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ABSTRACT

When trying to select an appropriate power generation plant for a micro-grid
power distribution system like an electric ship, designers must consider both the physical
characteristics (e.g., weight, volume, power ratings) and performance characteristics
(e.g., fuel consumption, quality of service) of all the design alternatives. Comparing the
design alternatives in terms of the physical characteristics is relatively straightforward,
but in terms of performance characteristics each design alternative has to be evaluated
within its own optimal performance points to make a fair comparison. However, at
present no effective method or software tools exist to enable this evaluation at the earliest
design stage.

To address this problem, we develop a concept evaluation method to determine
the optimized power system concept of operations (CONOPS). Incorporating this method
into the power generation plant development allows the design alternatives with
undesirable performance to be removed from consideration, and ensures a high level of
confidence that no quasi-optimal alternative is eliminated. The CONOPS in this
dissertation takes into account the operating setpoints of the generating units on the
primary power distribution buses. The optimality of a CONOPS is assessed with respect
to its yielded system performance metrics, namely, fuel consumption and the quality of
service (QOS). These two are paramount to the operating economy and mission success

of micro-grid power systems. As an example, we apply our approach to the set-based
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design (SBD) of a shipboard power system to demonstrate its effectiveness. Research is
performed using a three step process.

First, we identify the full set of design variables that is applicable to generic
power generation and distribution architectures, and use it to formulate the optimization
problems of the CONOPS. The optimization problems fit both ac and dc distribution
architecture and include the parameters that we identify as essential to describe the
architecture. Also, we develop two QOS metrics to investigate the different aspects of
system reliability: failure probability, and failure magnitude and duration.

Second, we develop and improve a single-objective particle swarm optimization
(SOPSO) and multi-objective particle swarm optimization (MOPSO) to solve the
optimization problems of the CONOPS. Both are able to provide enhanced capability and
reliability of searching for the global optimum as compared with the previously reported
PSOs. For a given system concept and mission (i.e. a description of loading conditions),
the results derived by the SOPSO can rapidly reveal the performance tradeoffs of the
CONOPS and investigate how the definitions of the performance metrics affect the
optimal design of CONOPS. The results derived by the MOPSO, in contrast, help
designers identify the quasi-optimal set of design alternatives during SBD with a very
high confidence level.

Third, in order to generalize the formulation process of the optimization problems
for generic primary generation and distribution architectures and different expressions of
the performance metrics, we develop an optimization structure based on the concept of
control architecture. We define five broad categories of data to describe the essential

parameters and design variables of the optimization problems common to a generic
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micro-grid power system application. We also identify the coupling relationship of these
categories of data to standardize the co-optimization algorithm of the optimization
problems. Therefore, we only need to develop one coding infrastructure that can be
applicable to a wide range of design scenarios. In addition, we develop a hierarchical data
structure to address the software implementation of this concept evaluation method
during SBD. This data structure contains two data exchange/flow block diagrams. One
block diagram defines the data sharing method between the early stage models in S3D
with an optimization simulation model in MATLAB. The other block diagram defines the
data implementation process of resolving the co-optimization problem of the CONOPS in
MATLAB. This data structure provides an effective guidance for software engineers to
implement the concept evaluation method automatically by means of the two software

environments.
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CHAPTER 1
INTRODUCTION
1.1.  CONTRIBUTIONS OF THIS DISSERTATION

= Development of the optimization problems of the power system concept of
operations (CONOPS) for generic micro-grid power generation and
distribution systems. These optimization problems are developed to evaluate
the quality of power generation concepts in terms of two critical system-level
performance metrics—fuel consumption and the system quality of service
(QOS). Incorporating these optimization problems at the earliest design stage
can further reduce the number of feasible design alternatives compared to
traditional methods, considerably reducing the work of the multidisciplinary
research team in the preliminary design phase.

= Improvement and validation of a single-objective Particle Swarm
Optimization (SOPSO) and a multi-objective Particle Swarm Optimization
(MOPSO). Both of the optimization algorithms present an enhanced capability
and reliability of locating the global optimum for constrained mixed-integer
problems as compared with the previously reported PSOs.

= Application of the SOPSO and MOPSO to the optimization problems of the
CONOPS. We demonstrate the performance tradeoff analyses of the
CONORPS for different power generation concepts by using the SOPSO. We

also present an effective approach to identify the quasi-optimal set of



power generation concepts via the MOPSO according to the stakeholders’
preferences on the performance metrics.

= Development of the optimization structure to generalize the modeling process
of the optimization problems. Based on the optimization structure, we develop
a coding infrastructure of optimization problem formulation that can be
imposed on a generic type of micro-grid power generation and distribution
architecture. This work reduces the cost of problem formulation and design
validation during the exploration of the design space at the earliest stage.

= Development of the data structure to facilitate the automatic software
implementation of the concept evaluation method, which accounts for the

optimization of the CONOPS, in the set-based design (SBD) phase.

1.2.  MOTIVATION
1.2.1.  Accounting for the Optimized CONOPS during Concept Evaluation

The primary objective of the power system design process at the earliest stage is
to identify and fully explore the feasible regions of the design space. To this end, one
should be allowed to combine any applicable type of power generation and distribution
architecture (referred to in this dissertation as “system concept”) with any feasible
combination of generating units (referred to in this dissertation as “design alternative”).

However, for a given system concept, assessing the equipment specifications and
characteristics (e.g., quantities, power ratings, locations of generating units) is not enough
to truly quantify the quality of a design alternative at the earliest design stage. On one
hand, although different generation plants are characterized with different hardware

parameters, they may behave similarly with appropriate operating setpoint values. For



example, in order to build an 80 MW shipboard power system, one can choose either four
generators with the rated power at 5, 15, 20, and 40 MW or four identical generators with
rated power at 20 MW. To serve a light load at %4 power capacity (20 MW), the former
design alternative can run two generators: the 20 MW generator is fully operated and

40 MW generator stays as a backup power source in an idling state without producing
any power; the latter design alternative can run two 20 MW generators, each producing
10 MW. Under these operating strategies, these two design alternatives may consume a
very similar amount of fuel because they all have two generators in service; they also
present the same level of QOS because if either operating generator goes offline, the
generator left online is still able to fully support the load power demand for the two
design alternatives.

On the other hand, the performance of a generation plant can also vary in a
significant range with different operating setpoint values. Let us continue with the
previous example. To serve the 20 MW load, a generation plant can either dispatch power
among all of its generators or just run the minimum number of generators sufficient to
support the load. The net fuel consumption of the former case can be several times that of
the latter case depending on the load power and quantity of the in-service generating
units.

Therefore, in order to derive a fair comparison among the design alternatives at
the earliest design stage, one has to identify the quasi-optimal performance of each
alternative at the certainty level that can be best achieved or estimated at the stage.
Specifically, at the earliest stage where waveform-level controls of power electronic

applications are not accessible, it is important to incorporate the optimization of the



system-level operating setpoints into the evaluation of power generation concepts. It is
also demanding to generalize this optimization approach for a wide range of system
design possibilities (i.e., a “system design” is the combination of the given system
concept and one of its design alternatives).

For a micro-grid power system design, the CONOPS are originally referred to by
Doerry in [1] as “which power system components are used as well as their configuration
for different mission system requirements.” In this dissertation, we extend this definition
to include more detailed setpoint information of power system components, that is, how
much active and reactive power (only for ac distribution system) each in-service power
generating unit produces.

1.2.2.  Developing the Co-Optimization Problem for Determining the CONOPS

Usually each performance metric requires a design alternative to be operated
under specific setpoints to achieve the desired design objectives. When the quality of a
design alternative is simultaneously determined by more than one performance metric,
these metrics have to be co-evaluated to determine the optimal values of the CONOPS,
otherwise, the selection of the best design alternative for a given mission based on one
performance metric’s optimal value may actually not be valid when considering another
performance metric. Similarly, for each design alternative, the selection of the optimal
operating point based on one performance metric’s value may not be optimal when
considering another performance metric.

For example, a shipboard power system with 80 MW power capacity may contain
either a few generators with high power ratings (e.g., four 20 MW) or many generators
with lower power ratings (e.g., eight 10 MW). If the ship’s mission profile includes

frequent cruising segments at low speeds, demanding low power for loads (e.g., 32 MW),



the former design may outperform the latter in terms of fuel consumption because the
former requires a smaller number of generators in service to fulfill the power demand (i.e.
two 20 MW compared with four 10 MW, although both combinations of online
generators can be operated at their optimal fuel-saving status, the base fuel consumption
to keep a machine operational accounts for a considerable proportion of operating fuel
consumption, leading to a high probability that having more generators in service will
consume more fuel.) However, the latter design appears to be better in terms of the QOS
because the power is dispatched among more generators, offering greater generation
redundancy (i.e., 20 MW vs. 30 MW). Therefore, in order to identify the true quality of a
design alternative, we need an effective method to fully investigate the performance
tradeoffs between fuel consumption and the QOS with different CONOPS.

1.2.3.  Incorporating the Concept Evaluation Method Considering the Optimal
CONORPS into Set-Based Design

SBD is an important design principle used to fully explore a design space at the
early stages. It enables the design process to converge to the best set of potential design
alternatives, which will most likely lead to the best solution, in a time frame as short as
possible [2][3]. Following the traditional point-based design (PBD) approach, designers
quickly assess a range of design alternatives and then arbitrarily select one for further
refinement with respect to a range of desired capabilities. In contrast, following SBD,
designers do not rush into making decisions but rather eliminate undesirable answers
from the design space. This screening process proceeds as additional detailed analyses
are added in along design steps until some point when a single design “converges” [4].
Therefore, a far greater range of design alternatives can be evaluated with respect to the

desired capabilities with the lowest investment of study effort.



Since SBD produces better solutions faster and offers more flexibility for
continued system improvement and integration [2], it has been widely used for
applications in the automotive and aerospace industries. Recently, the U.S. Navy has
taken actions to adopt SBD for the shipboard power system design process. The SBD
model is expected to improve design discovery in the Pre-Preliminary Design (Pre-PD)
phase as indicated in Figure 1.1. It will allow more of the design effort to proceed
simultaneously and defers detailed specifications until tradeoffs are more fully
understood [2][4]. However, the current SBD approach is constructed with the analysis
framework only based on physical properties, such as weight, volume, and power
capacity. Because of this, the outcome is unable to reflect optimal tradeoffs of system
performance. Hence, the design alternatives with inferior performance tradeoffs may also
be selected in the Pre-PD, increasing evaluation costs and slowing down design cycles.

Therefore, it is paramount to integrate the optimization of the CONOPS into the
current concept evaluation method of SBD. This accomplishment will effectively narrow
down the feasible design space at the earliest design stage according to the stakeholders’
preferences on the system performance tradeoffs. This work can be done by developing a
software coupling method between an external optimization solver, which is
advantageous to model and resolve generic optimization problems, and a SBD tool,

which is used to generate early stage system models.

1.3. DIFFICULTIES AND CHALLENGES
1.3.1.  Formulation and Solution of the Optimization Problems of the CONOPS
In previous literature, fuel consumption, the QOS, and survivability are suggested

and discussed most as the critical performance measures of interest at the system level for
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micro-grid power systems [10]-[45]. Fuel consumption is usually minimized for a given
mission (or a mission segment) by resolving an economic dispatch problem (EDP). The
QOS is the measure of the system’s ability to continue serving loads when some
generating elements become suddenly unavailable. Survivability measures a system’s
ability to restore the power supply on a damaged system (i.e., the ability to preserve the
power for critical mission loads after damage occurs to the distribution system). In this
dissertation, we are only concerned with fuel consumption and the QOS because they are
more affected by the refinement of the CONOPS than survivability. In contrast,
survivability is mostly predetermined by physical characteristics of both the electric and

thermal cooling system layouts (e.g., locations of equipment, the quantity of zones, the



distance between buses) rather than sophisticated operation strategies of power system
components when serious damage occurs [35].

However, for micro-grid power systems, the optimization approach for the
CONOPS with respective to fuel consumption and the QOS has not been fully addressed
at the earliest design stage up to this point. Three main challenges are summarized as
follows:

First, the EDPs are previously formulated in terms of the setpoint variables of the
CONORPS that mainly reflect the characteristics of terrestrial power plants (i.e., only the
real power dispatch is necessary at the end of the generation plant; switching generating
units on or off is not necessarily considered; the configurability of a power distribution
system is not taken into account.). When applying these variables to the EDPs of micro-
grid power systems, the minimum fuel consumption of a system design cannot truly be
predicted for acquisition decisions. In addition, the generation redundancy, which is
central to micro-grid power systems, is seldom concerned in the previous EDPs.

Second, the optimization problem of the CONOPS with respect to the QOS
(referred to in this dissertation as “QOS optimization problem”) has not been properly
related to any setpoint variables. It has been well acknowledged that ratings of generating
units, setpoints of power modules, and the operating status of distribution systems
considerably affect the system QOS [44]. However, the existing QOS optimization
problems only focus on the QOS enhancement at static operating points of a generation
plant rather than the discovery of the optimal operating point of a generation plant for
maximizing the QOS. Thus, we need to reformulate the QOS optimization problem from

scratch.



Last but not least, although it is essential to have fuel consumption and the QOS
co-optimized (see Section 1.2.2), in the past, they have been optimized only in sequence.
Specifically, the QOS is always evaluated or improved based on the outcome of an EDP,
which determines the power plant setpoint. Thus, it is highly possible to encounter the
situation (demonstrated in Chapter 7) that one can never get a satisfactory QOS no matter
how he adjust the system hardware around an operating point that implicitly
compromises the QOS; or he may have to afford a large investment at that operating
point to achieve an acceptable QOS.

How to model these optimization problems and solve the co-optimization problem
is also a big challenge for us to address. Considering the complexity of the objective
functions and constraints, which are non-convex, nonlinear, and mixed-integer, existing
evolutionary algorithms are not effective enough to derive the solution in a reasonable
time; thus, this dissertation also has to develop an effective optimization technique to
support the optimization process of the CONOPS.

1.3.2.  Development of Optimization Structure for a Universal System Design

One has to face two difficulties to impose the optimization problems of the
CONOPS on different potential system designs: 1) there is no generic format of the
optimization problems that can fit an arbitrary system concept (e.g., the optimization
problems formulated for the system with a ring bus cannot be applied for the system with
the breaker-and-a-half bus configuration); 2) it is time-consuming in reality to formulate
the optimization problems for each system concept one at a time. To address these
difficulties, we need to generalize the modeling process and the coding infrastructure of

the optimization problems based on the commonality of various system concepts.



As stated by IEEE Std 1676 [46] and recently drafted IEEE Std P1826/D4 [47],
control architecture can be effective to generalize the description of normative control
functions for different application levels, disregarding a wide range of system
architecture types. Specifically, the low level control architecture divides the functional
analysis of a generic power electronics system into the control functions ranging from
establishing the system mission to managing the specific power devices. The mid-level
control architecture (i.e., for power system controls) defines the control functions of a
generic zonal electrical distribution system (ZEDS) for properly serving the loads by a
customer-supplier agreement, ranging from allocating duties to zones for supporting a
mission to identifying the management strategies of zonal power electronic equipment.

The optimization of the CONOPS does not involve the actual control
implementations of power system components in time domain, but it determines the
overall control objectives of a power system from the primary power generation and
distribution level (the power level), that is, how the generating units should be operated in
order to guarantee the carrying out of the mission. Since the determination of the
CONOPS dictates the operation of the ZEDSs and power electronics system, it is
regarded as the control function belonging to the highest level of a power system.
Obviously, if the control architecture for this level of a generic micro-grid power system
is available, we will be able to develop an optimization structure based on that to
standardize the optimization problem of the CONOPS for a universal system design.

Unfortunately, at the moment, the concept of the control architecture is explored

only for the low-level power electronic applications and mid-level ZEDSs, but not for the
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high-level power systems (the primary power generation and distribution level). Thus, we
are missing the basis to develop the corresponding optimization structure.

1.3.3.  Automatic Software Implementation of the Concept Evaluation Method

The early stage design software, S3D [48], is developed to provide an
environment that enables simultaneous collaborative design across multiple disciplines in
the early design process. S3D facilitates the project’s transition from a conceptual phase
to a detailed design phase. It provides a mechanism for mapping vendor equipment
directly to models that are available for detailed designs. It is also able to provide the
simulation capability of detailed time-domain design by means of a coupled simulator,
called Virtual Test Bed (VTB). Although S3D is advantageous for its quality and
efficiency of capturing representative electrical architecture, it lacks the potential to
investigate the optimality of a system due to the shortage of an optimization solver.

In contrast, MATLAB contains a large group of powerful tools for numerical
computations with vectors and matrices, and offers sophisticated commands for
customizing optimization techniques [49]. However, it is insufficient in exploring the
design space for system concepts and design alternatives at the earliest design stage.
Therefore, the integration of S3D with MATLAB can be an effective solution to
incorporate the optimization analysis of the CONOPS into the concept evaluation
method. However, at the moment, an effective data sharing method has not yet been
developed between the early stage model and the simulation model. Specifically, the
transmitted and processed data has not been identified within each software environment
and between the two environments. In addition, the procedure to automate software

integration and acquisition decisions needs to be defined.
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CHAPTER 2

RESEARCH OBJECTIVES

2.1.  OVERVIEW OF RESEARCH OBJECTIVES

The objective of this dissertation is to develop a methodology for evaluating the

potential power generation concepts for a given micro-grid power system concept, such

as a shipboard power system, and selecting a set of quasi-optimal solutions at the earliest

design stage. A four-step methodology is developed to meet this goal:

1)

2)

3)

4)

Develop the standard optimization problems of the CONOPS with respect to
the two critical performance metrics—fuel consumption and QOS—for a
generic system design.

Formulate the appropriate formats of the optimization problems for each given
system concept based on its architecture characteristics.

Apply an effective optimization algorithm to co-optimize the optimization
problems for the distinct metrics. The quasi-optimal performance tradeoffs are
determined based on the concept of Pareto dominance for each potential
system design.

Compare the quasi-optimal performance tradeoffs of all the potential system
designs to select the non-dominated (quasi-optimal) design alternatives and

understand their optimal operating strategies.

The entire work is only based on the system-level analyses and eventually applied

to SBD for micro-grid power system designs.

12



2.2.  DEVELOPMENT OF THE OPTIMIZATION PROBLEMS OF THE CONOPS

The first objective in this subsection is to identify a set of design variables for a
universal system concept and design alternative. This set should be essential to
identifying the CONOPS of the micro-grid power generating units. Also, it should be
sufficient to allow for tradeoff study between fuel consumption and the QOS for a system
design at the earliest stage.

