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A Method for Estimating the
Parameters of the Distribution

D. Robert Iskander, Abdelhak M. Zoubir, and Boualem Boashash

Abstract—A method that combines the maximum likelihood and the
method of moments for estimating the parameters of theK distribution
is proposed. The method results in the lowest variance of parameter
estimates when compared with existing non-ML techniques.

Index Terms—GBK distribution, K distribution, maximum likelihood
estimation, method of moments.

I. INTRODUCTION

The K distribution has been successfully used in many signal
processing applications such as modeling the radar clutter envelope
in radar systems. The statistics of aK-distributed random variable
X are described by the probability density function [1]

fX(x) =
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wherex > 0;�(�) is the standard Gamma function [2, p. 255, eq.
(6.1.1)],K�(�) is the modified Bessel function of order� > �1 [2,
p. 375, eq. 9.6.2], anda is a positive constant.

TheK distribution is completely specified by the shape parameter
� and the scale parametera: Maximum likelihood (ML)-based
methods can be used to estimatea and � [3]. They yield asymp-
totically efficient estimates but are computationally too expensive to
be implemented in real-time systems. Recently, estimation techniques
based on moments have been proposed [1], [4]. They lead to accu-
rate estimates but still involve computationally expensive numerical
methods to solve nonlinear equations.

The simplest approach for estimating the parameters of theK
distribution is based on the fourth- and second-order moments [1],
[3]. This method performs well when the number of samples is large
(usually greater than 1000) [3]. However, when the amount of data
available is small, a good performance cannot be achieved. The small
sample size case is important in radar applications because only then,
the assumption of local stationarity can be made. Therefore, methods
that are computationally implementable in real-time and at the same
time lead to accurate parameter estimates for a small sample size are
sought.

In this correspondence, an approach that combines the maximum
likelihood principle with the method of moments (MOM) is pre-
sented. The proposed method leads to the lowest variance of the
parameter estimates when compared with existing non-ML methods.

Manuscript received September 4, 1997; revised August 28, 1998. This
work was performed in part at the Signal Processing Research Centre. The
associate editor coordinating the review of this paper and approving it for
publication was Prof. M. H. Er.

D. R. Iskander is with the Centre for Eye Research, Queensland University
of Technology, Kelvin Grove, Australia.

A. M. Zoubir is with the Australian Telecommunications Research Institute
and the School of Electrical and Computer Engineering, Curtin University of
Technology, Perth, Australia.

B. Boashash is with Signal Processing Research Centre, School of Electrical
and Electronic Systems Engineering, Queensland University of Technology,
Brisbane, Australia.

Publisher Item Identifier S 1053-587X(99)02157-1.

II. PARAMETER ESTIMATION

Most of the existing techniques for estimating the parameters of the
K distribution are based on the MOM. The principle is as follows.
Estimate thekth-order moment of theK distribution [1]

�k = E[Xk] =

�
k

2
+ 1 � � + 1 +

k

2

�(� + 1)
(2a)k (2)

by its sample counterpart̂�k = (1=N) �N
i=1 xki , wherefxi; i =

1; � � � ; Ng is a set of realizations ofN statistically independent
random variablesfXi; i = 1; � � � ; Ng from fX : It is readily seen
that we can estimate the parametersa and� usingany twoestimates
of the moments given in (2).

The simplest choice for the two moments, as suggested in [4], is
the sample mean and the sample variance. However, the derivation of
� anda requires solving a tedious nonlinear equation, which needs
to be performed numerically.

Another estimation scheme has been proposed by Raghavan
[1], where the arithmetic and the geometric sample means�̂a
and �̂g, respectively, were used to estimate the parameters of the
Gamma distribution with probability density functionfX(x) =
(x��1=b��(�)) exp(�(x=b)): The ML estimates of the parameters
b and� can be obtained aŝ� exp[�	(�̂)] = �̂a=�̂g and b̂ = �̂a=�̂,
where	(�) is the digamma function [2, p. 258, eq. 6.3.1]. To find the
estimates of theK distribution, the method takes into account the fact
that the maximum likelihood estimates of the Gamma distribution
are related to the ones of theK distribution. This approach yields
good approximations for values of� in the range�0:8 < � < 1:
This range corresponds to the important case when both the tail
of the distribution is higher (and the standard deviation-to-mean
ratio is larger) than that predicted by the Rayleigh distribution (for
example, when the clutter in radar applications is spiky). To find the
parameter�, a solution of a nonlinear equation is required, involving
the digamma function.

