. It corresponds to those 

genes in the gene set that appear in the ranked list L at, or before, the point where the running 

sum reaches its maximum deviation from zero, i.e., the Enrichment Score for that gene set. 
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