The second objective in this subsection is to formulate the optimization problems
of the CONOPS with respect to the distinct metrics. The objective function should be
able to quantify the fuel consumption and system QOS in terms of the variable set. The
optimization constraints should reflect the operating requirements common to generic
micro-grid power systems.

Considering that there are multiple potential topologies of a system concept (e.g.,
ring bus, split bus, breaker-and-a-half), it is important to identify the appropriate forms of
the optimization problems to fit the given one. Therefore, the third objective in this
subsection is to identify the essential parameters that characterize a system concept (e.g.,
the number of independent primary distribution buses, the power distribution
configuration of the load zones, the operating status of circuit breakers) and to

incorporate them during the optimization problem formulation.

2.3. DEVELOPMENT OF OPTIMIZATION STRUCTURE FOR A UNIVERSAL
SYSTEM DESIGN

The objective in this subsection is to develop an optimization structure for
defining a universal modeling and coding process of the optimization problems

disregarding any specific system concept. Specifically, we need to first define the broad
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categories for the data that must be involved in the optimization problems of the
CONOPS. This is for generalizing the description of system designs, design
requirements, and the formulation procedure. Then we need to identify the relationship
among all these categories of data to regulate the co-optimization procedure of the
CONORPS. Finally, we need to develop one standard coding infrastructure for imposing
the optimization algorithm to the optimization problems, which may correspond to any
regular system concept and contain different metric expressions.

We also need to develop a powerful single-objective and multi-objective
optimization algorithm to support the optimization and co-optimization approach,
respectively. These algorithms should be able to reliably converge to the accurate global
optimal solutions in a reasonable number of iterations when dealing with constrained
mixed-integer problems. In order to facilitate acquisition decision, we will employ the
concept of Pareto optimality to visualize the quality comparison of the design alternatives

with the co-optimization approach.

2.4. DEVELOPMENT OF DATA STRUCTURE FOR SOFTWARE IMPLEMENTATION

Due to software limitations, modeling early stage system designs and optimizing
their CONOPS are currently accomplished in two independent software environments—
S3D and MATLAB. Therefore, the information of each early stage model studied in S3D
has to be manually collected and hard-coded in MATLAB one at a time to generate the
appropriate formats of the optimization problems.

The objective in this subsection is to develop a data structure for realizing the
automated simulation process by using the two tools. Specifically, we need to identify the

data that is required to be collected from a generic system concept in S3D and delivered
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to MATLAB for customizing the optimization functions of the CONOPS. In addition, we
need to identify the data that are required, processed, and output at each simulation phase
of the concept evaluation process implemented in MATLAB. We will finally develop the

data flow diagrams for the software data coupling and SBD screening process.
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CHAPTER 3

STATE OF THE ART ON THE EARLY-STAGE OPTIMAL DESIGN OF MICRO-GRID
POWER GENERATION PLANTS

3.1.  OPTIMIZATION PROBLEM FORMULATION

In the previously published efforts, the quality of a micro-grid power generation
system design is mainly evaluated in the following aspects at the earliest stage [7][9]:
mission-oriented fuel cost, minimization of the number of prime movers, electric power
QOS, and benefits of including energy storage devices.

3.1.1.  Minimizing Mission-Oriented Fuel Costs

In previous literature, the EDP has been extensively studied for terrestrial power
generation plants with various evolutionary optimization algorithms [10]-[24]. Given the
mission segments depicting the discrete load power demands, fuel consumption of a
power generation plant is minimized by optimizing the operating setpoint of each
installed generating unit subject to the operating constraints of interest.

The fuel cost (usually measured in dollars) of each generating unit is formulated
by a quadratic or occasionally cubic polynomial in terms of its generated power, P. The
quadratic function is expressed as the term in the parentheses of (1). The three
coefficients, a;, b;, and c;, are specific to a power generating unit. The fuel cost of a
generation plant is expressed as the sum of fuel costs of all N generating units, as shown
in (1). When valve point loading effects of generators are concerned, another sinusoidal

term has to be added into the polynomial equation, shown as the term in the absolute
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operators of (2). The coefficients of e; and f; can be determined by fitting the
experimental efficiency curve of a generator. However, the sinusoidal term will turn the
original convex function into a non-convex one, requiring more advanced evolutionary

algorithms to solve the problem [17]-[22].

in(anwaLann +c,) (1)
F=3 (a8 +b,Pv¢,) e sin(f, (B —P) @

Constraints imposed on an EDP vary depending on the application of a power
generation plant and the accuracy level that designers aim to achieve. Generation
capacity and power balance are the compulsory constraints for all situations [15][16].
Apart from these two, extra operating constraints, such as prohibited operating zones
[13][15][17]-[20], ramp rate limits [14][21], generator startup fuel consumption [23],
transmission line loading limits [1][13], power loss in the transmission lines (normally
modeled using the standard or simplified Kron’s loss formula) [1][14][17]-[20], the
augmentation of spinning reserve capability of a system [22], and the maintenance of the
QOS at certain levels [50] can be taken into account for more accurate analysis.

However, it has to be noted that all the previous work fails to address three design
concerns, which unfortunately are very significant to micro-grid power systems and SBD
applications:

First of all, the reported concepts of EDPs are developed to discover the optimal
performance of an already-defined generation plant and system concept, but not to help
choose or optimize the specifications of the generation plant for a system concept.

Accordingly, the previous EDPs fail to address the early stage design concerns, such as
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discovering the minimum number of prime movers and generating units for a system that
can yield the minimum fuel consumption for a given mission.

Second, the reported EDPs fail to investigate the effect of the type of electric
architecture on the fuel-saving performance of a power generation plant. Since the
distributed power factor compensators are installed along the terrestrial AC distribution
buses close to the end-use load, the reactive power balance constraint is not required on
the side of the generation plant. Therefore, the formulation of the EDP is always regarded
to be the same for AC and DC systems. However, considering the weight and cost, a
micro-grid power system like an electric ship usually has a limited installation of reactive
power compensators. Thus it is necessary to study how the reactive power balance at the
end of the generation plant affects the performance of a micro-grid AC power system.

Third, the EDPs formulated for terrestrial generation plants do not consider
generation redundancy or any other reliability constraints because of the excessive power
support from the grid. However, the power generation capacity of a micro-grid system is
always closely sized to the load demands, thus the system usually has little spinning
reserve during operations. Therefore, reliability has to be taken into account with fuel
consumption when resolving the EDP. Unfortunately, the reported EDPs in literature fail
to address this concern.

3.1.2.  Improving the Electric Power QOS

The QOS evaluates the ability of a generation plant to preserve the power to loads
when certain power generating modules suddenly become unavailable. The QOS is a
very important factor to characterize system optimality of a micro-grid power system

design [7]. However, the approach to discover the optimal QOS value of a design
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alternative at the earliest design stage has not been properly developed. There are three

problems with the current existing QOS metrics:

D

2)

3)

Most of them are described in prescriptive languages like “standards” or
customer-supplier agreements rather than in algebraic expressions, making the
quantitative analysis hard to apply in practice [44].

For those very few reported mathematical models of the QOS, they are
defined in terms of event-based, not status-based variables and parameters. As
a result, a value of the QOS can only represent system reliability measured in
a specific failure scenario rather than a good prediction of system reliability in
an operating condition. Since the failure scenarios are normally not known at
the earliest design stage, these QOS models turn out not to be applicable for
SBD purposes [25].

Although the determinant factors of the QOS have been well-acknowledged as
the generator sizing and CONOPS [44], these factors have not yet been

incorporated in the QOS optimization problems.

There are two main methods proposed in literature to determine the QOS of a

power generation plant:

The first method involves time-domain analyses, which directly measures certain

system state values (e.g., the frequency and bus voltage at certain nodes, the rotor angle

of generators, the angle difference between certain buses) to see if any violation occurs

for the predefined contingencies [45]. This method can only provide qualitative analysis

of the QOS with two states—QOS survival or QOS failure. Therefore, this method is

more suitable to be used to generate the conditions for validating the CONOPS obtained
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by other means, but not to optimize the CONOPS. In addition, this method requires too
many system details that are, unfortunately, not accessible at the earliest design stage.

The second method employs failure and repair rates of generating units to
indirectly quantify the QOS. This method provides more flexibility to evaluate the QOS:
1) it allows one to study the individual effect of each generating unit on the QOS of a
system; 2) it allows one to estimate the QOS of a system at the preferred level of
accuracy by just considering the generating units of interest. This method does not rely
on the time-domain analyses; instead, it capitalizes on the accurate estimation of the
failure and repair rates of the generating units involved in the system.

Here are the summary of the several important algebraic forms of the QOS metric
proposed in literature. Doerry [25] defines the QOS in terms of three factors, namely,
mean-time-between-failure (MTBF) values of power components, mission duration, and
power interruption events. A QOS failure is defined to occur if a given mission segment
cannot be fulfilled in the face of a set of predefined power interruption events during a
specified duration. A QOS failure is only regarded to be caused by aggregate component
failures; hence a QOS failure rate is directly related to the MTBF values of components.
By definition, the QOS failure rate of each component is weighted by the duration of
mission segment and that of component online status, as expressed in (3); the weight is
calculated in (4). The QOS failure rate of a system is then calculated as the summation of
the weighted QOS failure rates of all the components, as shown in (5). The QOS metric is
finally defined as the reciprocal of the QOS failure rate of a system, as expressed in (6).
This definition of QOS metric is straightforward to comprehend; however, as the author

points out, it is difficult to predetermine power interruption events at a high confidence
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level because these events can be associated with multiple possibilities and random
factors, such as operating-based wear, glitches due to long time operating out of
allowable ranges, and human misapplications. In addition, it is costly to test the QOS
failure for each failure event (i.e., the time-domain simulation and detailed information of

a system design are required).

-fos n
rfailure(n) = q—() (3)
()
K
fqos(n) = ; fom(k)pom(k,n)qam(k,pi,,[j]) (4)
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rfailure = Z rfailure(n) (5)
n=1
1
QO0S = (6)
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For more comprehensive design purposes, Doerry updates the formula of the QOS
in [44]. The concept of operational ability, which is defined in terms of three factors of a
power component, namely, MTBF, mean-time-to-repair (MTTR), and mean-logistics-
delay-time (MLDT), is introduced to evaluate the probability of multiple simultaneous
failures, as expressed in (7). This paper points out the necessity to examine multiple
simultaneous failures with an A, less than about 0.995. However, the author does not
provide a complete method to estimate the MTTR and MLDT, making this QOS metric
difficult for calculation.

Y MTBF
° " MTBF +MTTR + MLDT

)

Zapata, et al. [27] measure the QOS in terms of two indices, namely, expected

operational outage rate and expected operational unavailability. These indices are
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expressed in terms of component failure rates, preventive maintenance rates, false
component operating rates, and outage rates due to backup actions. Except for component
failure rates, all of the other rates are given as constant parameters, averaged from the
historical database. The definition of a QOS failure varies based on the specific system
topologies, but the QOS is computed following the same procedures of sequential Monte
Carlo simulation. In some literature, the QOS can also be estimated in terms of the
capability that a plant can produce the power to the end-use loads at some acceptable
levels [28]-[32]. This capability can be evaluated in several measures including loss-of-
load probability, loss-of-load duration, and loss-of-energy amount. This measure of the
QOS is usually based on the observed or historical data of reliability (i.e., MTBF) and
maintainability (i.e., MTTR) of power plant components.

3.1.3.  Calculating Failure and Repair Rates of a Generating Unit

Despite the diverse forms of the QOS metric proposed for the second method
explained in Section 3.1.2, the factors in common are the failure and repair rates of power
plant components. The failure rate of a power plant component is observed to be affected
by several factors related to both controllable CONOPS factors (e.g., loading conditions,
switching frequency, frequency of setpoint changes) and uncontrollable factors (e.g.,
aging effect, wear-and-tear, fatigue failure, maintenance schedules, random
contingencies). In contrast, the repair rate of a component is more affected by
uncontrollable factors (e.g., environmental conditions, nature of failure, diagnostic
ability, equipment, repair resources, skills of personnel). At the moment, it is still a
problem for manufacturers to estimate or predict these two rates at an acceptable cost
[25]. In traditional design practices, designers usually treat failure and repair rates of a

power plant component to be constant for universal operating environments and design
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scenarios. Their values are given as the averaged value of the inspected historical data of
similar products. As a result, one may be surprised to see that the system design
appearing to offer a high-level QOS by theoretical analyses behaves far below the
expectations during real life operations [28]. In order to make more reliable acquisition
decisions, one needs an effective approach at the earliest stage to model dynamic failure
and repair rates like those observed from daily operations. Several condition-dependent
failure rate (CDFR) models and condition-dependent repair duration (CDRD) models are
proposed in recent publications and summarized as follows:

The impact of the setpoint of an electric machine on its failure rate is revealed
from the mechanical point of view in [33]. Considering a generation plant with a fixed
frequency and sufficient thermal cooling capabilities, the loading condition of each
generating unit (i.e., the generated power) is implied to be the most significant factor
affecting its dynamic failure rate. Increasing the generated power causes greater torque
exerted on the bearings and reduces the fatigue life. This relationship is specified in
mathematical expressions in [34]. The author introduces two different CDFR models for
a generating unit in terms of its active instantaneous load, P;. One CDFR model is
expressed in (8) as a natural exponential function, which is also employed for the survival
analysis in biostatics. The coefficients, 4, and f, can be determined from a few tested
points by data fitting techniques. The other CDFR model is expressed in (9) based on
some reference loading points. The parameter A¢ and Py, ¢ are the reference failure rate
and the corresponding load, respectively. The parameter y denotes the load dependent
exponent. Both models need to capitalize on the historical failure database to determine

the parameter values.
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The uncontrollable factors affecting failure and repair rates are addressed by
means of various distribution models and stochastic simulation methods in previous
literature. Zapata et al. [27] employ the stochastic point processes (SPP) to model the
time-varying failure and repair rates of a generating unit. By evaluating the tendency of
randomly generated failure events to change during a period, the appropriate SPP model
can be selected from six options. Garazas et al. [28] use a two-parameter Weibull
probability distribution (cumulative distribution function) to characterize wear-out and
fatigue failures of a gas turbine and adopts a lognormal distribution to derive the repair
rate, as expressed in (10) and (11), respectively. These two equations represent statistical
reliability and maintainability of a system at time ¢. In (10), the parameters S and 7 denote
the shape parameter and characteristic life of the Weibull distribution, respectively. In
(11), the parameters » and o denote the mean value and standard deviation of the
lognormal distribution, respectively; the function @(+) denotes standard normal
distribution cumulative function. These parameters need to be determined based on the

historical data.
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O
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Wu et al. [23] express the dynamic failure and repair rates in the corresponding
bounded ranges. These rates are regarded as the design variables that can be optimized.

However, the physical meaning of these optimal rates is not presented.

3.2.  OPTIMIZATION ALGORITHMS

An effective optimization algorithm is prerequisite to solving the co-optimization
problem of the CONOPS. The co-optimization problem contains both real and binary
variables in the objective functions and constraints. The objective functions are non-
convex and thus cannot be resolved by conventional gradient-based methods. In contrast,
heuristic techniques are more suitable to be employed.

Heuristic optimization methods, most of which belong to the class of the
population-based evolutionary algorithm, do not impose the requirements that systems
must be differentiable or continuous; do not limit assumptions regarding the forms or
characteristics of the objective functions and constraints; present less likelihood for
solutions to be trapped on local optima [51]. However, different heuristic algorithms
present different advantages in favor of specific situations.

Popular heuristic methods used for single objective optimization problems include
the evolutionary programming (EP) [52], genetic algorithm (GA) [53], simulated
annealing (SA) [53], bio-geography based optimization (BBO), gravitational search
intelligence (GSI) [54], Hopfield neural networks (HNN) [55], particle swarm
optimization (PSO) [56], and various hybrid algorithms [56]-[59]. The limits of these
algorithms are summarized as follows: GA, EP, and EA have the common problem that
they always fail to guarantee the global optimal solutions compared to the other

evolutionary algorithms. Apart from that, GA suffers from the complicated encoding and
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decoding schemes and presents degraded efficiency in applications where design
parameters are highly correlated; EP converges to near-optimum rather slowly due to its
mutation and selection schemes, and can get trapped in sub-optimal states for large scale
complex problems; SA is very time-consuming and has difficulties to find the appropriate
annealing schedule to account for distinct problems. BBO is typically time-consuming in
tuning the parameters, especially for complex systems; its parameters are also problem-
specific. The performance of GSI starts degrading significantly in contrast to the other
methods when the number of iterations is extended to be large, typically >1000. HNN is
more suitable to solve piecewise nonlinear functions but may suffer from excessive
numerical iterations, resulting in huge calculations for training the neural network.

In contrast, PSO outperforms all these algorithms in several aspects when tested
with the benchmark problems [60]. PSO retains the advantages of the population-based
algorithms, being less susceptible to getting trapped in local minima. It balances the
global and local exploration such that it converges to the global optimum in shorter time.
It is easy to implement with basic mathematics and a limited number of parameters. Its
performance does not depend on a user-defined initial point where the simulation
iteration starts. Additionally, it can be improved through integrating with other
optimization techniques to solve a wide range of problems (e.g., mixed integer problems,
multi-objective problems, objective function with stochastic nature, problems with time-
sensitive global optima). Hence, we will pick PSO as the algorithm prototype to be
improved for solving our co-optimization problem.

The previously reported versions of single-objective PSO (SOPSO) suffer from an

ineffective constraint handling capability and premature convergence when dealing with
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constrained mixed-integer problems. The previously reported versions of multi-objective
PSO (MOPSO) also bear the same problem; even worse, when the constraints contain the
mixed integers like our co-optimization problem, current MOPSOs are even unable to
converge to a valid solution. Therefore, it is essential to develop an improved SOPSO and
MOPSO with better capabilities to deal with mixed-integer variables and avoid premature
convergence. In this dissertation, we apply SOPSO to generate the global optimal
CONOPS with respect to fuel consumption and the QOS independently. The outcomes
are used as the reference to demonstrate the efficacy of the improved MOPSO. The
conclusions drawn via these two methods are compared to testify the design improvement

of SBD accounting for the optimization of the CONOPS.
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CHAPTER 4

BACKGROUND ON MICRO-GRID POWER GENERATION AND DISTRIBUTION
SYSTEMS

4.1. ELECTRIC ARCHITECTURE OF MICRO-GRID POWER GENERATION AND
DISTRIBUTION SYSTEMS

This dissertation adopts the next generation integrated power system (NGIPS) [7]
as the architecture prototype of micro-grid power generation and distribution systems,
including those that do not contain electric propulsions. The NGIPS is configured as a
zonal electrical distribution system (ZEDS) that represents a simpler, cheaper, and better
productivity of commodities (e.g., electricity, chill water) than other system architecture
types, such as traditional radial distribution systems or locally producing the commodities
[61]. In addition, ZEDSs provide considerable improvement for three measures, namely,
survivability, the QOS, and the cost [62].