Another moment-based technique was proposed in [5]. It is based
on the moment ratio

rp;q =
�p+2q
�p�2q

; p > 0; q = 1; 2; � � � (3)

which is independent of the shape parametera: Considering that
estimates based on higher order moments show large variability, it
is of interest to estimate the parameters from lower order moments.
Setting q = 1 in (3), the ratio

Rp = rp;1 =
�p+2
�p�2

=
[(p+ 2)=2]2 + �(p+ 2)=2

� + 1
(4)

was considered, wherep > 0: The parameter� is then given by

� = f(Rp) =
[(p+ 2)=2]2 �Rp

Rp � (p+ 2)=2
; p > 0: (5)

For p = 2, the ratioR2 reduces to the one based on the second- and
fourth-order moments [1]. It has been shown that it is convenient
to choose the range0 < p � 2 in order to reduce the variance of
the moment estimates. This range corresponds tofractional moments,
i.e., moments of order other than a positive integer. It was shown in
[5] that fractional moments lead to better parameter estimates than
traditional methods based on the second- and fourth-order moments.
However, the method of Raghavan, although computationally more
intensive, still provides better estimates.
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III. ESTIMATION BASED ON ML AND MOM

Let X1; X2; � � � ; XN ; beN independent variables, where each is
distributed according to (1). The log-likelihood function of theK
distribution based onX1; X2; � � � ; XN is given by

L =N log
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+ (� + 1)
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(6)

wherefxi; i = 1; � � � ; Ng are realizations offXi; i = 1; � � � ; Ng:
The partial derivatives of the log-likelihood function (6) are given by
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where 	(�) is the digamma function. The ML estimates of the
parameters� anda of theK distribution can be found by calculating
the log-likelihood function and equating its two partial derivatives
(7) and (8) to zero. This, however, does not lead to closed-form
expressions, even in the case where one of the parameters is known.

In order to overcome this problem, partial derivatives of the newly
developed generalized Bessel functionK (GBK) distribution are
used [6]. The GBK distribution is a four-parameter distribution with
density function

fX(x) =
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that includes theK distribution as a special case for the set of the
parameters(�1; �2; �; c) = (1; � + 1; 2a; 2): The ML equations for
the GBK distribution are derived by equating to zero the partial
derivatives of the log-likelihood function for the GBK distribution
(see Appendix A). From (19)–(22) and noting that [2]
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To find the maximum likelihood estimates of theK distribution, we
set in (10)–(12)�1 = 1; �2 = � + 1; � = 2a; andc = 2 and solve
for the unknowns so that
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where
 = 0:5772 � � � is Euler’s constant, and
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Substitutingâ from (13) into (14), we can obtain an estimate for
�: Such a procedure needs to be performed numerically and is
computationally intensive, even for small data sizes. On the other
hand, the result given in (13) alone may be useful in some radar
applications where the values of� can be expressed as functions
of the grazing angle, cross-range resolution, polarization, and a
suitable aspect angle. This is in contrast to the fact that no analytical
result, such as (13), can be obtained when directly applying the ML
technique to theK distribution.

A. The ML/MOM Approach

To provide an explicit formula for an estimate of the shape
parameter�; kth-order moments of theK distribution, given in (2),
are used. Replacing these moments by its sample counterpart, we can
obtain a relation between the estimate�̂ of the shape parameter�
and the estimatêa of the scale parametera as
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By combining (13) and (16), we obtain a function of�̂ with
parameterk
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Note that the right-hand side of the equation does not depend on the
estimate of the shape parameter� and can be evaluated from the
data sample whenk is given. The functiongk(�̂) in (17) is strictly
monotonically increasing, as shown in Fig. 1 fork = 0:5 (solid line)
k = 1 (dashed line),k = 1:5 (dashed-dotted line), andk = 2 (dotted
line). The proof for monotonicity is given in Appendix B.

Therefore, we can estimate the shape parameter� of the K

distribution using
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whereg�1k (�) is the inverse function ofgk(�): Note that in (18), the
order is not restricted to a positive integer, and fractional moments
can be used as well.
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Fig. 1. Plot of the functiong1=2(�) (solid line), g1(�) (dashed line),
g3=2(�) (dashed-dotted line), and the functiong2(�) (dotted line).

Fig. 2. Mean-square error of the estimates of� for N = 100 usingR2

(solid line),R1=10 (dashed line), andg3=2(v) (dashed-dotted line).

