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SUMMARY

Researchers have long recognized the importance and potential benefits of utilizing the tangent stiff-
ness matrix of a test specimen in hybrid simulations employing implicit and mixed-integration schemes.
However, the computation of the tangent stiffness matrix during testing has proved to be challenging, partic-
ularly for test specimens with more than one degree of freedom (dof). This paper presents a new method-
ology that is more straightforward and simpler than existing techniques for computing the tangent stiffness
matrix of a multi-dof test specimen. The proposed method is combined with the operator-splitting method
(OSM), and the capabilities, advantages and limitations of the new formulation are demonstrated through
several examples. The accuracy, stability, and error propagation characteristics of the modified OSM are also
studied theoretically as well as numerically. The research results show that the proposed algorithm provides
results that are better than those produced via the regular OSM alone, especially for damped structures
undergoing highly inelastic behavior during testing. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

The term hybrid simulation commonly refers to a class of methods that combine computational

simulation with physical model testing to compute structural dynamic response. In its most general

form, hybrid simulation could entail the combination of two or more purely computational models or

multiple computational and physical models. In this method, a structure is numerically represented
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as a discrete mass system and its time-history response to seismic excitation is computed by

solving the differential equation of motion of the system. The difference between hybrid simulation

and traditional numerical methods is that some of the terms of the restoring force vector in the

differential equation of motion are either directly obtained by measurement from a physical test

or computed from an associated computational model running in parallel with the main numerical

time-integration scheme. When the entire restoring force vector is obtained from physical testing,

hybrid simulation is commonly referred to as pseudo-dynamic testing. The pseudo-dynamic test

technique was first proposed by Takanashi et al. in 1978 [1]. Since then, many pseudo-dynamic

and hybrid testing algorithms have been proposed in [2–18]. These algorithms can be categorized

as explicit, implicit or mixed algorithms.

The application of explicit algorithms for hybrid testing is limited by the intrinsic stability

problem, which restricts the maximum time step that can be imposed. In essence, as the number of

degrees of freedom (dofs) in a system increases, the size of the time step is bounded and controlled

by the system’s highest natural frequency. Exceeding the maximum allowable time step will lead to

numerical instability and will eventually disrupt the simulation. As the limiting time step becomes

smaller, the duration of a hybrid test employing an explicit scheme lengthens. While this results

in additional costs and the inconvenience of a long test, a more serious concern is that the time

step could become too small to permit a viable test. In such situations, the small time step results

in displacement (or force) increments that are too small to reliably apply to a specimen.

Implicit methods, on the other hand, are unconditionally stable and are not hindered by the

stability limitation. They are therefore attractive because they permit larger time steps to be taken.

However, unless iterations are undertaken to ensure an acceptable level of accuracy, the use of large

time steps can lead to an accumulation of errors, especially when nonlinear specimen response

occurs. The need for iterations can be alleviated if an accurate tangent stiffness of the test structure

is used in the simulations. Nevertheless, computing the tangent stiffness matrix for a multi-dof

specimen has traditionally been considered practically difficult, and as a result, most existing

implicit algorithms avoid using the tangent stiffness altogether. Instead, iterative corrections of the

restoring force on the test specimen are sometimes used [15]. However, conducting iterations on a

physical specimen is difficult to achieve in practice, especially for inelastic structures, and can lead

to path-dependent effects. This difficulty has given rise to mixed explicit–implicit schemes where

the objective is to compute an explicit target displacement to avoid iterations on the specimen

during testing (e.g. the OS method proposed by Nakashima and Kato [19]).

As discussed next, a few researchers have recognized the importance and potential benefits of

utilizing the tangent stiffness matrix of the test specimen in implicit and mixed-integration schemes

and have taken steps to compute or update the tangent stiffness matrix during testing. They used

the tangent stiffness for a variety of purposes including correction of the measured restoring force,

suppressing displacement control errors, estimating energy errors in the pseudo-dynamic test and

compensation for delay in real-time hybrid testing. This paper presents a new methodology that

is more straightforward and simpler than existing techniques for computing the tangent stiffness

matrix of a multi-dof test specimen.