The NGIPS has three popular types of power generating architecture, namely,
medium voltage ac (MVAC), high frequency ac (HFAC), and medium voltage dc
(MVDC). Although the details of power interfaces differ from each of them, they all
adhere to the same concept of ZEDS and the same types of power modules, as shown in
Figure 4.1.

The standard NGIPS power modules are introduced as follows:

= Power Generation Module (PGM): the power source that converts the fuel to

electric power. A PGM is normally composed of a mechanical power source
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(e.g., a prime mover such as a gas turbine or a diesel engine) and an electric
generator (e.g., a synchronous machine).

=  Propulsion Motor Module (PMM): the load type that converts electric power
into the propelling force of a ship, which is the major power consumer at the
most of time.

= Power Distribution Module (PDM): the essential elements, including
switchgears and cabling, that transport electric power between functional
elements.

= Power Conversion Module (PCM): the functional elements, including power
transformers and power electronics-based converters, that convert electric

power from one type (e.g., voltage, frequency) to another.
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= Energy Storage Module (ESM): the storage elements [63], such as batteries,
flywheels, and superconducting magnetic energy storage (SMES) etc., that act
as a buffer to prevent power disturbances from propagating to loads.

= Power Load Module (PLM): the load that consumes either ac or dc electric

power.

In a typical ZEDS, PGMs are connected to the primary distribution bus either on
the port or starboard side. After closing all switchgears on the primary buses, the split bus
on the port and starboard side can be coupled together to form a big ring bus. PCMs may
be necessary between some PGMs and the primary buses depending on the output
voltage levels of the PGMs, the bus voltage rating, and the bus voltage type. For the ac
distribution architecture, PMMs are the AC loads directly connected to the primary ac
buses on either the port or starboard side. In contrast, for the dc distribution architecture,
a PMM is usually connected to an appropriate PGM directly (sometimes appropriate
transformers may be needed) in place of the power transmission buses.

The zonal load architecture of a ZEDS can be designed in various topologies
reflecting compromises between survivability, the QOS, and the cost. For most
combatants, the reasonable quantity of the zone is about six to seven, resulting in each
zone being roughly fifteen percent of the ship’s length [62]. Depending on the bus
voltage type, ac or dc, PCMs are employed between the primary distribution buses and
in-zone distribution buses. For the latter, one may connect in-zone PGMs and/or in-zone
ESMs to improve survivability and the QOS. End-use PLMs are supported with the

power from the in-zone distribution buses through necessary PCMs.
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In addition to the typical ZEDS with the ring bus topology, several other types of
architecture can also be possible [62]: The single bus architecture with zonal generation
is generally advantageous if ESMs are not cost effective. This is because single bus
architecture involves in-zone PGMs for improving survivability and the QOS. The dual
bus architecture with primary bus level storage or zonal level storage is considered for
improving service continuity, but it has difficulties in determining the optimal size,
location, and control strategies of ESMs. To further enhance survivability from the
damage of the loss of primary buses, either integral segmentation or independent
segmentation is introduced for the duel bus architecture to pair with zonal ESMs. The
hybrid bus architecture is another improved version of the single bus architecture used to
better support the critical loads. There are also several versions of the multi-bus system
with the advantage of minimizing the number of primary bus distribution nodes, which
typically consist of the medium/high voltage switchboard and transformer, both usually
large, heavy, and costly. The breaker-and-a-half distribution topology is known to
provide more reliability overall than the ring bus topology with a similar ease of
scalability, but it demands a greater number of circuit breakers and more sophisticated
design of the locations of sources and loads.

Since different types and quantities of power modules are required for different
ZEDSs, the optimization problem of the CONOPS developed according to one ZEDS
type cannot fit all situations. If a type of NGIPS architecture contains separate primary
distribution buses, the optimality of the overall system will be determined by the
combination of individual optimal performance of each bus. The minimum fuel

consumption and the maximum QOS of the system design are the sum of those of each
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bus, respectively. This dissertation makes two assumptions to all system designs: 1) since
the efficiency of a PGM is far lower than that of the other types of power system
modules, we assume that the latter have fixed power efficiency ratios despite their
operating power levels; 2) we assume that all the essential information characterizing a
system concept can be easily secured by S3D and used by the optimization solver. The
second assumption facilitates MATLAB’s automatic selection of the appropriate function
of the optimization problem for the ZEDS architecture under study. The “essential”
information should include the coupling relationship among modules and between
modules and buses, the specifications of PGMs, the operating statuses of PMMs and

PLMs, and so on.

4.2. CONTROL ARCHITECTURE

In traditional design practices, designers commonly carry out sequential design
procedures to first arbitrarily select a preferred design alternative, and then define
controls to fit. Following this method, the hardware cost may be always minimized, but
the system performance can hardly achieve or even get close to the global optimum [66].
Our simulation results [64][65] indicate that integrating appropriate control design
(referred to as the converter controls for power electronic applications and the equipment
setpoint determination for power system designs) with system hardware design (referred
to as the circuit components for power electronic applications and the power system
components for power system designs) at the earliest design stage can be an effective
method to identify the hardware with preferred tradeoff between the cost and system

performance quality or with preferred tradeoffs among multiple performance metrics.
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However, this method brings up two challenges: For different types of system
architecture, how to quickly identify the control variables that should be considered for
studying these tradeoffs? How to impose the formulation method of the co-optimization
problem to generic system architecture?

The development of the system control architecture can be a good solution to
complete the first challenge. IEEE Std 1676 and Std P1826/D4 are two examples of the
control architecture. Targeting different levels, namely, the power electronic applications
and the ZEDS, they divide the control functions of corresponding system application into
standard hierarchical layers according to the temporal responses. Each control function
layer identifies the relevant modules and their design variables (i.e., control variables for
power electronic devices, setpoint variables for power system components) common to
all types of system architecture. Accordingly, the second challenge can be completed by
developing an optimization structure in terms of these design variables defined in the
control architecture. Considering the commonality of the design variables, a standard
formulation structure of the optimization problems described via the design variables
should also be possible to impose on a generic type of system architecture.

Therefore, for our concept evaluation method, as long as we have the optimization
structure for the primary power generation and distribution system level, we can directly
apply it to any given system concept to optimize the CONOPS for each design alterative.
Otherwise, one has to repeat the time-consuming problem formulation process for
different system concepts one at a time. However, either the control architecture or the
optimization structure has not been hitherto discussed for this level. To solve this

problem, we need to look into the development of the control architecture for the lower
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level applications and apply the same method to develop the control architecture and
optimization architecture for the primary power generation and distribution system level.

Despite different system applications, the overall control of an electric system is
accomplished by arranging individual control functions and synthesizing their outcomes
to yield a desirable control performance. The control functions of a power system
application should be classified based on two principles—functionality and temporal
response. Each control function is composed of a group of operations within a similar
timing range. In the control architecture, each hierarchical layer contains the standard
rudimentary control functions integrated based on their temporal responses. In order to
accomplish a desired mission assigned to the layer, these rudimentary control functions
have to be realized by applying appropriate operating strategies to the standard modules.
Normally, the operating strategy of a module (except for data processor modules) can be
optimized according to a certain performance metric. However, when the operating
strategies of several modules share some design variables (e.g., hardware parameters,
control variables), or the operating strategy of a module is intended to achieve multiple
control objectives, a multi-objective optimization method needs to be applied to evaluate
the performance tradeoffs in either case. In addition, control architecture also defines the
standard data that need to be processed between and within hierarchical layers, and their
required speed range, facilitating the development of the optimization problem
formulation structure.

The control architecture for power electronic applications and that for ZEDSs
have been reported in IEEE Std 1676 [46] and Std P1826/D4 [47], respectively. The

former mainly focuses on the functional analysis in time domain. Its design variables are
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the control signals used to implement the duties of a power electronic system and adjust
the behaviors of converters. The latter, in contrast, focuses on the functional analysis in
power domain because the purpose of this standard is to modularize a system for rigorous
assessment mechanism, interface control management, and proactive conformance
testing. Its design variables are setpoint variables used to determine the operating status
of the ZEDS components to fulfill a given mission. Next, we will review these two
standards in detail.

4.2.1.  IEEE Std 1676—IEEE Guide For Control Architecture for High Power

Electronics (1 MW and Greater) Used in Electric Power Transmission
and Distribution Systems

This document describes the control architecture for broad power electronic
applications, whether or not the power electronics is PEBB-based. There are a total of
five control layers partitioned from a power electronic system configuration, as shown in
Figure 4.2.

= System Control Layer (Sys): all functions involved in the determination of

system missions and duties of power electronic systems.
= Application Control Layer (App): all functions involved in the operation of
power electronic systems in order to meet the missions determined by the Sys.

= Converter Control Layer (Cnv): all functions that enable the App to perform
its mission by implementing many of the functions common to various
converters.

= Switching Control Layer (Swt): all functions that enable power electronics to

behave as a switch-mode controlled source including modulation control and

pulse generation.
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Figure 4.2 Control Architecture for PEBB-based electronics with modifications

= Hardware Control Layer (Hwr): all functions that manage everything specific
to the power devices; it may consist of multiple modules depending on the
power requirements.

For most power electronic systems, temporal and functional distributions
naturally occur at the same boundaries. From the top layer (Sys) to the bottom (Hwr), the
timing of control signals is decreasing correspondingly from above 10ms to 0.1us. The
interface requirements are defined based on the temporal partitioning. Signals on the
interfaces are classified into three categories, namely, control and protection signals, state

signals, and measurement signals, and their transmission logics are also defined.
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Following the control architecture, any power electronic system can be
consistently expressed with the standard integrated functional diagrams. In [65], we have
already demonstrated the benefits of using this control architecture to optimize the
converter control layer through an example of buck converter design. Instead of choosing
hardware parameters, namely, inductance and capacitance, and then designing the
feedback control system in traditional practices, we co-optimize the parameters of
hardware and PI controller (i.e., K; and K,,)) defined in this layer. As a result, the converter
performance metrics (i.e., inductor current ratio and output voltage overshoot) are
improved by 14%.

4.2.2. IEEE P1826/D4—Draft Standard for Power Electronics Open System

Interfaces in Zonal Electrical Distribution Systems Rated Above
100 kW [70]

This document is recently drafted to define the control architecture for the ZEDSs
with power electronic interfaces between the zones. Specifically, this standard extends
the control function described in the Sys level of IEEE Std 1676 into three detailed
control functions at the system level. This document applies the Open System concepts to
the ZEDSs and identifies the Open System interfaces, facilitating the plug-and-play
operability of components. It also formulates specific interface requirements that can be
universally applied to maintain total power system performance and efficiency.

The partitioned control layers and power electronic interfaces are shown in Figure
4.3. The basic control functions and partitioning criteria of each layer are explained as
follows:

= Multi-Zone Control Layer (Mzn): all functions that are involved in the

operation of the overall system mission, and in the allocation of duties to each
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zone or to a group of zones supporting that mission. The following control

functionalities are required at minimum:

- Determine and set the operating state of a zone.

- Coordinate zones, when applicable.

- Receive health/status from, and provide control commands to, zonal level

control.

of zone missions and the method of coordination of In-Zone controls. The

Provide a human-machine interface.

following control functionalities are required at minimum:

- Provide control of energy flow at zonal interface.

- Provide health/status to, and receive control commands from, the Mzn.
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- Provide coordination for fault detection, isolation, and reconfiguration.
- Provide in-zone coordinate, when applicable.
- Provide a human-machine interface to detect and handle equipment
problems at zonal interface.
= In-Zone Control Layer (Izn): all functions that are involved in performing
zone missions and duties of power electronics systems. The following control

functionalities are required at minimum:

Provide autonomous control of in-zone elements, configuration, and faults.

- Provide health/status to, and receive control commands from, the Znl.

- Provide power flow management in accordance with power allocations
provided by the Znl.

- Provide a human-machine interface to detect and handle problems of in-

zone equipment.

Respond to changing load conditions.

The communications between these control functions are realized by the
appropriate designs of the power electronics applications at the layer interfaces, which
accommodate the timing defined in Figure 4.2. As we use this ZEDS control structure for
the system level optimization design, we always assume that the derived control
strategies can be correctly implemented at the power electronics level.

Depending on the locations where modules are connected to the ZEDS, some of
the standard power modules explained in Section 4.2.1 are further classified in IEEE
P1826/D4. PGMs are categorized into external PGMs and in-zone PGMs. Operation of

the former is first determined by a given mission at the highest power-generating level, as
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this dissertation is mainly focusing on. Then the derived control strategy is notified to the
Mzn layer for coordinating zones. The latter are controlled through optimizing the
performance metrics associated with the Izn layer, providing an optional strategy for
protecting the in-zone QOS from faults occurring at the top layers. PCMs are categorized
into external-to-bus PCMs and bus-to-internal PCMs. Operating status of the former is
determined in the Znl layer to convert the power originated from external PGMs to the
type and quality desired by the main in-zone PDMs. The operating status of the latter is
determined in the Izn layer to convert the power from the type and quality of in-zone
PDMs to those desired by end-use PLMs. (Specific setpoints of PCMs are calculated by
applying the control structure in IEEE Std 1676.) The power distribution panel in Figure
4.3 refers to the in-zone PDMs, which provide the appropriate type of power to end-use
PLMs when the power type of end-use PLMs does not match the output of the main in-

zone PDMs (e.g., dc loads for an ac type of power architecture).
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CHAPTER 5
DEVELOPMENT OF OPTIMIZATION ALGORITHM

5.1.  ORIGINAL DEFINITION OF PARTICLE SWARM OPTIMIZATION

The original PSO was developed to perform as a flexible population-based
stochastic search method [67]. Compared with the other evolutionary algorithms, PSO is
especially advantageous to combine and balance the global and local exploration
capacities. The particle populations in PSO are able to heuristically converge to the
global optimum by learning from their own best previous experiences and by
communicating with each other to learn the hitherto best experience of the overall
population. The integration of the global exploration and local exploitation by PSO 1is
expressed in (12) in terms of four groups of variables: the current position of each
particle, x,4; the current velocity of each particle, vg; the hitherto best position found by all
particles (known as the global best, x,.); the best history position of the individual

particle (known as the personal best, Xppe):

v, (t+1) =w-v, (Z)+C1 -U(O,l)-[xgbm —-X, (z‘)]+c2 ‘U(O,l)-[xphm —X, (t)] (12)

X (141)=x, (1) + K -v, (1+1) (13)
K= 2 where @=c +c, >4 (14)
- 4 - ™ 2
‘2—¢—\/¢2—4¢
= Lo~ Vo gy, (15)
iter,
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where K and w are the constriction factor and the inertia weight, respectively,
introduced to improve the searching performance and convergence; c¢; and c; are the
acceleration factors of the population, reflecting the influence degree of the global best
and personal best, respectively; U(0,1) is a uniformly distributed number from the
interval (0,1); i denotes each individual particle in the population; 7 is the current iteration
number. Usually, w is a linearly decreasing value from w;,,, to w,;,, during the maximum
allowed number of iterations iter,,,, for faster convergence. v;; is limited by its maximum
value Vigmnax, Which is usually set to be the maximum dynamic range of the corresponding
variable.

The original PSO is essentially developed in continuous space without the
capability to deal with constraints and binary variables. Unfortunately, the optimization
problem of the CONOPS for micro-grid power systems involves binary variables in both
objective function and constraints. Therefore, we develop two new versions of PSO to
support our work, one for single-objective and one for multi-objective optimization
problem. These two versions successfully present performance improvements beyond the
current PSOs in two aspects when dealing with the problems containing binary variables:
one is the enhanced capability of effectively avoiding premature convergence; the other is

the improved capability of more accurately and reliably locating the global optimum.

5.2. IMPROVEMENT OF SINGLE-OBJECTIVE PARTICLE SWARM OPTIMIZATION
5.2.1.  Handling Method for Discrete Binary Variables

For handling discrete binary variables, we employ the method to let SOPSO
interpret the particle velocities as the probabilities of changing the binary variables from

one state to the other (1 or 0) via (16) [68].
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u,-d={1 U(0,1)<S(vid), S(v,) = L (16)
0 U(0,1)=S(v,) l+e™

where S(vig) 1s a sigmoid limiting transformation to limit the velocity-based
probability to the interval (0,1). Then the maximum allowable velocity Vigmax 1S
interpreted as the limit of probability that u;; will be 1 or 0.

5.2.2.  Constraint Handling Scheme

There are four constraint handling methods— preserving feasibility method,
repair algorithm, rejecting approach and penalty function—commonly applied to tackle
the equality and inequality constraints of a single-objective optimization problem.
Preserving feasibility method always keeps the initial point and intermediate points
during iteration in the feasible space by using certain updating scheme, such as saturation
masking for bounded variables and embedded equality handling in coding [69]. However,
the variable updating scheme is highly problem-dependent, especially suitable for solving
the easy constraint expressions. When the constraints are nonlinear, or comprise
polynomials and discrete expressions, the coding of the variable updating scheme
becomes very challenging. Repair algorithm method is also problem-specific, that is,
restoring feasibility might be as difficult as solving the optimization problem itself.
Rejecting approach method evaluates every intermediate solution in all constraints and
then rejects those with any constraint violation. Hence, applying this method consumes
remarkable calculation time. In addition, as the number of variables increases, the
heuristic computation mechanism needs to be largely improved in order to be capable of
generating the feasible solutions [70].