Although an analytical expression of the inverse functiong�1k (�)
has not been found, the numerical solution is easy to implement.
First, we evaluate the functiongk(�) for a givenk and a range of
�: From the estimategk(�̂) and functiongk(�), we can obtain the
estimate of� using, for example, cubic spline interpolation, e.g.,
�̂ = (gk(�); �; gk(�̂)) in Matlab. Once the parameter̂� is
calculated from (18), the estimate of the scale parametera can be
simply obtained from the ML estimator given in (13). Note that in
[1] and [4], the scale parametera was derived from the first-order
sample moment because no ML estimator for the parametera was
available in closed form.

B. Simulation Results

In the following simulations, the power of the data was normalized
so that the second-order moment of the process is unity. The
normalization procedure leads to the relationa = (1=2

p
� + 1): K-

distributed data was generated using seven different values of the
shape parameter� in the range[�0:9; 0:5]: Several estimatorsgk(�)
were used withk ranging from 0.5–2. The number of data samples

Fig. 3. Mean-square error of the estimates of� for N = 200 usingR2

(solid line),R1=10 (dashed line), andg3=2(v) (dashed-dotted line).

Fig. 4. Mean-square error of the estimates of� for N = 500 usingR2

(solid line),R1=10 (dashed line), andg3=2(v) (dashed-dotted line).

was chosen to beN = 100;N = 200; andN = 500: Estimation was
performed over 1000 independent trials in each case, and averages
were obtained.

Discussion of the Results:ForN = 100, it was difficult to decide
which k results in the best estimator (in the mean-square sense). On
the other hand, forN = 200 andN = 500, the best estimates of
the parameter� were obtained fork = 1:5: In Figs. 2–4, the mean-
square error of the estimates of� for N = 100;N = 200; and
N = 500 are shown, respectively. For comparison, the results based
on the moment ratioR2 andR1=10 (see [5]) are also included. Further
analysis indicates that forN > 500, the best estimator for the shape
parameter� is reached using1 < k < 2:

Comparison with Raghavan’s Method:In order to compare the
ML/MOM-based procedure with the method proposed by Ragha-
van [1], a similar performance analysis as for the ML/MOM was
conducted for Raghavan’s method.

In Figs. 5–7, the mean-square errors of the estimates of� using
Raghavan’s method (solid line) and the one based ong3=2(v) (dashed
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Fig. 5. Mean-square error of the estimates of� for N = 100 using
Raghavan’s method (solid line) andg3=2(v) (dashed line).

Fig. 6. Mean-square error of the estimates of� for N = 200 using
Raghavan’s method (solid line) andg3=2(v) (dashed line).

line) are depicted forN = 100; N = 200; and N = 500,
respectively. It is readily seen that forN = 100, the performance
of the ML/MOM-based estimator is similar to the performance of
Raghavan’s estimator. For very small values of the parameter� (close
to �1), which is of great interest in radar applications, our technique
performs better. On the other hand, the performance slightly degrades
(with respect to Raghavan’s method) for� > 0:3: However for larger
sample size, e.g.N = 500, this effect diminishes, and both methods
become equivalent for larger�, as depicted in Fig. 7.

Computational Requirements:ForN = 100, the method based on
fractional moments (withk = 1=10) requires 620 flops, Raghavan’s
method requires 165 000 flops, while the proposed ML/MOM method
(with k = 1:5) requires 150 600 flops. The numbers of flops for the
proposed method and the method of Raghavan are for the case where
the splines were used for calculating the inverse functions in the
methods. The proposed method is computationally more efficient than
Raghavan’s method. On the other hand, the computational complexity
of the method based on lower order and fractional moments [5] is
much lower.

Fig. 7. Mean-square error of the estimates of� for N = 500 using
Raghavan’s method (solid line) andg3=2(v) (dashed line).

IV. CONCLUSIONS

The maximum likelihood estimates of the parameters of theK dis-
tribution are generally difficult to obtain and require computationally
expensive numerical methods. This correspondence has presented an
alternative method that combines the method of maximum likelihood
and the method of moments (ML/MOM) to estimate the parameters
of the K distribution. This approach leads to parameter estimates
with lower mean-square error when compared with standard methods
such as the one based on the second- and fourth-order moments.
In addition, the computational burden of the proposed ML/MOM-
based method is smaller than other techniques such as Raghavan’s
method, whereas its performance is comparable. An explicit and
mathematically tractable maximum likelihood relationship between
the shape parameter� and the scale parametera is derived using
log-likelihood function derivatives of the recently developed GBK
distribution. This relationship is useful in radar applications where
the values of the shape parameter can be expressed as functions of
the grazing angle, cross-range resolution, polarization, and a suitable
aspect angle.