INTEGRATION TECHNIQUES FOR HYBRID TESTING

Shing and Mahin [20, 21] examined a number of explicit-integration techniques and recommended

the use of a modified version of the Newmark algorithm, which includes frequency-proportional
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numerical damping. Based on a variation of Newmark’s method by Hilbert et al. [22], Thewalt

and Mahin [15, 18] suggested an unconditionally stable implicit algorithm for pseudo-dynamic

testing. In their method, estimation of structural stiffness is not required to get the restoring force

at each time step. The restoring force is measured and corrected continuously within each time

step by using the analogue feedback of the instantaneous restoring force associated with the input

displacement. This algorithm has substantial advantages for testing structures with many dofs,

where only a few modes contribute to the response. Since larger time steps are permitted by

using this algorithm, the number of steps for a test is reduced, thus reducing the testing duration.

Nevertheless, the actuator control accuracy remains unknown during testing, and thus the influence

of the displacement control errors cannot be investigated. Moreover, additional hardware is needed

to continuously correct the analog feedback.

To eliminate the drawbacks of the Thewalt and Mahin [15, 18] algorithm, Shing et al. [23]

developed an implicit algorithm also based on the implicit algorithm by Hilber et al. [22]. In their

algorithm, they used a parameter to control the size of the displacement at each sub-step before a

corrector displacement is applied to the physical specimen. This scheme produces every sub-step

in a continuous loading/unloading form such that it prevents loading and unloading iterations on

the physical specimen. Shing et al. [24] used this algorithm successfully to evaluate reinforced

masonry shear wall components.

Pan et al. [14] developed a P2P internet online hybrid test system. In this new system, the

equations of motion are not formulated for the entire model, but for each separate substructure

instead. During the testing, two rounds of quasi-Newton iteration are used to ensure compatibility

and equilibrium between each substructure. However, this scheme was not applied to structures

that exhibit significant nonlinearity. Also, when the system includes more physical substructures,

it could become more susceptible to experimental errors.

Nakashima et al. [25] proposed the operator-splitting method (OSM) for pseudo-dynamic testing.

In this method, which is a mixed explicit–implicit scheme, an explicit target displacement is

computed to avoid iterations on the specimen during testing. This is achieved by approximating

the tangent stiffness of the tested structure by its initial stiffness in the restoring force calculations.

The method is unconditionally stable when the initial stiffness of the tested structure is greater

than the tangent stiffness during the entire test.

Combescure and Pegon [4] proposed a modification of OSM, which they termed the � operator-

splitting method (�-OSM). In this algorithm, the � parameter is introduced into the equations of

motion to produce numerical dissipation that eliminates the spurious oscillation induced by control

errors in the high-frequency modes. When � is set to zero, �-OSM reverts into the regular OSM.

The drawback of the method is that when a structure loses a large portion of its initial stiffness

during testing, the results could become inaccurate [4]. In �-OSM, the equation of motion of a

structural system is expressed as

Man+1+(1+�)Cvn+1−�Cvn+(1+�)rn+1−�rn

=(1+�) fn+1−� fn (1)

where M is the mass matrix of the structure, C is the damping coefficient matrix, r is the restoring

force vector, a is the vector of nodal accelerations, v is the vector of nodal velocities, f is the

vector of external excitation forces, subscript n denotes the current time step. The displacement

and velocity at the next time step are acquired from a Newmark-integration scheme. The obtained
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displacement and velocity are split into predicted and corrected responses

d̃n+1 = dn+�tvn+
�t2

2
(1−2�)an

ṽn+1 = vn+�t (1−�)an

(2)

dn+1 = d̃n+1+�t2�an+1

vn+1 = ṽn+1+�t�an+1

(3)

As previously discussed, the primary assumption of this method is that the restoring force at time

step n+1 can be approximated as

rn+1(dn+1)≈ r̃n+1(d̃n+1)+K I (dn+1− d̃n+1) (4)

Substituting Equations (2)–(4) into Equation (1), the acceleration at time step n+1 can be

computed as

an+1 = M̂−1 f̂n+1

M̂ = M+��t (1+�)C+��t2(1+�)K I

f̂n+1 = (1+�) fn+1−� fn+�r̃n−(1+�)r̃n+1+�C ṽn−(1+�)C ṽn+1

+�(��tC+��t2K I )an

(5)

When the physical test structure becomes inelastic, the primary assumption of OSM and �-OSM

that the tangent stiffness of the specimen can be replaced with its initial stiffness (i.e. Equation

(4)) becomes inaccurate, and can adversely affect the accuracy of the test method.