In contrast, penalty function directly integrates the constraints with the objective

function through certain weights. Accordingly, the violation of constraints can be
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straightforwardly reflected as an unacceptably large value added to the objective function
[71]. Penalty function is also more in favor of the heuristic optimization process of PSO
because it is able to quantify a constraint violation in magnitude; in contrast, the other
constraint handling schemes only treat a constraint violation as a discrete state, either
feasible or infeasible. Specifically, for a common constrained minimization problem in
(17), the corresponding unconstrained objective function containing the penalty functions
can be expressed in (18). Equation (19) and (20) provide the effective forms of the
penalty terms for common use.

min f(x) subject to
g;,(x)<0, j=L2,-n 17

hj(x):0, j=n+lLn+2,---m

F(x)zf(x)Jrikj x H (x) (18)
k; =(C-1)°, Hj(x)ziDjﬂ(x) (19)

(20)

where x =[x, x, ***, x,] is the vector with p input variables; f(x) is the original
objective function subjected to n equality and (m-n) inequality constraints; k; and H; (x)
are the penalty weight and the penalty factor of constraint j, respectively; C is a constant
denoting the initial penalty effect; a and f are the constants defining the form of the
penalty function.

However, the traditional penalty functions have some noticeable disadvantages

with parameter selection, that is, a high value of the penalty term will result in easily
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getting trapped to the local optimum while a low value might lead to non-convergence of
the objective function. To address this problem, four forms of dynamic penalty function
has been reported in [70][71], as expressed in (21). Since there is no clear conclusion on
which form outperforms the others for a given optimization problem, we incorporate all
the four forms with our developed SOPSO to facilitate one’s testing on his specific
problems.

P(a,p): P(L1),P(1,2),P(2,2)

Multi-stage: k,= NN H, = f;ej -D;"
j=1

10 D, €[0,0.001) 1)
20 D, €[0.001,0.1] 1D, €[0,1)
where 8, = , V.= /
71100 D, e(0.L1] 7|2 orelse

300 D, e(1,x)

It is worth mentioning that the multi-stage penalty function normally outperforms
the other dynamic penalty functions in most complicated problems, including our
optimization problem. One of the main reasons is the adoption of the varied penalty
factors for different levels of constraint violation. This “adaptive” learning process is
advantageous to avoid the difficulties of choosing the appropriate penalty factor for
different problems, and to speed convergence to the optimum. The other main reason is
the application of a more strict screening process of the obtained particles along the
training process. The penalty weight increases at each iteration step, creating more
chances for the particles to explore the whole searching space at the beginning but to hold
the feasible solutions later on. Therefore, the multi-stage penalty function is always
automatically taken as the first choice of the constraint handling method when our

developed SOPSO is applied.
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5.2.3.  The Mutation Operator and Archive Vector

In order to prevent premature convergence due to a limited number of feasible
points in the binary space, we introduce a “mutation” operator and an “archive” vector to
the searching process so that the particles are able to be released from the local optima
and self-initiated for a new searching process.

We assign the probability of mutation w; to a random number of particles for
enhancing their global exploration capabilities. If g, fails to improve after s iterations,
the velocities of some arbitrarily selected real variables will be set to a random value
within their velocity bounds, and the states of certain binary variables will be reversed

(i.e., “1” changed to “0” and “0” changed to “1”’), as shown in (22).

'real: Vv, (1+1)=U(01)-V ... U, (0.1)<w 22)
binary: X, (1+1) = reverse U, (0.1)<w,

where v,;; denotes the particle i’s velocity of design variable x,; Uy; (0,1) is a
random number in (0,1) for the particle i of x,,.

The number of particles that should be considered for mutation is controlled by a
function of influence rate, as expressed in (23) [64]. This influence rate and the chance
for each selected particle to be mutated are all proportional to the iteration number of
training particles. The pseudocode of the particle mutation process based on the influence
rate is developed in Figure 5.1.

i

influence rate =1—e "™ (23)

where w; is the instantaneous inertia weight in the current iteration loop; Wy, 1S

the initial value of the inertia weight as defined in (15).
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for i=1:training iteration

Calculate the new velocities of particles;
% mutation starts
Give a static mutation rate, m;
for j=1:the population of particles
Generate a random value s = rand(0, 1);
if s <=influence rate
Randomly select a binary variable of the
particle;
Generate a random value 7 = rand(0, 1);
if t<=m
Change the state of the binary variable;
end
end
end
% mutation ends
Update the new velocities of particles;

end

Figure 5.1 Pseudocode of the particle mutation process based on the influence rate

Apart from the mutation operator, we also introduce a method to automatically
create the opportunities for the trapped particles to escape from the local optima. It is like
introducing a “ranger” patrolling around during the optimization process. The duty of the
ranger is to look for the particles that fail to update in a certain number of steps, forcibly
relocate them, and reactivate a new search. However, since there is no effective method
to distinguish a local optimum from the global optimum, it is possible that the particles
converge to the global optimum may also be relocated. To address this concern, we create
an archive to store the best g, that has been obtained along the searching process.
Therefore, once the stopping criteria of the SOPSO are met, the stored value in the
archive will be the global optimum. The detailed procedure to apply the archive method
is explained as follows:

Specifically, when g, fails to update in a predefined number of iteration steps,

the current g, Will be evaluated to see if it is a valid solution with null penalty. If so, the
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values of both X5 and gp.ss Will be stored in an “archive” vector. And then g will be
mutated (i.e., some of the binary variables in xg. are reversed at a probability wepeg).
Thus, the trend of all the particles flying to the premature converged point is disturbed
and a new searching behavior is automatically initiated. If not, the archive will not be
operated. gp.;; Will still be mutated to release the particles from flying to the premature
convergence. If the archive is empty, the first valid pair of gses; and xgp.s Will be directly
stored. If the archive has already had a pair of gps and Xgpey, the new g5 Will be
compared against the stored gp.y. If the new gy, is smaller, the new pair will replace the
existing one; otherwise, the new pair will be disregarded. The data flow logic of mutation
and archive operation is shown in Figure 5.2.

The efficacy of this new SOPSO is demonstrated using the design problem
introduced in Section 6.4. The derived simulation results are compared with those
obtained via a previously reported binary version of SOPSO [59]. Our developed SOPSO
is able to consistently find the results closer to the global optimum and present 32%
smaller standard deviation in 50 times of simulation trials.

It is important to point out that by using the archive vector, the searching process
of the particles will not stop based on convergence because the convergence at each time
is also a new start of searching. Hence one needs to define the maximum times of
updating the archive. Based on our observation, basically, the probability to find the
global optimum is proportional to the number of maximum times, for which the archive
is allowed to be updated. Considering the tradeoffs between the simulation speed and
result quality, we suggest taking the number from 5 to 10 for common problems with 16

to 20 design variables.
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Figure 5.2 The data flow chart of applying the mutation operator and archive vector

5.3. IMPROVEMENT OF MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION

The constrained MOPSO is originally presented in [72] to just deal with real
variables. It uses a relatively simple scheme without penalties to screen out the solutions
with any constraint violation. Unfortunately, this constraint handling method is suffering
from a very limited capability of generating the feasible solutions in complicated
problems. To address this problem, we improve the MOPSO by employing a multi-stage
penalty function as introduced in Section 5.2.2. In addition, the mutation operators in (22)

and (23) are also incorporated in the particle searching process.
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For benchmark problems [72], our developed MOPSO shows equally good
performance as the original constrained MOPSO. However, when we solve the co-
optimization problem of the CONOPS containing equality and inequality constraints as
well as binary variables (details are explained in Chapter 9), the original constrained
MOPSO cannot converge at all. In contrast, our developed MOPSO is able to
successfully locate the Pareto optimal points whose border values successfully meet the

expectations of the SOPSO (see Chapter 8).
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CHAPTER 6

FORMULATION OF THE ECONOMIC DISPATCH PROBLEM FOR MICRO-GRID

POWER SYSTEMS

6.1. DEFINITION OF BROAD CATEGORIES OF DATA

Referring to the developing method of the control architecture for the lower-level

system applications, we define five broad categories of data to describe system designs

and control functions for the primary power generation and distribution level, formulate

the optimization problems of the CONOPS, and construct the optimization structure.

Setpoint Variables: the set of variables that determines the CONOPS. This set
is composed of both real and discrete binary variables. Based on the
investigation of different ZEDS prototypes (e.g., MVAC, MVDC, HFAC),
this set is defined to accommodate a considerably wide range of system
architecture for the early-stage performance analyses.
- Real Variables: the active power outputs and the power factors of PGMs;
- Binary Variables: the online status (O=offline, 1=online) and power factor
status (O=lagging, 1=leading) of PGMs;
Measurement: the measured information that indicates the characteristics of
the power components or modules in terms of efficiency and reliability. The
information about efficiency, including the power efficiency, fuel efficiency,
and instantaneous power consumption, is used to derive the network power

flow relationship. The information about reliability, including the reference

51



points of MTBF values of equipment, is essential to be used for the QOS
analysis;

= System State: the sensor information (i.e., it indicates the coupling status and
operating status, on/off, of power modules) and any other essential parameters

(e.g., health states of power modules, electric architecture types (ac or dc),

switch locations) that determine the instantaneous topology of the primary

power distribution system;

=  Mission Objective: the user-defined or generated information (e.g., maneuver
signals of mechanical load systems, mission segments, power quality) that
describes the missions required to be fulfilled by a control function;

= (Constraint: the system- or equipment-specific requirements that have to be
fulfilled during system operations;

- Static Constraint: the constraints whose parameters and expressions are
time-independent, such as PGM nameplate ratings and PGM operating
limits;

- Dynamic Constraint: the constraints whose parameters or expressions are
time-sensitive or mission-dependent, such as configuration-related power

balance constraints and decision-based redundancy requirement.

6.2. FORMULATION OF OBJECTIVE FUNCTION
Considering the total N generating units connected to a primary power
distribution bus, the real design variables of the EDP for that bus include the active power

output, Py, », and power factor, pf,, of PGM n. The binary variables include the online
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status, u,, and power factor status, v,, of PGM n. We use u =1 for “ON” status, u =0 for
“OFF” status, v=1 for lagging power factor, and v =0 for leading power factor.

Therefore, the objective function of the EDP for the bus is expressed in (24).
N

mmf( gou,,pf u, v) Zun x{vn “fon [fg,,,(Pg,n)]+(1_Vn i [fg n( )]} 24)
n=l1

where, P, , is the total active power generated by PGM n, considering the power
losses of following principal components: bearing friction, windage losses, conductor
losses in the excitation circuit, energy loss in both the magnetic material and the winding
copper, and other heat dissipation [75].

Function f;, is the expression of the thermal efficiency curve of prime mover n
(the prime mover of a PGM in this dissertation is consistently referred to as a gas
turbine), indicating the relationship between its input fuel and output power at shaft.
Function f, , is the expression of the power efficiency curve of generator n, indicating the
relationship between its input power and output power. Function f;, and f, , for a PGM
should be tested and provided by the manufacturer of the equipment brand. Since we lack
this information for the moment, in design demonstration, we adopt a per-unit-based
efficiency curve for f; , and f, , individually for each PGM.

The thermal efficiency curve is developed based on the concept of specific fuel
consumption (SFC) in this dissertation. SFC measures the ratio of the fuel mass flow of
an engine to its output power during a time unit. The SFC curve for a generic gas turbine
rated at 30000 hp is provided in [73]. The power load is expressed in per unit value, and
the unit of SFC is defined as [bm/hp-hr, as shown in Figure 6.1. This curve trend can be
used to approximate the relationship between SFC and the operating power for an

arbitrary gas turbine. Depending on the power rating, this curve can be adjusted by
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Figure 6.1 Specific fuel consumption curve for a Gas Turbine rated at 30000 hp

moving up or down for a certain degree to match its lowest value (i.e., the highest
efficiency) provided by the manufacturer. The equipment database in S3D contains this
information for some off-the-shelf gas turbines. General Electric also includes the rated
SFCs in the specifications of their marine gas turbines with the power rating at 4.47 MW,
14.91 MW, 25.06 MW, 30.20 MW, 35.32 MW, and 42.43 MW [74]. For conceptual
study at the earliest design stage, we can use this information to scale the SFC curve for
any arbitrary power-level gas turbines. Specifically, the SFC curve can be expressed with
a second order polynomial equation by curve fitting techniques, as shown in (25). The
scale to adjust the curve in terms of gas turbine nominal power can be determined with a
third order polynomial equation, as shown in (26). The relationship between the input
fuel (measured in /bm/hr) and the output power of a gas turbine can be expressed in a
seven order polynomial equation. This equation can satisfactorily reflect the fuel
consumption at engine’s idle, which is regarded as 10% of that at the nominal power. The

error between the derived curve from this equation and the given curve is within £0.05%.
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SFC = astPSiaﬁ,p.u. +bsfcf)shaﬁ,p.u. + csfc (25)
SFC =aP> +bP> +cP _+d (26)

rate = ULt rare TOML pape T L e T4,
The efficiency curve of a generator is mainly affected by two factors—the
operating power and power factor. In [75], the efficiency curve of BDAX 7-290ERJT
(80 MW, 13.8 kV, 3 Ph, 60Hz) at power factor of 1.0, 0.9, 0.85, and 0.80 are plotted as
separate lines in the same figure. As the power factor reduces, the operating power level
yielding the maximum efficiency decreases; meanwhile, the efficiency obtained at the
rated power drops, as shown in Figure 6.2. Since a single curve fitting is not able to
address these two characteristics affected by the power factor, we capitalize on (27) to
incorporate the physical meanings of power loss to the estimation of the generator

efficiency [77].

P
n= - Al (27)
" e.n 2
Pg,pu,n + t |:(1 - E’opper,n ) + E’opper,nRg,pu,n :|
nrate,n
1
= (28)
copper.,n 2
1 + Pmaxeﬂ,n
P
Jen=—" (29)
n

The efficiency of generator n at the operating power P ., » (per unit value) is
formulated in terms of both load-independent power loss and load-dependent power loss.
The former includes the losses in magnetic material and mechanical frictions. The latter
refers to the power losses in the winding copper. In (27), Feopper,n denotes the fraction of
the total losses in the winding copper. This value can be uniquely determined in (28),

where Pnuxefn 15 the operating power that yields the maximum efficiency. Paxef, can be
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Figure 6.2 Variation of power efficiency with the load and power factor for a generic
generator rated at 80 MW (the line from the top down corresponds to pf =1, 0.9, 0.85,
and 0.8, respectively) [75]

measured for each power factor value. For the moment, since the efficiency curve for any
arbitrary power factor is not accessible, in this dissertation, we choose to estimate both
Tvate, n (the efficiency at the rated power) and Puuxefr» based on the curves given in Figure
6.2 through the interpolation method.

In addition, the efficiency curve plot of another generator with a lower power
rating, the BDAX 7-193ER (60 MW, 13.8 kV, 3 Ph, 60 Hz) is given in [76]. By
comparison, we notice that the higher power rating, the higher overall efficiency could be
normally reached. Therefore, based on these two documents, we can also approximate the

efficiency curve plot for any sized generator through the interpolation method.
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6.3. FORMULATION OF OPTIMIZATION CONSTRAINTS

Four constraints are considered in our EDP.

1) Real and Reactive Power Balance Constraint

ﬁ(un ‘P,,) = Ppy—Pous =0, Z(u 0,)= O =0 (30)

n=l n=1

where

PIom,PDM =a: \/(i Pg,nj + (i Qg,n] (31)

P, -\1-pf}

Q,,=—" (32)

Boss,PCM = ﬂ ’ J(i Pg,n - Boss,PDMj +(ngnj (33)

n=1

F

loss

=

oss,PDM

+h

055, PCM (34)

Pioaa and Q)44 are the active power and reactive power demands of the aggregate
load of the shipboard power system in a mission segment, respectively; Py, ppy 1S the
conductor power loss occurring in the PDMs on the primary power distribution bus and
zonal distribution buses; Q, , is the reactive power output of PGM n; P, pc 1S the
aggregate power loss occurring in the PCMs on the power flow paths. For estimating the
power loss during transmission and distribution, we assume all the PCMs are located
close to the PLMs. Therefore, the power at the input of the PCMs is obtained by
deducting Pj,ss, pcy from the power generated at the output of the PGMs.

Energy losses in the PDMs and PCMs are considerably small as compared with

that in the PGMs. Power losses in the PDMs are mainly regarded as conductor losses,

which accounts for about 1% to 2.5% of the transmitted power [78]. In contrast, the
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conversion efficiency in a PCM is approximately 96.5% at 40-100% rated load [79].
Since the number of employed PCMs is hard to estimate at the earliest design stage, in
order to make a fair comparison, we conservatively assume that every online load needs a
PCM for appropriate power conversion. As a result, we set o equal to 0.025 and f equal
to 0.035 consistently for every primary power distribution bus of all the potential system
designs.

2) Generation Capacity Constraint

u,- \/ szn +Q:,n _Prare,n <0 (35)

where P, 1s the rated generation capacity of PGM n.

3) Constraint of the Power Factor Adjusting Range

A PGM is able to work in either lagging or leading power factor status. However,
we limit the power factor value to certain intervals for stability purposes. We define a real
variable pf to denote the power factor value and use a binary variable v, to indicate the
power factor status.

When v 1s equal to 0, a PGM works with a leading power factor, the value of pfis

bounded in [—1, —Df d’max] , as expressed in (36). The negative sign indicates the

reactive power flow direction.

, (1-2,)(-1- pf, ) <0

(36)
tt, (=9, ) (Plrcat mosn + P, ) €O

When v is equal to 1, a PGM works with a lagging power factor, pfis positive and

bounded in [ P iag min 1] , as expressed in (37).
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u,-v,-(pf,-1)<0
4) Generation Redundancy Constraint
For each primary power distribution bus, system redundancy needs to be
evaluated in order to avoid single-point failures. The two aspects of generation
redundancy are expressed in (38) and (39). U is the least number of PGMs that must be in
service to support an independent distribution bus during a mission segment. P,;,,41s the

power demand of the vital loads supported by an independent distribution bus during a

mission segment.

U-3u, <0 (38)
n=1
Pvload _(iun ’ Prate,n —max {n = 1’ 2N | Mn ’ Rate,n }j S 0 (39)
n=1

6.4. THE DESIGN PROBLEM FOR DEMONSTRATION

In order to demonstrate the design improvement of our concept evaluation method
compared against the traditional design approaches, we employ two prototypes of
ZEDS—MVAC and MVDC—to represent a generic micro-grid power system. They are
consistently used in this dissertation for both single- and multi-objective optimization
purposes.

The primary power generation and distribution topology of the ZEDS is
constructed with a ring bus, as shown in Figure 6.3. Since all the loads receive the power
from the same bus, no vital load allocation strategy is necessarily taken into account.