APPENDIX A

The partial derivatives of the log-likelihood function for the GBK
distribution are
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Fig. 8. Graphical interpretation of the proof in Appendix 2.
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whereK(xi) is given in (15).

APPENDIX B

For gk(�) to be a strictly monotonically increasing function

dgk(�)
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must hold. Rearranging the expression in (23), we obtain

d	(� + 1)
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; k > 0: (24)

We recognize that in the limitk ! 0, the inequality in (24)
becomes equality. Since the digamma function	(� + 1) is a
strictly monotonically increasing functionand its first derivative (the
trigamma function) is apositive strictly monotonically decreasing
function [2, ch. 6], the inequality (24) holds (see Fig. 8).

REFERENCES

[1] R. S. Raghavan, “A method for estimating parameters ofK-distributed
radar clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 27, pp. 238–246,
1991.

[2] M. Abramowitz and I. Stegun,Handbook of Mathematical Functions.
New York: Dover, 1972.

[3] I. R. Joughin, D. P. Percival, and D. P. Winebrenner, “Maximum
likelihood estimation ofK distribution for SAR data,”IEEE Trans.
Geosci. Remote Sensing, vol. 29, pp. 989–999, 1993.

[4] D. Blacknell, “Comparison of parameter estimators forK distribution,”
Proc. Inst. Elect. Eng., Radar, Sonar Navig., vol. 141, pp. 45–52, 1994.

[5] D. R. Iskander and A. M. Zoubir, “Estimating the parameters ofK
distribution using higher order and fractional moments,”IEEE Trans.
Aerosp. Electron. Syst,, to be published.

[6] , “On coherent modeling of non-Gaussian radar clutter,” inProc.
Eighth IEEE Signal Process. Workshop Stat. Signal Array Process.,
Corfu, Greece, June 1996, pp. 226–229.

A Fast CFAR Detection Space-Time
Adaptive Processing Algorithm

Irving S. Reed and Yow-Ling Gau

Abstract—All of the conventional CFAR detection algorithms that
use space-time processing involve a time-consuming matrix-inversion
operation. Based on today’s technology, this computational complexity
sometimes makes the full-rank solution difficult to realize. In this corre-
spondence, a CFAR detection algorithm, which does not need a matrix
inversion, is developed by an adaptation and extension of Hotelling’s
principal-component method studied recently by Kirsteins and Tufts.
Finally, the performance of the new CFAR test statistic is analyzed,
and the effect of the rank reduction on performance is evaluated for
an example scenario.

Index Terms—CFAR detection, reduced-rank, STAP radar.

I. INTRODUCTION

An all-encompassing generalized likelihood ratio test (GLRT)
on space-time adaptive processing (STAP) for radar detection was
derived by Kelly [1]. Later, Chen and Reed [2] and, independently,
Fuhrmannet al.developed a simpler CFAR detection test to the GLRT
obtained originally by Kelly. However, all of the previous STAP
algorithms involved a time-consuming matrix inversion operation.

The principal-components (PC) technique was developed originally
by Hotelling [4]. Hotelling showed that the dimension of the problem
often could be reduced without sacrificing too much of the informa-
tion contained in the covariance matrix. A new unnormalized GLRT,
which uses the PC technique, was developed by Kirsteins and Tufts
in [5], but they did not obtain the probability density functions (PDF)
needed to evaluate the performance of the test statistic.

In this study, the normalized LRT in [2] and [3] is modified by a
use of the PC technique. This test exhibits the very desirable property
that no matrix inversions are needed and that the computational
complexity can be reduced by incorporating the HT method [7] or
other methods, e.g., the fast PASTd algorithm [8].

The PDF of this new detection statistic is derived here for both
the noise-alone case and the signal-plus-noise case when the noise
covariance is unknown but with dominating clutter-basis vectors.
Under this situation, the principal eigenvectors of the clutter can
be estimated accurately. In addition, the false-alarm probability is
shown not to depend on the signal and noise power. Thus, this new
PC test is a CFAR criterion. Finally, these results are validated by
a computer simulation.

II. RANK REDUCTION OF THE CLUTTER-PLUS-NOISE COVARIANCE

Let x be a N � 1 snapshot of a given range gate, i.e., the
observation vectorx = [x1; x2; � � � ; xN ]T . Two hypotheses are

Manuscript received November 27, 1995; revised September 1, 1998. This
work was supported by ARPA under Contract F30602-95-1-0001 under the
STAP University Initiative monitored by Rome Labs. The associate editor
coordinating the review of this paper and approving it for publication was
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