A few researchers have taken steps to compute and incorporate the tangent stiffness matrix

during testing. Efforts appear to be limited because of the practical difficulty of directly estimating

the tangent stiffness as the test progresses. One of the earliest attempts to employ the tangent

stiffness during testing was by Nakashima and Kato [19]. They estimated the tangent stiffness

in an effort to correct the measured restoring force and suppress displacement control errors. In

their work, they collected the necessary information from sub-steps within a time step to estimate

the tangent stiffness. Nevertheless, they only used the estimated tangent stiffness to modify the

restoring force instead of merging the estimated tangent stiffness with the integration algorithm as

is done in this paper.

Thewalt and Roman [26] developed an approach based on the BFGS formula [27] to estimate

the tangent stiffness during testing. They used the estimated tangent stiffness to estimate energy

errors in the pseudo-dynamic test. Carrion and Spencer [28] estimated the tangent stiffness based

on the Broyden formula [29]. They used the estimated tangent stiffness for compensation of delay

in real-time hybrid testing.

In this paper, a new strategy for estimating the tangent stiffness is proposed. The scheme is

general in that it can be applied to a variety of implicit and mixed-integration methods. However,

in this paper, the new methodology is combined with the traditional OSM to show the resulting

advantages of implementing it within a hybrid simulation framework. These advantages are demon-

strated using a series of hybrid simulation exercizes, including test structures that exhibit significant

inelastic behavior and which have multiple dofs.
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PROPOSED OPERATOR-SPLITTING METHOD WITH UPDATED

TANGENT STIFFNESS (OSM-US)

The incremental force and displacement at time step n+1 can be associated through the tangent

stiffness at time step n+1 as
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where �r̃
(q)

n+1 is the incremental restoring force at the qth dof of the model at time step n+1.

K
x,y

n+1 is the component value at (x, y) position of the tangent stiffness matrix at time step n+1.

�d̃
(q)

n+1 is the incremental predicted displacement at the qth dof of the model at time step n+1.

By assuming that the tangent stiffness does not change substantially during the current and

previous m−1 steps, i.e. for a total of m steps from time step n+2−m to n+1, the relation

between the incremental force and the incremental displacement during the time interval n+2−m

to n+1 can be expressed as
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Transposing Equation (7),
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For Equation (8) to yield a solution, the number of considered time steps, m, must be equal to

or larger than the number of dof in the test structure, i.e. m�dof. Equation (8) can be partitioned

into dof equations as shown in below
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(9)

When m=dof in Equation (9), a unique solution can be found for the tangent stiffness coefficients.

However, when m>dof in Equation (9), the system becomes over determined, and the least-squares

method, for example, as implemented in [30], can be used to solve for the tangent stiffness matrix.

The initial stiffness in the regular OSM and �-OSM (as shown in Equation (4)) can now be

replaced by the estimated tangent stiffness computed from Equation (9). The restoring force at

time step n+1 is now approximated as

rn+1(dn+1)≈ r̃n+1(d̃n+1)+KT
n+1(dn+1− d̃n+1) (10)

where KT
n+1 is the tangent stiffness at time step n+1. As shown in Figure 1, the restoring force

rn+1(dn+1) is an approximation of the sum of the predicted restoring force r̃n+1(d̃n+1), which is the

feedback from the substructures subjected to the predicted displacement, and a modification term,

KT
n+1(dn+1− d̃n+1), which is the difference between the predicted and the actual displacement

multiplied by the tangent stiffness. Equivalent force equilibrium using the tangent stiffness can

now be expressed as

M̂n+1an+1 = f̂n+1

M̂n+1 = M+
�tCn+1

2
+

�t2KT
n+1

4
(11)

f̂n+1 = fn+1− r̃n+1−Cn+1ṽn+1

The procedure for hybrid simulation using OSM-US is illustrated in Figure 2. The predicted

displacement and velocity are first computed based on the response from the previous time step.