However, if a ZEDS topology with multiple independent primary distribution buses is
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Figure 6.3 The prototype of the shipboard ZEDS used for demonstrating our design
method

under study, the optimization of the CONOPS will be carried out for each bus
independently; therefore, the non-vital load profile and the allocated power demands of
the vital loads have to be known for each bus.

The main design parameters are listed in Table 6.1. The PGM candidates are
provided by the equipment database in the S3D simulation environment, which contains
seven off-the-shelf gas turbine generators for different power level applications. The goal
of our design is to choose the quasi-optimal generator combinations for an 80 MW
shipboard power system. Due to the limitations of weight and volume, only the
combinations with four or five generators are investigated. Therefore, there are a total of
eight feasible design alternatives, which correspond to eight system designs, generated by
the MATLAB script, as listed in Table 6.2. For stability and efficiency purposes, we
define the minimum lagging power factor of a generator as 0.5 and the maximum leading

power factor as 0.95.
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Table 6.1 The parameter list of the shipboard power system design

Parameters of Shipboard Power Generation Plant

Parameters Values Unit
PGM Candidates [4.5,5, 11, 15, 20, 36, 40] MW
Power Capacity of Shipboard Generation Plant 80 MW
Quatty i o s PO e M=, M=
Adjusting Range of the Power Factor Plieatmax =095 Pfig in =0.5
Table 6.2 The design alternative list of the shipboard power system design
Index Power Ratings Unit
1 5 15 20 40 MW
2 20 20 20 20 MW
3 4.5 4.5 11 20 40 MW
4 4.5 4.5 15 20 36 MW
5 5 5 15 15 40 MW
6 5 15 20 20 20 MW
7 11 11 11 11 36 MW
8 15 15 15 15 20 MW

We arbitrarily choose three mission segments to create our own mission profile,

covering low speed (10 knots), medium speed (20 knots), and high speed (30 knots). The

specifications of the shipboard power loads are provided in [38], as shown in Table 6.3.

At any moment, the total load connected to an independent primary distribution

bus is the sum of the propulsion motor load and the lumped load allocated to that bus, as

indicated in (40). The reactive power equation is only for the MVAC system. Pj,qq and

Qloaaq are the equivalent real and reactive power loads of the power generation plant

connected to a primary distribution bus, respectively; Pppy and Qppy denote the real and
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Table 6.3 The load specifications of the theoretical shipboard power system

10 knots 15 knots 20 knots 30 knots
1.4 4.7 11.0 60.4

Propulsion Motor Load (MW)

Power Factor
0.8
Lumped Loads (MW) Cruise Battle
Vital Non-Vital Vital Non-Vital
7.585 1.320 23.285 3.351

reactive power demands from the PPM on the bus, respectively; Py and Qjymp denote
the real and reactive power demands from the notional ship lumped load on the bus,
respectively.

P

load =

Qload = QPPM + Qlump

P

PPM

+P

lump

(40)

The propulsion motor load is the largest potential power consumer in the system,
varying significantly depending on the ship’s speed. We always assume the use of
variable speed ac drives to control propulsion motor speed, thus the power factor of this
type of load can be constantly regarded as near unity (i.e., Qppy in (40) constantly equals
to zero). The lumped loads, in contrast, are regarded to maintain the power factor at 0.8.
The vital and non-vital lumped loads have different values for two ship operating modes,
namely, the cruise mode and battle mode. In this dissertation, we employ the load profile
of the cruise mode for the low and high speed, and employ that of the battle mode for the
medium speed. The total vital load of the shipboard power system is defined as the sum

of the propulsion power, which allows the ship to maintain the speed at 15 knots, and the
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Table 6.4 The aggregate load during the given missions in our shipboard system

design
Mission 1 Mission 2 Mission 3
Aggregate Load (MW) 10.305 37.636 69.305
Power Factor 0.839 0.883 0.995

lumped vital loads. For the cases that the ship is running below 15 knots, the total vital
load is defined as the sum of the current propulsion power and the lumped vital loads.
The expression is shown in (41) (the reactive power equation is only for the MVAC
system). P00 and Q044 are the equivalent real and reactive power demands,
respectively, of the vital loads supplied by the shipboard generation plant. P,,,, and
O.ump are the real and reactive power demands, respectively, of the lumped vital loads;
Pppy is the propulsion power required by the mission segment. The specifications of the

aggregate load for each mission segment in our design problem are listed in Table 6.4.

P

vload

Qvload = Qvlump

=min {PPPM ,

P

PPM |I5kis }

+P
viump (4 1)

Each mission segment is assumed to take one third period of the entire mission. In
order to evaluate the system QOS, we assume a three year period of mission for the

shipboard power system. The mission duration is chosen based on information in [44].

6.5. QUALITY EVALUATION OF DESIGN ALTERNATIVES BASED ON THE
EcoNoMIC DISPATCH PROBLEM

The parameter settings of the SOPSO are listed in Table 6.5. To demonstrate the
optimization efficacy, we optimize the fuel consumption rate (measured in klbm/hr) for
each mission segment via the SOPSO and make a comparison with that obtained in the

worst-case scenario caused by the inappropriate choice of the CONOPS. The worst-case
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Table 6.5 The parameter settings of the SOPSO

Population 50

Inertia Weight, w Wi =0.9, w,. =04
Mutation Rate 0.1
The NO. of Function Evaluation 50

scenario is determined by maximizing the fuel consumption rate via the SOPSO. Since
the three mission segments in our design problem have an identical duration, the sum of
their fuel consumption rates denotes the equivalent fuel consumption rate for the mission
with one-third duration of the original mission. We can directly compare the equivalent
fuel consumption rates of the design alternatives to differentiate their quality.

6.5.1.  Optimization of the Economic Dispatch Problem for the MVAC ZEDS

The comparison of the design alternatives for the MVAC ZEDS is shown in
Figure 6.4. The detailed numerical comparison is provided in Table A.1. The values of
the CONOPS corresponding to the optimization results of the EDP are given in Table
A3.

From the figure, we can observe that an appropriate selection of the power
generation plant at the earliest design stage has an impressive impact on the potential
savings of fuel. When the CONOPS of every design alternative is optimized through the
EDP, design alternative 1 outperforms all the others because it requires the minimum fuel
to complete the given mission. In contrast, the worst design alternative—design
alternative 8— has to consume 7.6% more fuel (i.e., 45.56 mega-lbms in three years) for

the same mission.

64



Fuel Consumption Rate (klom/hr)

DA 1 DA 2 DA 3 DA 4 DA 5 DA 6 DA 7 DA 8
Design Alternative (DA)
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Figure 6.4 The MVAC ZEDS—the fuel consumption rate minimized via the SOPSO
(left) vs. the fuel consumption rate obtained in the worst-case scenario (right) of each
design alternative, respectively

In addition, we can also observe that fuel consumption caused by the optimized
CONORPS is far less than that in the worst-case scenario, especially for the light loading
condition. In mission segment 1 when the load is under 20% of the total power capacity,
optimization of the CONOPS is able to save at least 20%, up to 36.8%, of fuel for all the
design alternatives. This is because optimization is always able to choose the minimum
number of online PGMs to meet the power demand as well as guarantee acceptable
redundancy. Besides, the operating setpoints of the online PGMs are optimally
determined. In mission segment 2 when the load is about 60% of the total power
capacity, the savings of fuel drop to around 10%. At the moment, the number of online
PGMs determined by the optimization is quite close to the total quantity of the shipboard
PGMs (in fact, design alternative 8 needs to turn on all the five generators in this case). In

mission segment 3 when the load reaches near 90% of the total power capacity, the
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savings of fuel due to the optimization of the CONOPS are only about 1% for all the
design alternatives. This is because all the PGMs have to be turned on and everyone has
to generate the power close to its rated capability, which also indicates a high efficiency.
Therefore, optimal tuning of the operating setpoints does not contribute too much to the
fuel savings. However, considering that a ship is mostly running in low-speed conditions
(about 60% of a mission duration), sometimes in medium-speed conditions (about 30%
of a mission duration), and seldom in high-speed conditions (less than 10% of a mission
duration) [73], following the CONOPS optimized through the EDP can considerably
reduce the fuel cost of the shipboard generation plant.

6.5.2.  Optimization of the Economic Dispatch Problem for the MVDC ZEDS

For the MVDC ZEDS, the EDP for the generation plant only involves the real
power dispatch and balance. The optimization results can also help us investigate the
necessity of including the reactive power balance constraint in the EDP of the MVAC
system. Apparently, the EDP of the MVDC system contains 1/3 fewer setpoint variables
than that of the MVAC system, reducing the simulation time by about 23%.

The optimization results of the EDP for the ac and dc system are compared in
Figure 6.5. The detailed numerical comparison is provided in Table A.2.

It is noted that in our design problem, the choice of an ac or dc distribution system
(or we can say “the inclusion of reactive power balance in the EDP of the MVAC
ZEDS”) does not affect the optimization results very much in most cases (i.e., the percent
difference is around 1%). This is because the similar selection strategies for the online
PGMs are employed for the two systems. Besides, the power factor values have a
negligible influence to the efficiency curves of the online PGMs when the lumped load

on the bus has a pretty high power factor (typically larger than 0.8) [75][76].

66



20

Fuel Consumption Rate (klom/hr)

10

DA 1 DA 2 DA 3 DA 4 DA 5 DA 6 DA 7 DA 8
Design Alternative (DA)

* The bar segments from bottom to top correspond to mission segment 1, 2, and 3, respectively.

Figure 6.5 Comparison of the fuel consumption rates of the design alternatives
minimized via the SOPSO for the MVAC ZEDS (the bars on the left) and MVDC
ZEDS (the bars on the right)

However, there is one situation that may cause big differences of the minimum
fuel consumption obtained in the ac and dc systems: the optimal combination of online
PGM:s in the dc system only contains enough generation capacity to meet the real power
demand of the load. When the reactive power generation is taken into account in the ac
system, at least one more generator needs to be turned on to suffice the system, causing
more fuel consumption. If the generator available to be added to the system is large, we
believe the effect to the fuel consumption can hardly be negligible.

To conclude, in solving for the EDP of our design problem, the constraint of
reactive power balance does not need to be taken into account for the MVAC ZEDS
because the load power factor is relatively high. However, for solving the EDP of a
generic micro-grid ac power system, the answer really depends on the load power

demands, the load power factors, and the power ratings of the PGMs involved in the
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design alternatives. If the situation that we discussed above occurs, the percent difference
of the fuel consumption minimized by the EDP with and without the reactive power

balance constraint can possibly turn to be very large to affect acquisition decisions.
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CHAPTER 7

FORMULATION OF THE QOS OPTIMIZATION PROBLEM FOR MICRO-GRID
POWER SYSTEMS

The QOS of a micro-grid power system needs to be evaluated in two aspects:

1) During normal operating scenarios without introducing any external
interruption to the system, the system QOS is affected by the MTBF and
MTTR values of the online PGMs because these values directly determine the
frequency, duration, and magnitude of any potential power loss failure. The
determinant factors of the MTBF and MTTR values of a PGM include its size,
structure complexity, and operating power.

2) When some PGM failures occur, the system QOS is then reflected by the

capability of the PGMs left in service to maintain the system dependability at
a fairly high level, especially to mitigate the effect on the vital loads.

We have incorporated the second evaluation aspect in the EDP as the generation
redundancy constraint of the PGMs in Section 6.3 because it directly affects the
economic dispatch strategy as an extra condition required to meet. However, we need
another independent performance metric, which is able to quantify the characteristics of

the system QOS failure, to reflect the first evaluation aspect.

7.1.  FORMULATION OF OBJECTIVE FUNCTION
The same categories of data defined in Section 6.1 are employed to formulate the

QOS optimization problem. The objective function is the expression of the metric
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relating the system QOS to the CONOPS. In this dissertation, we develop two versions of
metric to evaluate different aspects of the QOS. Both of them are calculated as the
reciprocal of the QOS failure metric. The first version defines the QOS failure metric in
terms of failure probability of the PGMs. This metric is referred to in this dissertation as
“probability-based QOS metric”. In contrast, the second version defines the QOS failure
metric in terms of failure magnitude and duration of the PGMs. This metric is referred to
in this dissertation as “energy-based QOS metric”.

The detailed formulation of these two versions of QOS metric for a mission
segment is explained as follows.

7.1.1.  Formulation for the Probability-Based QOS Metric

This definition evaluates how serious the power service will be affected at the
moment when the online PGMs fail at certain operating setpoints. Three steps are taken
to formulate the system QOS failure metric of this definition:

1) Compute the failure probability of each online GTG.

2) Multiply the failure probability of a PGM by an appropriate weight, which
indicates the significance of the PGM to the system in fulfilling the mission
segment (i.e., the more power a PGM generates, the more its failure affects
the system power supply).

3) Add up all the weighted failure probabilities of the PGMs.

To calculate the value of the QOS metric for mission segment k, another weight
determined by the segment duration needs to be multiplied with the derived failure
metric. The longer a mission segment’s duration, the more the estimated QOS for the
segment should be counted in calculating the QOS for the entire mission. The

mathematical expression is given in (42).
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fm,k : Z(ffp,n : fyign,n )

n

(42)

QO0S, =

where f, » denotes the failure probability of PGM n during mission segment k;
fsignn denotes the weight factor for the failure probability of PGM n during mission
segment k; f,, x denotes the weight factor for the system QOS failure metric of mission
segment k, equal to the fraction of time spent in mission segment k. The expressions of

the three items are given in (43).

T, £ .9

= ’ fvi n,n =+ 2 (43)
MTBF,” """ P g,

fﬁ),n fm,k =

N |

For PGM n, f}, , 1s defined as the ratio between T}, which denotes the duration of
mission segment k, and MTBF,, which denotes its MTBF value at the operating point
during mission segment k (see Secition 7.2); fsi.n » 18 calculated as the sum of two ratios:
one ratio denotes the PGM’s contribution to the total real power demand, Py, during
mission segment k; and the other ratio denotes the PGM’s contribution to the total
reactive power demand, Qy, during mission segment k.

The ultimate QOS metric for the whole mission is defined by the sum of the QOS

value for each mission segment, seen in (44).

QOS =Y Q0S, (44)

7.1.2.  Formulation for the Energy-Based QOS Metric

This definition evaluates the power plant’s capability of continuously executing
mission segment k when the online PGMs at certain operating setpoints encounter some
operating breaks (i.e., some online generators go offline due to sudden failures or

scheduled maintenances).
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Each mission segment may contain several QOS failures, which can be caused by
either single PGM failure or multiple simultaneous PGM failures. Each QOS failure is
measured as the product of a power deficiency AP and its duration D, expressed as the
term in the parentheses of (45). The physical meaning is that some number of the
generation capacity is lost for some number of hours during a mission segment. The
actual failure metric of mission segment k is defined in (45) as the sum of all the QOS
failure measures during that time. The corresponding QOS metric for the mission
segment is defined in (46). The ultimate QOS metric for the whole mission is the

reciprocal of the aggregate QOS failures of all the mission segments, as expressed in (47)

failureyyg, =D (AP-D;) (MW -h) (45)
1 1
= 4
Q05 failure,q (MW-h) (0
1 1
- 47
Q05 (MW-hj @7

z Jailure
k

When a QOS failure occurs at an operating setpoint but the spare offline PGMs
have sufficient generation capacity to compensate the power loss, we assume that D takes
a constant value equal to the time (we conservatively choose 15 minutes) for the offline
PGMs to be started and synchronized to the distribution system. If all the rest of installed
generation capacity is not able to meet the load demand, we consider D as the MTTR
values of the broken PGMs. By this definition, the system QOS during a mission segment

should be ideally infinite and should be close to zero in the worst-case scenario.
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The complete procedure to calculate the system failure value for a mission

segment conforms to the well-known Monte Carlo method, explained in detail as follows:

D

2)

At each iteration step, calculate the reliability R, (affected by the controllable
factors) of each online PGM according to its operating setpoint;

Randomly generate a certain number of groups of reliability (affected by the
uncontrollable factors) and maintainability values for each online PGM
through the probability distribution models (see Section 7.2 and 7.3). The
number of the groups, also known as the Monte Carlo samples, determines the
accuracy level of the simulation results. The values in each group can be
understood in this way: the first failure of the PGM is determined by MTBF,
which corresponds to the first generated reliability R, ;. Following that, the
time to repair the PGM is determined by MTTR;, which corresponds to the
first generated maintainability ;. The generator is restored by time (MTBF; +
MTTR;). The second time failure is then determined by MTBF, which
corresponds to the second generated reliability R, . And the subsequent
repair time is determined by MTTR;, which corresponds to the second
generated maintainability /. The PGM is restored again by time [(MTBF; +
MTTR,) + (MTBF, + MTTR5)]. The total sum of the MTBF and MTTR values
should be able to cover the duration of the mission segment 7 under

investigation, as indicated in (48).

> (MTBF + MTTR) >T,

where MTBF =[MTBF, --- MTBF,|, MTTR=|MTTR, --- MTIR, |

(48)
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3)

The generation capacity of each PGM can be plotted according to its MTBF
and MTTR values against time, as shown in Figure 7.1. As an example, this
figure shows two maintenance breaks of PGM n taking place in a given
mission segment. During MTBFs, the PGM is able to fully function and
generate the maximum power equal to its rated value, P,,. During MTTRs,
the PGM is under maintenance, not able to produce any power to the system.
Combine the reliability obtained in step 1) and 2) via (49) to calculate the
instantaneous reliability for each online PGM. And then determine the actual
MTBEF values of the PGMs corresponding to the CONOPS.

R =R _-R (49)

It is noted that since R, is less than one, the MTBF values obtained in step 2)
will be reduced to some extent. Meanwhile, the MTTR values keep constant
without being affected by the operating setpoints. Accordingly, the amount of
maintenance breaks during the mission segment may increase, as shown in
Figure 7.2 (one more failure as MTTR; is shown in this figure). In order to
address this potential problem, at Step 2), we generate the MTBF and MTTR
values to cover duration longer than a mission segment, for example, to cover
twice the mission segment’s duration. The corresponding stopping criterion is

updated into (50).