After the predicted displacements are imposed upon the test specimen, the resulting reaction

forces, r̃n+1, and the actual imposed displacements, d̃mn+1, are measured. Then, the incremental

values of the restoring forces and the measured displacements from the current and previous m−1

steps are used to calculate the tangent stiffness matrix. The damping coefficient, equivalent force

and equivalent mass are then updated using the tangent stiffness. After that, the acceleration, the

corrected displacement and the velocity of the current time step are computed from Equations (3)

and (11), and are used for the next time step.

Two rules are imposed on the algorithm to ensure reasonable results. The first resets the

reloading/unloading tangent stiffness to the initial stiffness right after the point where the displace-

ment direction changes. After reloading/unloading at this point, the original scheme continues

collecting the previous records and estimating the stiffness. This rule limits the proposed method

to structures dominated by first mode response, where unloading of one member is associated

with unloading of the entire structure. The second rule is more practical in nature. It filters out
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Figure 2. Flowchart of OSM-US operations.

the steps where the imposed displacements are smaller than a user-specified threshold, specified

as a minimum incremental displacement. This is to ensure that only steps that are large enough

to contribute reliably to the stiffness calculations are utilized in the computations. Although user

experience clearly plays a role in identifying this parameter, a number that is two to three times

the displacement resolution of the actuator is recommended.

NUMERICAL SIMULATION OF HYBRID TESTING USING OSM-US

As discussed above and in [4, 25], the use of the traditional OSM for pseudo-dynamic testing could

generate unreliable results, especially for structures whose stiffness degrades significantly during

testing. The new OSM-US methodology proposed herein alleviates this problem. To highlight the

advantages of OSM-US, four numerical models that are designed to exhibit significant inelastic
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behavior during hybrid simulation are used. The simulations are conducted without damping and

with 3% Rayleigh damping. As shown in Figure 3(a), Model 1 represents a 1-story, 1 dof, structure.

Model 2 (Figure 3(b)) represents a 2-story structure with 2 lateral dofs. Model 3 (Figure 3(c))

represents a 6-story structure with 6 lateral dofs. In Model 4, a 2-story structure is split into two

substructures (Figure 3(d)). The bottom substructure, which would usually be physically tested in

a hybrid simulation, is numerically simulated here, while the top column is treated as a numerical

substructure.

The cross section of the column used in all examples is shown in Figure 4. OpenSees [31] is

used to model the inelastic behavior of the members. Concrete02 and Steel01 material models in

OpenSees are used to represent concrete and steel, respectively. Parameter definitions and properties

of the material models are shown in Figure 5 and Table I. The 1940 El Centro earthquake history

record with PGA=0.36g is used as the external excitation throughout this study.

Lateral displacement control for Model 1 (Figure 3(a)) is achieved using the pseudo-dynamic

method with both OSM and OSM-US. The results are compared together along with the reference

results from OpenSees in Figure 6. A comparison of the displacement responses in Figure 6(a)

shows that OSM deviates a little from the reference solution, especially at the peaks, while OSM-

US consistently matches the results well. The computed hysteresis responses are shown in Figure

6(b), which shows that the simulated solution from OSM-US matches the reference solution better

than that from OSM, especially when the model experiences significant inelastic behavior.

in

s
kipsm

2

23=

in

s
kipsm

2

23=

in

s
kipsm

2

10=

in

s
kipsm

2

10=

in

s
kipsm

2

6=

in

s
kipsm

2

6=

in

s
kipsm

2

6=

in

s
kipsm

2

6=

in

s
kipsm

2

6=

in

s
kipsm

2

10=

in

s
kipsm

2

10=

(a)

(c)

(b)

(d)

Figure 3. Demonstration examples of the proposed OSM-US: (a) Model 1;
(b) Model 2; (c) Model 3; and (d) Model 4.
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Figure 4. Cross section of the column used in the examples.