> (MTBF + MTTR)>2-T,

where MTBF =[MTBF, --- MTBF,|, MTTR=|MTIR, --- MTIR, |

4)

(50)

Superpose the plots of the dynamic generation capacity of all online PGMs to

produce the dynamic generation capacity of a design alternative. A QOS
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Figure 7.1 An example plot of the dynamic generation capacity of online PGM n
based on the values of MTBFs (due to uncontrollable factors) and MTTRs
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Figure 7.2 The dynamic generation capacity of PGM n modified by the reliability due
to the controllable factors (i.e., the operating setpoints of the PGM)

failure is regarded to occur when some online PGMs fail but the rest of the
functional PGMs’ (including the ones staying offline) generation capacity is
less than the load demand. For example, if mission segment k requires 40 MW
for loads and if we have three PGMs, namely, 36 MW, 20 MW, and 10 MW,
in service (the plots of the dynamic generation capacity are shown in Figure
7.3), the durations of the QOS failures are indicated by the bold lines. By

definition, the QOS failure can be calculated in (51).
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Figure 7.3 Identification of the QOS failure magnitude and duration for an example
system with three online PGMs during a given mission segment

failure,,s = ZS:AB -D,
i1
:(40—30)D, +(40—20)D2+(40—30)D3 (51)
=10(D, + D;)+20D, (MW -h)
5) Repeat step 4) for every group of data generated in step 2) based on the same
R, to calculate the corresponding value of the system QOS failure. The
ultimate system QOS failure for the mission segment is determined by

averaging the values of the system QOS failure obtained from all the groups.
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7.2. ESTIMATION OF THE MTBF VALUES OF A PGM

The MTBF of a PGM can be directly related to the reliability of the PGM through
the two-parameter cumulative distribution function for the Weibull distribution, as
expressed in (52) [28]. The parameters £ and 7 can be measured for a generic PGM
model (usually provided by the manufacturers) and applied for the other models at the
same power level. As long as the reliability R can be determined, the MTBF value can be

obtained via (53).

MTBF jﬂ

R:l-e’[ " (52)

f 1
MTBF_U'“H(l—R] (53)

As we discussed in Section 3.1.3, the reliability of a PGM is simultaneously

determined by the uncontrollable factors and controllable factors. In statistics, the
reliability R, due to the uncontrollable factors follows the uniform distribution.

In solving for the probability-based QOS metric, we employ the Monte Carlo
method to determine the average MTBF value for each PGM. Specifically, we first
randomly generate a large number of R, (such as 1000 samples). For each R, the
corresponding MTBF value is calculated in (53). Then we average this group of MTBF to
represent the average MTBF value of each PGM. The corresponding R, can be obtained
in (52).

In solving for the energy-based QOS metric, for each Monte Carlo simulation, we
randomly generate the MTBF values through the uniform distribution one by one until

(50) is satisfied.
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The controllable factors are reflected on the reliability of a PGM through the
natural exponential function introduced in [34]. Given constantly sufficient cooling
capability of the power system, it is well understood that the wear-and-tear of a PGM
running at a fixed frequency is directly proportional to its generated power (see Section
3.1.3). Therefore, the failure rate 4. of a PGM can be calculated in (54) in terms of its
generated real power. The corresponding reliability rate at this loading condition can be

obtained from (55).
2, (t)= 2" (54)
R (1)=1-2(¢) (55)
The ultimate reliability of a PGM during an operation is calculated in (49). In
solving for the probability-based QOS metric, R, here is the reliability corresponding to

the average MTBF value; for the energy-based QOS metric, R, becomes an array data

corresponding to a series of MTBF values over a mission segment.

7.3.  ESTIMATION OF THE MTTR VALUES OF A PGM

For each PGM, we adopt the maintainability expression introduced in [28], as
shown in (56), to relate maintainability with the MTTR. Since MTTR is only affected by
uncontrollable factors, the maintainability value x4 can be estimated by the uniform

distribution. The MTTR value corresponding to maintainability x is determined in (57).

L= q{%j (56)
o
M7TR=eXp|:O'-CD_1 (‘u)+7/] (57)

where the function ®(-) is the standard normal distribution cumulative function;

the function (D'l(-) is the standard normal inverse distribution cumulative function.
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7.4. FORMULATION OF OPTIMIZATION CONSTRAINTS

The optimization constraints developed for the EDP in Section 6.3 are also

applicable to the QOS optimization problem.

7.5. QUALITY EVALUATION OF DESIGN ALTERNATIVES BASED ON THE QOS
OPTIMIZATION PROBLEM

We still employ the parameter settings of the SOPSO in Table 6.5. Instead of
comparing the optimized QOS with the QOS obtained in the worst-case scenario, in this
section we compare the QOS determined by maximizing the QOS via the SOPSO with
the QOS obtained from minimizing the fuel consumption to investigate the performance
tradeoffs.

7.5.1.  Employment of the Probability-Based QOS Metric

For the MVAC ZEDS, the QOS comparison of the design alternatives is plotted in
Figure 7.4. The detailed numerical comparison is provided in Table B.1. We can see that
performance tradeoffs do exist between fuel consumption and the system QOS in most
cases when choosing the CONOPS to execute a mission. This is because in order to
minimize the fuel consumption, the number of online PGMs is generally expected to be
as small as possible. However, for a high QOS, the power should be dispatched among as
many online PGMs as possible, so that a single point PGM failure will not
instantaneously affect the power supply that much. In very few cases, the minimum fuel
consumption and the maximum QOS can be reached simultaneously, indicating the
unique optimal CONOPS (e.g., design alternative 1 in mission segment 1 and 2).

The performance tradeoffs between the QOS and fuel consumption of the design

alternatives are plotted in Figure 7.5. The increases of QOS and fuel consumption are
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* The bar segments from bottom to top correspond to mission segment 1, 2, and 3, respectively.

Figure 7.4 The MVAC ZEDS—the QOS determined by maximizing the QOS via the
SOPSO (left) vs. the QOS obtained from minimizing the fuel consumption (right) of
each design alternative, respectively

measured from the values yielded by the CONOPS optimized to minimize the fuel
consumption to those yielded by the CONOPS optimized to maximize the QOS. We can
see that in light loading conditions, such as mission segment 1, the increase of the QOS
always causes a relatively larger increase of the fuel consumption. For example, design
alternative 4 requires 19% more fuel to obtain only an 8% increase in the QOS. This is
because the CONOPS optimized for maximizing the QOS incorporates more online
PGMs (usually the large ones) than that derived from the EDP. However, in medium and
heavy loading conditions, such as mission segment 2 and 3, a slight increase of fuel
consumption can yield a relatively greater improvement of the QOS. For example, design

alternative 3 is able to accomplish an 18% improvement of the QOS by just consuming
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Figure 7.5 The MVAC ZEDS— the maximal percent improvement of the QOS by
consuming more fuel (blue) vs. the corresponding percent increase in fuel
consumption from the minimum value (red) of each design alternative, respectively

less than 4% more fuel in mission segment 2; design alternative 8 is able to obtain a 10%
improvement in the QOS by consuming about 2% more fuel in mission segment 3. In
these loading conditions, almost every installed PGM has to be turned on for the power
supply. Therefore, the solutions to the QOS optimization problem and the EDP just
indicate different operating setpoints of the PGMs, which does not involve too much
variation in fuel consumption compared with the addition to the online PGMs. However,
since the CONOPS optimized for maximizing the QOS dispatches the power generation
more evenly, the instant effect of any PGM failure to the power supply can be mitigated.
To conclude, the usage of the probability-based QOS metric indicates a favorable

tradeoff relationship between the QOS and fuel consumption in medium and heavy
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* The bar segments from bottom to top correspond to mission segment 1, 2, and 3, respectively.

Figure 7.6 The MVDC ZEDS— the QOS determined by maximizing the QOS via the
SOPSO (left) vs. the QOS obtained from minimizing the fuel consumption (right) of
each design alternative, respectively

loading conditions. Since our design problem defines an identical duration for the light,
medium, and heavy load support, we can see from Figure 7.5 that optimization of the
QOS over the whole mission can always be obtained by a smaller increase in fuel
consumption. However, if a ship mission mainly contains low speed cruise, the
optimization of this QOS metric may not produce desirable CONOPS.

The QOS comparison of the design alternatives for the MVDC ZEDS is shown in
Figure 7.6. The corresponding performance tradeoffs are shown in Figure 7.7. Since the
weight factor, fiign,n, of the QOS failure metric defined in (43) does not contain the second
term related to the reactive power generation for the MVDC system, the overall QOS of
the design alternatives in the MVDC system is almost two times that in the MVAC
system. However, the optimization results obtained for these two types of electrical

architecture indicate the same relationship of performance tradeoffs.
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Figure 7.7 The MVDC ZEDS—the maximal percent improvement of the QOS by
consuming more fuel (blue) vs. the corresponding percent increase in fuel
consumption from the minimum value (red) of each design alternative, respectively

Design alternative 7 is consistently the optimal choice disregarding the electrical
architecture, but the other design alternatives’ ranks are changed. Therefore, we can also
conclude that the inclusion of the reactive power balance constraint for the MVAC
system will greatly impact acquisition decisions using the probability-based QOS metric
at the earliest design stage.

7.5.2.  Employment of the Energy-Based QOS Metric

Considering the compromise between the simulation speed and accuracy, we
generate 100 groups (Monte Carlo simulation samples) of random MTBF (based on
uncontrollable factors) and MTTR values of the online PGMs to describe the dynamic

generation capacity in each mission segment. This number of groups is able to give us
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95% confident that the true mean of the distribution lies within 2% of our estimate with
100 samples [80][81].

For better understanding, we use the value of the QOS failure metric instead of
the QOS metric to investigate the performance tradeoffs. Specifically, we compare the
energy-based QOS failure values determined by minimizing the QOS failure via the
SOPSO with the QOS failure values obtained from minimizing the fuel consumption.
The comparison of the design alternatives for the MVAC system is shown in Figure 7.8.
The detailed numerical comparison is provided in Table B.3 for every mission segment
and the whole mission. The performance tradeoffs between the energy-based QOS failure
and fuel consumption of the design alternatives are shown in Figure 7.9.

We can see that in light loading conditions such as mission segment 1, the
CONOPS obtained by solving the EDP for half of the design alternatives, namely, design
alternative 2, 4, 5, and 6, have been able to guarantee near-flawless reliability to the
system. This is because the EDP has integrated generation redundancy to prevent single-
point failures of the PGMs. For the other half of the design alternatives, some multi-point
failures are observed. However, the yielded power outages can be quickly recovered by
turning on an offline PGM; therefore, the QOS failure does not appear to be abundant.
For example, design alternative 7 represents the worst situation, but only loses about 3.75
MW:-h in one year. By optimization, the CONOPS of all the design alternatives are able
to completely reject any possible QOS failure. However, to this end, more PGMs are kept
online, causing considerably more fuel consumption, up to 35%.

In the medium loading condition such as mission segment 2, the CONOPS

determined by solving the EDP start causing serious QOS failures because the online
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* The bar segments from bottom to top correspond to mission segment 1, 2, and 3, respectively. Since
the scale of the QOS failure in mission segment 1 is far smaller than that in mission segment 2 and 3, it
cannot be clearly shown in the bar chart. Detailed numerical information is available in Table B.3.

Figure 7.8 The MVAC ZEDS— the QOS failure determined by minimizing the QOS
failure via the SOPSO (left) vs. the QOS failure obtained from minimizing the fuel
consumption (right) of each design alternative, respectively

power generation capacity is managed to be very close to the load power; any PGM
failure is likely to cause a power outage. However, by optimizing the CONOPS, the QOS
failure can be significantly reduced by just increasing the fuel consumption a little bit,
less than 10% for all the design alternatives. The changes of the CONOPS involve either
adding one more small PGM in service all the time or dispatching the power generation
in a way that every PGM works at a light loading condition (i.e., the probability of
heating and bearing issues can be reduced.).

In the heavy loading condition such as mission segment 3, every design
alternative encounters significant QOS failures because no backup PGMs are available at
the moment. Any operating break of a PGM will result in a complete system power loss

close to its power rating. In this situation, optimization of the CONOPS can barely
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Figure 7.9 The MVAC ZEDS—the maximal percent decrease of the QOS failure by
consuming more fuel (blue) vs. the corresponding percent increase in fuel
consumption from the minimum value (red) of each design alternative, respectively

improve the system QOS for most of the design alternatives. The reduction of the QOS
failure is just around 2%.

To conclude, the usage of the energy-based QOS metric indicates a favorable
tradeoff relationship between the QOS and fuel consumption in light and medium loading
conditions. The improvement of QOS is significantly noticeable because the CONOPS
can be adjusted in a wide range. In heavy loading conditions, since all the PGMs run near
full capacity, fine tuning of their operating setpoints does not contribute too much in
terms of either fuel consumption or QOS enhancement. Considering that a typical ship

mission is mostly composed of low-speed modes, we suggest employing this energy-
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based QOS in evaluating the optimality of the shipboard generation plant in terms of
power supply reliability.

The quality of the design alternatives in terms of the energy-based QOS for the
MVDC system is compared in Figure 7.10. The performance tradeoffs between the QOS
and fuel consumption are plotted in Figure 7.11. The numerical optimization results are
available in Table B.4. Without considering reactive power generation, the PGMs in the
dc system are operated at a lower power level, resulting in larger MTBF values and less
MTTR breaks. This phenomenon is especially noticeable when the load power factor in
the ac system is small. Therefore, the overall value of the QOS failure in the dc system is
smaller than that in the ac system, by up to 15%. However, the conclusion about the
performance tradeoffs derived from the ac system is still applicable for the dc system. In
addition, in our design problem, the ac and dc systems share the same winner and loser
design alternatives in terms of the energy-based QOS metric: design alternative 7
outperforms all the others, consistently suffering the least QOS failure; design alternative
1 is the worst choice for the given mission because it will most likely cause the highest
value of the QOS failure. The quality of the design alternatives significantly differs:
design alternative 7 is able to provide 93% better reliable service than design

alternative 1.

7.6.  DISCUSSION OF THE NECESSITY TO IMPLEMENT CO-OPTIMIZATION OF
THE CONOPS

No matter which QOS metric is applied, we have always observed the tradeoffs of

the QOS and fuel consumption when accounting for the CONOPS to evaluate the quality
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* The bar segments from bottom to top correspond to mission segment 1, 2, and 3, respectively. Since
the scale of the QOS failure in mission segment 1 is far smaller than that in mission segment 2 and 3, it
cannot be clearly shown in the bar chart. Detailed numerical information is available in Table B.4.

Figure 7.10 The MVDC ZEDS— the QOS failure determined by minimizing the QOS
failure via the SOPSO (left) vs. the QOS failure obtained from minimizing the fuel
consumption (right) of each design alternative, respectively

of a design alternative. This tradeoff is obviously large enough to affect acquisition
decisions.

In Chapter 6, we identify design alternative 1 as the optimal selection of the
shipboard power generation plant because compared with the others, it saves a
considerable amount of fuel to complete the given mission. However, in this Chapter, we
discover that design alternative 1 offers inferior QOS among all the design alternatives
even with the optimal CONOPS. This decision conflict can never be discovered from
either single objective optimization of the CONOPS. Instead, design alternative 2 and 7,
which are regarded as mediocre choices in Chapter 6, are now identified to be the optimal

solutions depending on the definition of the QOS metric.
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Figure 7.11 The MVDC ZEDS—the maximal percent decrease of the QOS failure by
consuming more fuel (blue) vs. the corresponding percent increase in fuel
consumption from the minimum value (red) of each design alternative, respectively

In fact, the quality of every design alternative in terms of one performance metric
can be adjusted in a certain range depending on the choice of the CONOPS, but also
constrained by the demanded value of the other performance metric. Therefore, in order
to identify the real optimal CONOPS of a design alternative for a given mission, it is
essential to co-optimize the QOS and fuel consumption. Further investigation will be

continued in Chapter 8.
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CHAPTER 8

IMPLEMENTATION OF THE CO-OPTIMIZATION APPROACH FOR THE CONCEPT
EVALUATION METHOD

8.1. THEORETICAL BASIS OF OPTIMIZATION STRUCTURE

An optimization structure is developed in the form of hierarchical layers
following the definition of control architecture. A hierarchical layer in the optimization
structure describes the optimization method of a control function, which corresponds to a
layer in the control architecture. Thus, the hierarchies in the optimization structure are
also organized based on the temporal responses of control functions. Within a
hierarchical layer, a certain number of optimization problem formulation structures are
defined for the corresponding control function with respect to the individual performance
metrics of interest. These performance metrics should be common to all the system
applications at the corresponding control level. The mathematical model of an
optimization problem is usually composed of an objective function subject to a set of
system and component operating constraints. The objective function is formulated to
calculate a specific performance metric in terms of the design variables identified in the
control architecture.

The data processed in the optimization structure always conform to the five
categories of data defined in Section 6.1 in spite of the specific mathematical models
developed to process the data. For example, one may adopt different forms of the

objective function and constraints to define the EDP for a particular micro-grid power
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system application (see Section 3.1.1), but the data involved in the EDP always conform
to the five categories. However, it has to be noted that, for different micro-grid system
applications (e.g., ship, community power supply), the optimization structure may
involve a different number of categories of data. For example, the dynamic constraint
(i.e., generation redundancy) of the EDP can be eliminated for small scale power
generation systems because they need all the installed PGMs turned on most of the time
to be able to support the load. In addition, for different applications, the optimization
structure may involve different performance metrics, affecting the development of the co-
optimization structure. For example, the QOS optimization problem is not necessary to a
system whose duration of the mission is far shorter than the MTBF values of its PGMs.
Since the determination of the CONOPS is carried out at the earliest design stage,
this work has fairly low design fidelity, only considering the system steady state and
neglecting any control implementation or stability issues. Therefore, we only consider
one control function in the control architecture for the primary power generation and
distribution level. Accordingly, we develop the optimization structure at this level with
only one layer, including the formulation structure of the optimization problems with
respect to fuel consumption and the QOS. Next, we will discuss the optimization problem
formulation structures and identify their coupling relationship in the optimization

structure for co-optimization.

8.2. PROBLEM FORMULATION STRUCTURE OF THE ECONOMIC DISPATCH
PROBLEM

The problem formulation structure of the EDP is plotted in Figure 8.1. The

essential data required for the problem formulation cover all the five categories. The
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Figure 8.1 The block diagram of the problem formulation structure of the EDP

Table 8.1 Parameter list of the problem formulation structure of the EDP

Category of Data Required Parameter Information

Electrical mission profile describing the power demands for each mission

Mission Objective . .
ission Objecti segment of the micro-grid power system

Electrical architecture type (AV/DC)

The number of primary power distribution buses

The coupling location and operating status of the PDMs and PCMs
Online status of the non-vital loads for each primary distribution buses

System State

Power ratings of the PGMs

Static Constraint .
e Operating ranges of the PGMs’ power factors

Required Parameter Information Optional Parameter Information

e Start-up fuel consumption of the
PGMs

e Power efficiency curves of the
PDMs and PCMs

¢ Generators’ power efficiency curves
Measurement e Prime Movers’ thermal efficiency
curves

The minimum required number of

Dynamic Constraint | Vital load profile online PGMs

setpoint variables are the design variables of the EDP, involved in the objective functions
and operating constraints (not shown in the figure). The data of the other four categories

are treated as regular parameters in the EDP. Their values are determined by the
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equipment database available to the designers, the system concept under study, and the
system application background, as explained in detail in Table 8.1.