(a) (b)

Figure 5. Concrete and steel bar material models in OpenSees: (a) concrete02 model and its parameters
and (b) material01 model and its parameters.

Table I. Material parameters of the concrete and steel models.

Concrete properties fpc(ksi) epsc0 fpcu(ksi) epsU q ft(ksi) Ets(ksi)

Unconfined concrete −6 −0.002 −0.4 −0.01 0.1 0.6 300
Confined concrete −7.2 −0.0045 −2.4 −0.03 0.1 0.72 360

fy(ksi) E0(ksi) B
Steel bar properties 60 29 000 0.01

The behavior of Model 2 (Figure 3(b)) also demonstrates the capabilities of OSM-US. Simulation

of the undamped model is conducted with an incremental time step 0.005 s and m=3. The resulting

displacement responses from OpenSees, OSM and OSM-US are compared in Figure 7, which

indicates that both the integration methods appear to match the reference results from OpenSees

quite well. However, as shown in Figure 7(b), the cumulative energy error, Ec, computed for the

top-node response, shows that the error from OSM-US is less than half of the result computed
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(a) (b)

Figure 6. Simulated responses for Model 1: (a) displacement of top node and (b) hysteresis response.

(a) (b)

Figure 7. Simulated top-node responses of undamped Model 2: (a) displacement response of top node
and (b) cumulative energy index.

from OSM. The cumulative energy error is defined as

Ec :
j=n
∑

j=1

|(r j )OSM-US/OSM[(d j )OSM-US/OSM−(d j )opensees]| (12)

(d j )MOSM/OSM is the displacement of the node of interest computed from OSM-US or OSM,

(d j )opensees is the displacement of the node of interest from OpenSees, (r j )MOSM/OSM is the

restoring force at the same node from OSM-US or OSM, and n is the current time step.

The same model (Model 2), but with 3% damping, more clearly demonstrates the advantages

of OSM-US over OSM. It is obvious from Figure 8 that the resulting displacement from OSM

deviates from the reference OpenSees solution, whereas the OSM-US results remain very good.

The success of OSM-US in this case is due to its ability to utilize the correct tangent stiffness

matrix in the Rayleigh damping computations.

Model 3 (Figure 3(c)) is simulated with a time step of 0.005 s and m=8. Figure 9(a) shows the

response of the undamped model. Again, though the differences between OSM and OSM-US are
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Figure 8. Computed top-node response of Model 2 (damped).

Figure 9. Simulated top-node responses of Model 3: (a) undamped response and (b) damped response.

not obvious in this figure, Ec computed at the top node from OSM-US is significantly less than

that for OSM, as observed in Model 2. Also, as observed in Model 2, differences in displacement

response become more pronounced when damping is accounted for (Figure 9(b)). In this case

OSM-US is much closer to the reference solution than OSM.

The influence of m on the simulation results is shown in Figure 10. Figure 10(a) shows Ec

computed at the top node. It is observed that the cumulative energy becomes larger as m increases.

Recall that the minimum value for m is the number of dofs. At m=80, the cumulated energy error

from OSM-US is close to that from OSM. Figure 10(b) indicates that the disagreement between the

displacement response from OSM-US and the reference solution becomes larger as m continues

to increase.
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Figure 10. Effect of m parameter on the response of Model 3: (a) cumulative energy error
and (b) displacement of the top node.

Figure 11. The approximate distribution of the stiffness for the 2nd mode response.

To better understand the influence of m and why accuracy degrades as m increases beyond

a certain limit, consider that the 1st and 2nd mode periods for Example 3 are 4.9 and 0.8 s,

respectively. When m=40, the imposed displacements and reaction forces from the past 40 time

steps, corresponding to a duration of 0.2 s in this case, are used to estimate the current tangent

stiffness. In other words, immediately after the point of unloading/reloading, the proposed scheme

uses the initial stiffness for integration for 0.2 s, a period during which significant inelasticity

occurs. Figure 11 demonstrates this idea and shows that for a structure vibrating solely in 2nd

mode, the 0.2 s is too large a fraction of the 2nd mode period to allow realistic updating of the

stiffness properties. Clearly, the results will continue to deteriorate as m increases.

The trends observed in Models 1–3 are also observed in Model 4, which is solved using m=8

and a smaller time step of 0.002 s due to the high axial stiffness of the column.
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ERROR PROPAGATION CHARACTERISTICS OF OSM-US

Actuator control errors occur during a hybrid test with a physical component. In order to gauge

the effect of displacement control errors on the proposed OSM-US, numerical simulation of a

hybrid experiment with induced displacement control errors is conducted. Model 2, Figure 3(b), is

selected for this purpose. To simulate the effect of control errors, a random displacement control

error signal with an average of 0 and a variance of 3E−7 inch is introduced. The resulting

maximum control error is 1.75E−3 inch, which is within the range of accuracy of commercially

available actuators. The simulation result is shown in Figure 12 and compared with the results from

OpenSees (without induced errors). It can be observed from Figure 12 that the effect of the induced

displacement control errors on the resulting response from OSM-US is negligible for this particular

case. Nevertheless, if the error propagation induced by actuator control errors is considered to be

too deleterious, the T-Modification strategy suggested by Nakashima and Kato [19] can be applied

to mitigate displacement control errors. The T-Modification approach is only possible in this case

because the tangent stiffness matrix is available through the OSM-US algorithm.

Compatibility between substructures in hybrid simulation is assured through displacement

control of the dofs at the boundaries between experimental and numerical substructures. However,

equilibrium, i.e. the presence of unbalanced forces, at the boundaries between both the substruc-

tures is not necessarily assured unless iterations are performed. Since OSM-US, which employs

a specimen’s tangent stiffness, traces the nonlinear response better than OSM, which utilizes the

initial stiffness, it is expected that unbalanced forces will be reduced at the interface.

To investigate the growth of unbalanced forces in both OSM and OSM-US, hybrid simulation

involving Model 4 is used. Unbalanced moments at the interface are measured through a normalized

quantity, |Mt+Mb/Mmax|, where Mt is the moment at the boundary node from top element, Mb

is the moment at the boundary node from the bottom element, Mmax is the maximum moment

in both the elements during the simulation. The result is extracted and plotted for a portion of

response as shown in Figure 13. It can be seen from the linear regression of the unbalanced force

that the OSM-US has significantly reduced unbalanced forces compared with OSM. It is noted

Figure 12. Effect of induced displacement control errors on the response of top node in Model 2.
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Figure 13. Normalized unbalanced moment between substructures in Model 4.

that the larger unbalanced force segments in the OSM-US correspond to the portion where the

initial tangent stiffness is used for integration. This result suggests that OSM-US can improve the

quality of the solution with fewer iterations if iterations are deemed necessary.

STABILITY AND ACCURACY CHARACTERISTICS OF OSM-US

When OSM-US is applied to hybrid simulation, the equations of motion for an elastic, single dof

system can be written as

Man+1+[CEST(vn+1− ṽn+1)+CR(ṽn+1)]+[KEST(dn+1− d̃n+1)+KR(d̃n+1)]=Fn+1 (13)

where CEST and KEST are the estimated damping coefficient and tangent stiffness, and CR and KR

are the real damping coefficient and tangent stiffness, respectively. Equation (13) can be further

rearranged in a recursive form as shown in below

Xn+1= AXn (14)

where

Xn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d̃n

ṽn�t

an�t
2

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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⎡

⎢

⎣

1 1 1

0 1 1

P Q Q

⎤

⎥

⎦
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� is defined as the estimation error of the tangent stiffness and is expressed as �=KEST/KR,� is

defined as the estimation error of the damping and is expressed as �=CEST/CR.

The stability and accuracy of OSM-US can be investigated through the characteristics of the

matrix A [22]. The spectral radius, �(A), is the maximum absolute eigenvalue of A. The algorithm

is stable when �(A)�1. With �=�=1, the spectral radius versus � with varying � can be plotted

as shown in Figure 14. It can be seen that the stability of OSM-US increases (i.e. spectral radius

reduces) as � increases.