The optional information of measurement and dynamic constraints is for
improving the calculation accuracy. We have defined typical values of these parameters
in the optimization process as follows: the efficiency of PDMs and PCMs are regarded to
be constant at any operating power; the minimum required number of online PGMs is
always considered to be two; the startup fuel consumption of PGMs is neglected.
However, one is also free to provide user-preferred values instead, if necessary. The
derived solution of the EDP prepares the mission objectives for the components in the
ZEDS and for the power electronic devices to implement (i.e., these operations should

follow the IEEE Std P1826/D4 and IEEE Std 1676).

8.3.  PROBLEM FORMULATION STRUCTURE OF THE QOS OPTIMIZATION
PROBLEM

Similarly, all the five categories of data are required to construct the problem
formulation structure of the QOS optimization problem, as shown in Figure 8.2. This
figure also demonstrates an example that the categories of data defined with a problem
formulation structure accommodate different mathematical models of the objective
functions. The specific data required for evaluating a generic metric of the QOS is
explained in Table 8.2. No matter which QOS metric—probability-based or energy-
based—is employed, mission objectives, measurements and static constraints are
required to generate the MTBF values of the online PGMs; system states and dynamic
constraints are required to modify the equation format for specific system concepts and

to generate optimization constraints. For probability-based QOS metric, mission
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(b) Based on the energy-based QOS metric

Figure 8.2 The block diagram of the problem formulation structure of the QOS
optimization problem

objectives is also used to determine a weight factor of the QOS failure metric in each

mission segment. In contrast, energy-based QOS metric also uses mission objectives to
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Table 8.2 Parameter list of the problem formulation structure of the QOS optimization
problem

Category of Data Required Parameter Information

Electrical mission profile describing the power demands for each mission

Mission Objective segment of the micro-grid power system

¢ The number of primary power distribution buses

System State . . . S
Y e Online status of the non-vital loads for each primary distribution buses

e Power ratings of the PGMs

Static Constraint .
e Operating ranges of the PGMs’ power factors

Measurement Reference points of the MTBF values for fitting the distribution models

Required Parameter Information Optional Parameter Information

The minimum required number of

Dynamic Constraint | Vital load profile online PGMs

determine the number of MTBF and MTTR breaks.

The design variables of this problem formulation structure are still the setpoint
variables. Different from the problem formulation structure of the EDP, the output here
determines the optimal CONOPS that is intended to maximize the system QOS. The
output is also regarded as the mission objectives of the lower level components. This
structure shares the same data requirements of the static constraints and dynamic

constraints with that of the EDP for reflecting the system and equipment operating limits.

8.4. DEVELOPMENT OF OPTIMIZATION STRUCTURE

We develop the complete optimization structure for the primary power generation
and distribution level, as shown in Figure 8.3, to identify the co-optimizing algorithm of

the performance metrics.
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Figure 8.3 The block diagram of the optimization structure for the primary power
generation and distribution level (right) corresponding to the control architecture for
the same level (left)

The left block diagram is the control architecture that we develop to reflect the
control function at the primary power generation and distribution level. The right block
diagram is the optimization structure containing the optimization design methods for that
control function. As we can see, the two optimization problems share most parameter
data that are used to characterize a system concept and a design alternative, except that
the QOS optimization problem needs to collect additional measurements for identifying

reliability and maintainability distribution models of the PGMs.

8.5. DEVELOPMENT OF DATA STRUCTURE FOR SOFTWARE IMPLEMENTATION
OF THE CO-OPTIMIZATION PROCESS

The optimization structure can be imposed on any regular system concept (see

Section 4.1). In order to automatically implement this procedure, we suggest the software
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coupling method between S3D and MATLAB as follows. The corresponding data

structure is shown in Figure 8.4.

D

2)

As the prerequisite to the design of a micro-grid power generation plant, an
electrical mission profile of the power system should be determined prior to
the design phase of Analysis of Alternative [5][6]. This work can be done by
simulating the system dynamics in a series of scheduled operating scenarios
through an appropriate engineering software tool (e.g., VIB). A mission
segment defines the fraction of time or specific period of time, during which
the power system is regarded to demand an approximately constant power.
This power value is determined by both the electric power for carrying out the
desired system dynamics and kinetics (e.g., ship speed) and the estimated
power consumed by the lumped electric loads. Since the optimization problem
of the CONOPS is formulated and resolved in MATLAB, the generated
mission profile should be directly readable by MATLAB, or it should be read,
filed, and then delivered to MATLAB with the other data as a bundle by S3D
later.

S3D provides a collaborative simulation environment for building system
concepts. For a created topology of architecture, MATLAB needs to formulate
the co-optimization problem of the CONOPS for every independent primary
distribution bus (PDB). To this end, the system states and measurements that
characterize the PDBs should be collected and provided to MATLAB.
Specifically, the system states should be sufficient to quantify the amount of

independent PDBs; the measurements should be able to describe the loading
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Figure 8.4 The block diagram of the data structure for software implementation of
SBD accounting for the co-optimization of the CONOPS

condition of each independent PDB during a mission segment and to
approximate the steady-state efficiencies of the power modules. In some
cases, measurements should also inform MATLAB of the amount of non-vital
and vital loads in service for every mission segment because their power
supply strategies are treated differently in the problem formulation. A non-

vital load is regarded to always receive power from one fixed PDB, while a
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vital load has multiple channels to obtain power from all the buses. The data
transmission from S3D to MATLAB can be realized in two different ways:

a. S3D directly sends the system states and measurements to MATLAB
for identifying the distribution architecture of a system concept;

b. S3D first analyzes the system states and measurements, and then sends
the derived conclusion (i.e., quantity of independent PDBs, loading
conditions of PDBs, and online non-vital loads) to MATLAB.

3) S3D also provides MATLAB with the database of PGMs to explore the design
space (i.e., produce feasible design alternatives). MATLAB should be able to
know the operating characteristics (e.g., efficiency, reliability rate,
maintenance rate) of the PGM candidates in order to formulate the objective
functions of the optimization problems, and to know the operating limits (e.g.,
the nameplate ratings, valid ranges of the power factor) of the PGMs to
formulate the optimization constraints. These two pieces of information also
need to be delivered to MATLAB from S3D.

4) Based on the data received from S3D (and VTB), MATLAB starts
formulating the co-optimization problem for each independent PDB of every
design alternative. When more than one independent PDB exist, there might
be several possibilities to distribute PGMs among them. We suggest two rules
to address this concern:

a. The generation capacity assigned to each PDB must be sufficient for
the power demands of the loads connected to that bus during any

mission segment;
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Table 8.3 The concept of Pareto dominance when applying a MOPSO to the EDP and
QOS optimization problem

For A design alternative of a PGM combination P = (P,, -, B ) , a set of setpoint

variables V =[Ps P Dfiopf. Wi, Ve -,vk} is said to dominate another

oout 1 P gout .k

s

set V :|:Pgnut,1"”’Pg()ut,k pfi ’.”pfk ul’-n’uk vk"”’vk:l

if and only if f = [fEDP ﬁ} is partially less than f* = [f;DP Q%} ,i.e.,

* 1 1 . 1 1
|:(fEDP SfEDP)A(@S QOS*J:|/\|:(]CEDP <fEDP)V(@<WJ:| , where

Pous, 1 18 the real power output of PGM k;

pfi is the power factor of PGM k;

u; is the online status (O=offline, 1=online) of PGM k;

vy is the power factor status (O=lagging, 1=leading) of PGM k;
fepp s the fuel consumption derived from the EDP defined in (24);
QOS is the solution to the QOS metric defined in (42) or (46).

b. The generation capacity of each design alternative will be distributed
among the PDBs as evenly as possible, so as to guarantee the most
balanced power supply;

5) During the co-optimization of the setpoint variables in MATLAB, we employ
the concept of Pareto Front to identify the optimal tradeoffs of the
performance metrics. The Pareto front is determined by applying the concept
of Pareto dominance to all feasible setpoint values that satisfy the constraints
of the co-optimization problem. The setpoints, at which the performance
tradeoffs are not fully dominated, are picked to construct the Pareto front, as

explained in Table 8.3. By comparing the Pareto fronts of all design
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alternatives, one can find the design alternatives that outperform the others
and their advantageous operating areas. This step is indicated as “Solution
Generation” in Figure 8.4. MATLAB generates a 2D Cartesian coordinate
system to help visualize the performance dominance among individual
CONOPSs of each design alternative and the performance dominance among
design alternatives.

This work is of great help for software engineers to understand which data should
be processed and communicated at the coupling interface between S3D and MATLAB,
so that SBD accounting for the co-optimization problem of the CONOPS can be
automatically implemented via software at the earliest design stage. The software demo

will be developed in our future work.

8.6. CONCEPT EVALUATION VIA CO-OPTIMIZATION OF THE ECONOMIC
DiSPATCH PROBLEM AND QOS OPTIMIZATION PROBLEM

The objective functions and constraints of our co-optimization problem are
highly nonlinear, discontinuous, and non-convex. Both equality and inequality constraints
exist. Even the MOPSO improved in Section 5.3 cannot solve this type of problem. As a
result, we develop a method to convert the original problem into some sub-problems only
containing the real setpoint variables. Specifically, for each system concept, all feasible
combinations of online PGMs are enumerated.

For each system concept and mission segment, all possible combinations of the
online PGMs are first generated through dynamic programming. And then, each
combination is evaluated against three conditions in sequence: 1) whether it contains the

number of PGMs more than the minimum required value; 2) whether its generation
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capacity is large enough to support the load; 3) whether its generation capacity is still
large enough to support the lumped vital loads when the largest online PGM suddenly
fails. Only the combinations satisfying all the conditions are regarded to be “feasible”.
Finally, the EDP and QOS optimization problem are only formulated for each feasible
combination. The logic flow chart of this enumeration process is shown in Figure 8.5. In
addition, we set all the PGMs only working with lagging power factors because we
observe from the single-objective optimization that if any PGM has a leading power
factor, the system performance in terms of fuel consumption will be considerably
compromised. Accordingly, the EDP and QOS optimization problem no longer contain
any binary variables. Then we can directly apply our developed MOPSO for solutions.
The parameter settings of the MOPSO are given in Table 8.4.

8.6.1.  Employment of the Probability-Based QOS Metric

All types of quasi-optimal performance tradeoffs that each design alternative is
able to achieve in every mission segment are shown through Figure 8.10 to Figure 8.12
for the MVAC ZEDS and from Figure 8.13 to Figure 8.15 for the MVDC ZEDS. For a
mission segment, each dot corresponds to a type of optimized CONOPS. In other words,
for that mission segment, there exists no other eligible CONOPS that is able to yield both
lower fuel consumption and higher QOS. We refer to the CONOPS corresponding to a
dot as the “non-dominated” CONOPS, and refer to the contour formed by the dots as the
“Pareto front” of system performance.

As we can see, the border values on the Pareto front of every design alternative
accurately match the solutions derived through the single-objective optimization
problems. The percent error is less than 2% in the worst-case scenario. The CONOPS

corresponding to the border values of a Pareto front yield the two types of extreme
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Figure 8.5 The data flow chart of converting the mixed-integer co-optimization
problem into the sub-problems only containing the real variables

performance tradeoffs (i.e., the CONOPS of the leftmost border value requires the
smallest fuel consumption but yields the lowest QOS, while the CONOPS of the
rightmost border value demands the largest fuel consumption but yields the highest
QOS). The other CONOPS on a Pareto front yield non-dominated performance tradeoffs
at different degrees (i.e., a certain degree of increase in the QOS causes a certain amount

of increase in fuel consumption).
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Table 8.4 The parameter settings of the MOPSO

Population 150
Inertia Weight, w w.. =09, w. =04
Mutation Rate 0.1
The Number of Iterations 10000

We have to follow two steps in order to integrate the Pareto fronts of the mission
segments to generate the Pareto front for the whole mission:

1) Generate all possible combinations that include one dot on the Pareto front

from each mission segment;

2) Apply the concept of Pareto dominance to identify the Pareto front among all

the combinations.

The Pareto fronts of the design alternatives for the MVAC and MVDC ZEDS are
compared in Figure 8.6 and Figure 8.7, respectively. The x-axis denotes the average fuel
consumption rate over the whole mission. The y-axis denotes the aggregate value of the
QOS of the mission segments. The contour of the Pareto front is a monotonically
increasing curve, which can be generally divided into three segment types for identifying
the optimal CONOPS of a design alternative according to the stakeholders’ preference on
the performance metrics:

1) When one puts more emphasis on reducing fuel consumption, he should

choose the CONOPS corresponding to the dot located at leftmost end of a
contour segment with a slow changing rate. Compared with the other dots on
the contour segment, this dot is able to reduce a huge amount of fuel by

causing just a moderate compromise of the QOS.
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Figure 8.6 Comparison of the Pareto fronts of all the design alternatives (DAs) over
the whole mission for the MVAC ZEDS, based on the probability-based QOS metric

2)

3)

When one puts more emphasis on improving the QOS, he should choose the
CONORPS corresponding to the dot located at the rightmost end of a contour
segment with a fast changing rate. Compared with the other dots on the
contour segment, this dot is able to considerably increase the QOS by just
consuming a negligible amount of more fuel.

If both performance metrics are weighted equally, the CONOPS
corresponding to the dots located at a contour segment with a medium
changing rate should be chosen. The dots on the contour segment indicate that
an improvement of either performance metric will not cause a considerable

compromise of the other.
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Figure 8.7 Comparison of the Pareto fronts of all the design alternatives (DAs) over
the whole mission for the MVDC ZEDS, based on the probability-based QOS metric

From Figure 8.6 we can see that based on the choice of the CONOPS, every
design alternative is able to complete the mission with low fuel consumption, or high
QOS, or somewhere in between. However, design alternative 1 outperforms the others
when the QOS is below 0.932 because it always consumes the lowest fuel with the
appropriate CONOPS. When the system QOS is required to reach above 0.932, design
alternative 7 stands out because all the other design alternatives cannot yield that high
QOS no matter how much fuel is consumed. Apparently, design alternative 1 and 7
always dominate the other design alternatives at certain points but neither completely
dominates the other. Therefore, we can conclude that for our defined mission, when the

probability-based QOS and fuel consumption are evaluated, design alternative 1 and 7 are
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the quasi-optimal choices for the shipboard generation plant, yielding non-comparable
performances.

For the MVDC ZEDS, besides design alternative 1 and 7, design alternative 3 is
also one quasi-optimal choice for certain performance requirements. When the average
fuel consumption rate is limited between 21.78 klbm/h and 22.59 klbm/h, design
alternative 3 generates the highest QOS compared to the others, as shown in Figure 8.7.
Apparently, for a given mission and system concept, the quality of a design alternative is
also affected by the electric architecture. This effect can be directly investigated at the
earliest design stage by applying our concept evaluation method.

8.6.2.  Employment of the Energy-Based QOS Metric

When the energy-based QOS metric is used, the Pareto fronts of the design
alternatives for the mission segments are shown through Figure 8.16 to Figure 8.19 for
the MVAC ZEDS and through Figure 8.20 to Figure 8.23 for the MVDC ZEDS. The x-
axis still denotes the average fuel consumption rate over the whole mission, but the y-axis
denotes the aggregate value of the QOS failure of the mission segments. The percent
errors of the border values compared to the results obtained through the single-objective
optimization problems are always limited within 3%. One is still able to use the decision
philosophy introduced in Section 8.6.1 to pick the optimal CONOPS for each design
alternative.

For the MVAC ZEDS, the Pareto fronts of the design alternatives for the whole
mission are compared in Figure 8.8. There are four non-dominated design alternatives
representing distinct types of performance tradeoffs at different degrees. Design
alternative 1 has an overwhelming advantage in saving fuel but offers horrible QOS.

When the average fuel consumption rate is allowed to be slightly increased up to
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Figure 8.8 Comparison of the Pareto fronts of all the design alternatives (DAs) over
the whole mission for the MVAC ZEDS, based on the energy-based QOS metric

22.19 klbm/h, design alternative 3 starts dominating all the others because it is able to
limit the QOS failure to the relatively minimum level. When the average fuel
consumption rate reaches 22.49 klbm/h, design alternative 4 becomes the optimal choice
of the power generation plant. It can reduce the QOS failure value caused by the other
design alternatives by at least 40%. When the fuel consumption rate of the ship is allowed
to go higher than 22.84 klbm/h, design alternative 7 turns out to be the absolute optimal
choice, which is able to further reduce the QOS failure.

As compared to the MVAC ZEDS, the MVDC ZEDS substitutes design

alternative 5 for design alternative 3 as one of the quasi-optimal choices, as shown in
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Figure 8.9 Comparison of the Pareto fronts of all the design alternatives (DAs) over
the whole mission for the MVDC ZEDS, based on the energy-based QOS metric

Figure 8.9. In addition, we also observe the different performance tradeoffs yielded by
the same quasi-optimal design alternatives, namely, design alternative 1, 4, and 7, in the
ac and dc system. For example, design alternative 1 is only regarded as being optimal for
the dc system when the average fuel consumption rate is less than 21.86 klbm/h (other
than 22.19 klbm/h in the ac system).