The effect of the accuracy of the computed tangent stiffness on the stability can also be investi-

gated. In this case, � is fixed at 2%, and �=1. The result is plotted in Figure 15(a). It can be seen

from the figure that the stability drops as the accuracy of the estimated tangent stiffness decreases.

By fixing �=1 and �=2%, the relationship between the spectral radius versus � with varying �

is plotted in Figure 15(b). It shows that stability increases with a lower �, but the influence of �

on stability is not as obvious as that of �.
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(b) � with varying � (�=1,�=0.02).
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The numerical accuracy of OSM-US is related to the ratio of period distortion and numerical

damping [10, 32]. The non-zero eigenvalues of A can be expressed as

�1,2=exp[(−�̂± i)�̄]= L1± iL2 (15)

where

�̂=−
ln(L2

1+L2
2)

2�̄
, �̄= tan−1

(

L2

L1

)

Also, the displacement solution for a viscously underdamped free-vibration response can be written

as [10]

Dn =exp(−�′�̄nn�t)[c1 cos(�̄dn�t)+c2 sin(�̄dn�t)] (16)

where

�′ =
�̂

√

1+ �̂2
, �̄d =

�̄

�t
and �̄n =

�̄d
√

1−�2

The numerical damping is defined as

�̄=�′−� (17)

In the case of �=1, the variation of numerical damping ratio against � with varying � is shown

in Figure 16(a). It can be seen that the numerical damping ratio is negative and its absolute value

increases with higher � and �. The correlation of the numerical damping ratio versus � with

varying � is plotted in Figure 16(b) for �=2%. It is clear that the numerical damping ratio is also

negative for the assumed parameters. Furthermore, the absolute value of the numerical damping

ratio increases as the accuracy of the estimated tangent stiffness decreases. A study of the variation

of the numerical damping ratio versus � with varying � showed that the absolute value of the
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numerical damping ratio increases as � becomes larger, but the difference between the results for

varying � is minor.

Period distortion can be expressed as

�Td

Td
=

Td− T̄d

Td
=1−

�d

�̄d
=1−

�

�̄

√

1−�2 (18)

Period distortion against � with varying � is plotted in Figure 17(a) for �=1 and �=0.02. It can

be seen that the period extends for the prescribed parameters. However, distortion can be alleviated

by increasing the accuracy of the estimated tangent stiffness. Using �=1, and �=0.02, period

distortion against � with varying � is plotted in Figure 17(b). It is shown that period distortion

increases with increasing �. Nevertheless, the effect of � on the period distortion is not significant.

Finally, it can be observed from Equation (18) that the effect of varying � on period distortion is

not obvious since the damping ratios for most civil structures are less than 5%.

SUMMARY AND CONCLUSIONS

A strategy for estimating the tangent stiffness of a system during hybrid simulation was proposed.

The new method is based on the premise that the specimen’s tangent stiffness does not change

substantially during the few steps preceding the current time-integration step. By exploiting this

assumption, it is possible to solve a set of equations (possibly over-determined) to identify the full

stiffness matrix for a multi-dof test specimen. Although the proposed technique is general and can

be applied to a variety of the implicit algorithms for time-stepping integration, it was combined in

this work with the OSM resulting in a new operator-splitting formulation designated as OSM-US.

The capabilities, advantages and limitations of OSM-US were discussed and demonstrated

through several examples of single and multi-dof specimens. The research results showed that

the proposed algorithm provides results that are better than those produced via the regular OSM

alone, especially for damped structures undergoing highly inelastic behavior during testing. The

enhancement was observed in improved displacement calculations, reduced cumulative energy

errors and lower unbalanced forces between substructures in the examples studied. The accuracy,
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stability and error propagation characteristics of the modified OSM were also studied theoretically

as well as numerically. Specifically, the study quantified the effect of tangent stiffness estimation

error on the stability and accuracy of a single dof model.

Although the OSM-US has shown much promise in the numerical simulations results presented

in this paper, it is necessary to conduct physical tests to make sure that it would work under practical

hybrid simulation conditions. Moreover, the developed method has been applied to structures with

overall hardening response and dominated by first mode behavior. Additional research is necessary

to investigate if it will provide similarly good results for softening structures and to develop it for

use in structures with higher mode response.
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