To sum up, the selection of a design alternative at the earliest stage has
predetermined the performance a system design can best achieve in the final product and
also commits the costs to obtain the performance. It is very important to inform

stakeholders with this information as early as possible, so that they do not waste large

109



investments on developing the detailed power electronic applications. Our concept
evaluation method considering the optimization of the CONOPS has been successfully
demonstrated to assist stakeholders’ with acquisition decisions at the earliest design stage

by visualizing the quality comparison.
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Figure 8.10 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 1, 2, and 3, based on the probability-based QOS metric
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Figure 8.11 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 4, 5, and 6, based on the probability-based QOS metric
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Figure 8.13 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 1, 2, and 3, based on the probability-based QOS metric
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Figure 8.14 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 4, 5, and 6, based on the probability-based QOS metric
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Figure 8.15 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 7 and 8, based on the probability-based QOS metric
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Figure 8.16 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 1 and 2, based on the energy-based QOS metric
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Figure 8.17 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 3 and 4, based on the energy-based QOS metric
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Figure 8.18 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 5 and 6, based on the energy-based QOS metric
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Figure 8.19 The MVAC ZEDS—the Pareto fronts for the mission segments of design
alternative 7 and 8, based on the energy-based QOS metric
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Figure 8.20 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 1 and 2, based on the energy-based QOS metric
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Figure 8.21 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 3 and 4, based on the energy-based QOS metric
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Figure 8.22 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 5 and 6, based on the energy-based QOS metric
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Figure 8.23 The MVDC ZEDS—the Pareto fronts for the mission segments of design
alternative 7 and 8, based on the energy-based QOS metric
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CHAPTER 9
CONCLUSIONS AND FUTURE WORK

9.1. CONCLUSIONS

This dissertation is motivated by the decision conflicts when selecting or
designing the power generation plant for a micro-grid power system at the earliest design
stage. For a given mission, the fuel consumption and system QOS have been the
emphasized performance metrics for evaluating the quality of a design alternative.
Apparently, this concept evaluation work requires incorporating the appropriate design of
CONOPS. However, much literature has not developed the appropriate optimization
problems of the CONOPS with respect to these two performance metrics. Recent
advancement in the state of the art has been reviewed in Chapter 3 and some major
drawbacks as listed below.

1) The EDPs are developed mainly for the installed terrestrial power generation

plant instead of helping designers choose the optimal power generation plant.
Due to the characteristics of terrestrial power systems, the EDPs neglect the
study on the optimal control of reactive power balance and fail to address the
generation redundancy.

2) The QOS optimization problem has never been appropriately formulated.

Much recent literature mainly stays on the qualitative analyses or requires
detailed time-domain studies, which are not available for the early design

stages.
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3) The performance tradeoffs of design alternatives have never been investigated
by any optimization algorithm in a quantitative analysis, not to mention the
development of the simulation environment for automatically doing this job
during the SBD process.

4) Due to the complicated mathematical expression of the EDP and logics in
calculating the QOS, the existing optimization algorithms are not effective
enough to resolve these problems.

To address these drawbacks, this dissertation redevelops the EDP and QOS
optimization problem particularly for the earliest stage design of micro-grid power
system. We adopt both ac and dc shipboard NGIPS ZEDS for study. Then we apply our
developed optimization algorithms to address the single-objective and multi-objective
optimization of these problems. Finally we discuss the significance of this research.

Noticing the complexity of the mixed-integer optimization problems of the
CONOPS and the weakness of the current optimization algorithms, in Chapter 5, we
develop a SOPSO and MOPSO with the performance improvements. For the SOPSO, we
add a dynamic mutation operator and an archive operator to improve the PSO’s capability
of avoiding premature convergence. In addition, we incorporate the multi-stage penalty
function to enhance the PSO’s searching capability for more accurately locating the
global optimum. The simulation results indicate that our SOPSO is able to consistently
find the results closer to the global optimum with 32% smaller standard deviation than
the current PSOs based on the same number of simulation trials. For the MOPSO, we
introduce the same dynamic mutation operator and multi-stage penalty function to handle

the constraints. Our simulation results indicate that our MOPSO is able to solve the
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complicated constrained problems that cannot be solved by the current MOPSOs at all in
a reasonable time.

In Chapter 6, we develop the new EDP for micro-grid power systems. Referring
to the development of control architecture, we first define the standard categories of data
for the power level analysis, so as to generalize the formulation of the optimization
problems of the CONOPS for a generic system concept. This EDP considers both real
and reactive power balance (for ac systems only) of a generation power plant, as well as
the requirement of generation redundancy. The simulation results obtained via the
SOPSO successfully demonstrate the efficacy of this EDP in reflecting the quality of the
design alternatives in saving fuel. In addition, we discover that the inclusion of reactive
power balance constraint for ac systems does not affect the calculation of fuel
consumption in the most cases, however, when the load power demand is close to the
generation capacity of the online PGMs (determined by real power balance), the
inclusion may change the results large enough to affect acquisition decisions.

In Chapter 7, we define two versions of QOS metric to evaluate different aspects
of the power supply reliability of a micro-grid power system. The optimization problem
of the CONOPS with respect to each metric is developed individually. The probability-
based QOS metric evaluates how serious the system service will be affected at the
moment when the online PGMs fail all of a sudden at certain operating setpoints. The
energy-based QOS metric evaluates the power plant’s capability of continuously
executing a mission segment when the online PGMs at a certain operating setpoint
encounter some operating breaks. In optimizing these two metrics, the methods for

estimating the condition-based MTBF and MTTR of a PGM are taken into account. The
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simulation results obtained via the SOPSO indicate that the probability-based QOS
metric reflects a favorable tradeoff relationship between the QOS value and fuel
consumption in heavy loading conditions, while the energy-based QOS metric does in
light and medium loading conditions.

In Chapter 8, we develop the optimization architecture to generalize the co-
optimization problem formulation of the CONOPS. Based on this, we implement the co-
optimization of the EDP and the QOS optimization problem for our design problem. The
concept of Pareto optimality is used to generate and visualize the optimal performance
tradeoffs of individual design alternatives and the comparison of the design alternatives.
Thus we are able to identify the favorable choices of CONOPS for each design
alternative and identify the quasi-optimal design alternatives with a high level of
confidence at the earliest design stage. In addition, the software coupling method is also
suggested in this chapter for software engineers to automatically realize this concept

evaluation process.

9.2. FUTURE WORK

The potential research directions based on this dissertation are suggested as

follows:

1) Further improve the MOPSO to directly handle constrained mixed-integer co-
optimization problems. In this dissertation, we have just improved the
searching capability of the MOPSO in solving for constrained real-variable-
based problems. Therefore, in Chapter 8, we have to capitalize on appropriate
enumeration techniques to convert the original mixed-integer problem, which

consequently adds much intensive computation to the optimization solver and

128



2)

3)

4)

significantly increases the simulation time. The success of this work can
significantly accelerate the concept evaluation process.

Develop a modeling method to reduce the complexity degree of the EDP.
Currently, the EDP involves many non-linear equations (e.g., the power and
thermal efficiency curves of the PGMs, the calculation of the condition-based
MTBEF values) that need to be dealt with at each iteration step. Our test results
show that only linearizing the curve-fitting equation of the PGM power
efficiency can lead to about 64% faster simulation speed. Therefore, we
believe that an effective simplification of these equations without hurting the
computation accuracy can significantly reduce the time investment on the
concept evaluation process.

Incorporate the vital load allocation strategy into the formulation of the
optimization problems of the CONOPS. The power generation and
distribution architecture of a micro-grid power system is usually
reconfigurable depending on the operations of circuit breakers. For reliability
purposes, the vital loads usually have multiple channels to receive power
supply, different from the single-channel-based regular non-vital loads. Based
on our primary research, the configuration of system architecture is expected
to largely affect the quality estimation of the design alternatives.

Develop the software coupling between S3D and MATLAB to implement real
automatic concept evaluation process. We have defined the coupling method
in Chapter 8; however, the detailed difficulties are required to be further

investigated. The ultimate goal is to let designers create the system concept in
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S3D and invoke MATLAB as the optimization solver through a window
interface in S3D to visualize the optimality comparison of the design

alternatives.
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APPENDIX A — NUMERICAL SOLUTION TO THE ECONOMIC DISPATCH PROBLEM

Table A.1 The MVAC ZEDS—the fuel consumption rate minimized via the SOPSO vs. the fuel consumption rate obtained in the
worst-case scenario (W) of each design alternative, respectively

6¢l

Index 1 2 3 4 5 6 7 8
SOPSO 6.267 6.369 6.452 6.261 6.318 6.338 6.322 6.267
Mission Segment1*
w 8.332 7.899 9.853 8.241 10.006 8.963 9.294 8.706
Fuel Saving (%) 24.78 19.36 34.52 24.03 36.82 29.29 31.98 28.02
SOPSO 19.825 20911 20.302 20.503 20.257 21.071 21.107 21.838
Mission Segment 2
w 23.002 23.944 22.554 23.37 22.799 22.985 23.028 23.561
Fuel Saving (%) 13.81 12.67 9.99 12.27 11.15 8.33 8.34 7.31
SOPSO 39.158 40.742 39.463 40.940 39.874 41.530 41.266 42.092
Mission Segment 3
w 39.662 41.210 40.345 41.367 40.624 42.307 42.239 42.816
Fuel Saving (%) 1.27 1.13 2.19 1.03 1.85 1.84 2.30 1.69
Total SOPSO 571.59 595.86 580.06 593.09 582.09 603.90 601.77 614.93
Fuel Consumption
(%x10* kKIbm) A% 621.92 639.94 637.31 639.29 643.19 650.47 653.15 657.72
Fuel Saving (%) 8.09 6.87 8.98 7.23 9.50 7.16 7.87 6.58

* Fuel consumption rate in each mission segment is measured in klbm/hr;
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Table A.2 The minimized fuel consumption rate for the MVAC ZEDS (AC) vs. the minimized fuel consumption rate for the

MVDC ZEDS (DC) of each design alternative, respectively

Index 1 2 3 4 5 6 7 8
AC 6.267 6.369 6.452 6.261 6.318 6.338 6.322 6.267
Mission Segment 1*
DC 6.187 6.307 6.158 6.246 6.286 6.285 6.250 6.188
Percent Difference % 1.29 0.98 4.67 0.25 0.52 0.84 1.15 1.25
AC 19.825 20911 20.302 20.503 20.257 21.071 21.107 21.838
Mission Segment 2
DC 19.775 20.832 19.527 20.224 20.026 20.634 20.760 21.550
Percent Difference % 0.25 0.38 3.89 1.37 1.15 2.10 1.66 1.33
AC 39.158 40.742 39.463 40.940 39.874 41.530 41.266 42.092
Mission Segment 3
DC 39.140 40.544 39.394 40.615 39.549 41.221 41.134 41.875
Percent Difference % 0.04 0.49 0.18 0.80 0.82 0.75 0.32 0.52
Total AC 571.59 595.86 580.06 593.09 582.09 603.90 601.77 614.92
Fuel Consumption
(x10° 1bm) DC 570.30 592.90 570.09 587.67 576.93 596.90 596.94 609.81
Percent Difference % 0.23 0.50 1.73 0.92 0.89 1.17 0.81 0.83

* The fuel consumption rate in each mission segment is measured in klbm/hr.
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Table A.3 The CONOPS of each design alternative corresponding to the fuel consumption values minimized in Table A.2

Index Mission Segment 1 Mission Segment 2 Mission Segment 3
PGM (MW) 5 15 | 20 | 40 m 5 15 | 20 | 40
| e [ Pew) 139 | 970 166 | 1239 | 26.24 3.94 | 1477 | 1556 | 39.42
PF* 073 | 085 097 | 092 | 086 051 | 1.00 | 1.00 | 1.00
pC | PgMW) 160 | 937 670 | 461 | 28.68 254 | 1112 | 20 | 40
PGM (MW) 20 | 20 | 20 | 20 20 | 20 @ 20 20 | 20 | 20 | 20
Pg(MW) | 875 | 234 1436 | 14.14 | 11.80 19.96 | 17.82 | 1590 | 20.00
2| Ac PF 079 | 0.96 089 | 096 | 075 100 | 1.00 | 1.00 | 095
DC | PgMW) | 844 | 253 13.18 | 1592 | 10.89 1653 | 18.60 | 18.83 | 19.72
PGM (MW) 45 | 45 | 11 | 20 | 4«0 FREEHEEE ) Pl 45 | 45 | 11 20 | 4o
Pg (MW) 0.80 | 0.64 | 9.65 120 | 399 | 390 | 3120 | 365 | 2.84 | 843 | 1878 | 40.00
N PF 0.54 | 071 | 0586 093 | 051 | 1.00 | 089 | 090 | 084 | 092 | 1.00 | 1.00
DC | PgMW) 210 | 886 121 | 1145 | 2734 | 293 | 287 | 942 | 1845 | 40.00
PGM (MW) 45 | a5 | 15 | 20 3 IERIEEEEEEEREN s | +5 | 15 20 | 36
o | ae L PEMW) 156 | 9.53 211 | 113 | 2688 | 441 | 255 | 1073 | 20.00 | 36.00
PF 0.86 | 0.83 094 | 100 | 078 | 100 | 100 | 082 | 1.00 | 1.00
pc| PgoMw) | 116 | 072 9.09 253 | 1204 | 2543 | 3.62 | 269 | 1151 | 19.84 | 36.00
PGM (MW) 5 5 15 15 40 s | s |15 | 15 | 40 5 5 15 15 40
Pg (MW) 168 | 9.40 187 | 198 | 633 | 3011 | 298 | 393 | 11.78 | 15.00 | 40.00
> | AC PF 0.98 | 0.80 098 | 055 | 064 | 093 | 100 | 074 | 1.00 | 097 | 1.00
pC | PgMw) 443 | 6.54 1010 | 830 | 21.60 | 3.87 | 3.79 | 1298 | 13.10 | 39.93

To be continued on the next page

* PF stands for power factor.

* The grey color of a block denotes the offline status of the corresponding generating unit.
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Index Mission Segment 1 Mission Segment 2 Mission Segment 3

PGM (MW) 5 5 ] 20 | 20 [ 20 m 5 5 | 20 | 20 | 20
Pg (MW) 3.00 | 8.09 1211 | 1608 | 12.10 | 246 | 13.56 | 18.51 | 2000 | 19.16
6 |AC PF 100 | 072 064 | 1.00 | 080 | 051 | 100 | 100 | 100 | 098
DC | Pz MW) 777 | 320 1333 | 1333 | 1333 | 4.02 | 1345 | 1889 | 1864 | 1870

PGM (MW) 1 1 11 11 36 11 11 T 11 11 11 11 36
Pg(MW) | 547 | 5.62 375 | 686 | 6.19 | 2349 | 8.19 | 846 | 1004 | 11.00 | 36.00
7| Ac PF 076 | 0.90 08 | 055 | 052 | 099 | 097 | 087 | 100 | 1.00 | 1.00
DC | PeMW) | 606 | 491 506 | 532 | 513 | 2449 | 849 | 11.00 | 899 | 924 | 3594

PGM (MW) 15 15 15 15 20 15 15 15 15 | 20 15 15 15 15 20
Pg (MW) 143 | 966 | 931 | 749 | 252 | 791 | 13.06 | 1406 | 1349 | 11.14 | 1500 | 20.00

I PF 071 | 085 | 095 | 092 | 100 | 075 | 083 | 100 | 100 | 1.00 | 091 | 1.00
DC | Pz MW) 150 | 9.47 886 | 775 | 669 | 1670 | 12.43 | 1500 | 13.00 | 1324 | 20.00
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APPENDIX B — NUMERICAL SOLUTION TO THE QOS OPTIMIZATION PROBLEM

Table B.1 The MVAC ZEDS—the probability-based QOS determined by maximizing the QOS via the SOPSO vs. the
probability-based QOS obtained from minimizing the fuel consumption (MF) of each design alternative, respectively

Index 1 2 3 4 5 6 7 8

SOPSO 0.377 0.329 0.359 0.343 0.344 0.339 0.374 0.337

Mission Segment 1
MF 0.377 0.317 0.322 0.318 0.309 0.310 0.357 0.317
QOS Improvement % 0.00 3.79 11.40 7.99 11.29 9.35 4.82 6.40
Fuel Increase % 0.00 10.05 11.37 19.29 12.11 15.22 6.84 8.90
SOPSO 0.313 0.309 0.308 0.314 0.308 0.310 0.328 0.315

Mission Segment 2
MF 0.313 0.292 0.260 0.266 0.268 0.281 0.298 0.310
QOS Improvement % 0.00 5.75 18.42 18.20 14.96 10.36 9.93 1.68
Fuel Increase % 0.00 1.73 3.66 4.71 421 127 2.41 0.36
SOPSO 0.256 0.263 0.270 0.265 0.259 0.271 0.281 0.268

Mission Segment 3
MF 0.232 0.237 0.270 0.256 0.243 0.252 0.280 0.244
QOS Improvement % 10.26 10.80 0.00 3.67 6.75 7.62 0.32 9.96
Fuel Increase % 0.30 0.86 0.00 0.17 0.49 0.72 0.59 1.52
QOS Overall the SOPSO 0.945 0.900 0.937 0.923 0.911 0.920 0.983 0.921
Whole Mission MF 0.923 0.846 0.852 0.840 0.820 0.843 0.935 0.870
QOS Improvement % 2.38 6.43 9.98 9.90 11.15 9.17 5.10 572
Fuel Increase % 0.18 1.99 2.23 331 2.73 2.22 1.73 1.82
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Table B.2 The MVDC ZEDS—the probability-based QOS determined by maximizing the QOS via the SOPSO vs. the probability-

based QOS obtained from minimizing the fuel consumption (MF) of each design alternative, respectively

Index 1 2 3 4 5 6 7 8
SOPSO 0.691 0.677 0.739 0.713 0.709 0.691 0.767 0.692
Mission Segment 1
MF 0.650 0.659 0.668 0.667 0.676 0.661 0.732 0.649
QOS Improvement % 6.34 2.73 10.55 6.94 4.88 4.57 4.77 6.59
Fuel Increase % 40.15 19.76 17.11 12.23 41.69 40.54 12.16 28.89
SOPSO 0.610 0.625 0.630 0.639 0.615 0.636 0.673 0.646
Mission Segment 2
MF 0.550 0.571 0.555 0.576 0.592 0.597 0.617 0.598
QOS Improvement % 10.91 9.44 13.53 10.87 3.80 6.45 9.11 7.94
Fuel Increase % 3.82 1.71 8.32 6.41 6.53 4.96 4.05 0.75
SOPSO 0.467 0.491 0.481 0.489 0.465 0.500 0.513 0.506
Mission Segment 3
MF 0.430 0.490 0.445 0.460 0.449 0.500 0.489 0.501
QOS Improvement % 8.63 0.10 8.04 6.22 3.52 0.06 4.87 1.00
Fuel Increase % 0.76 0.09 1.26 1.54 1.20 0.57 0.93 0.16
QOS Overall the SOPSO 1768 1792 1.849 1.841 1788 1.827 1.953 1.843
Whole Mission MF 1.630 1.720 1.668 1.703 1717 1.758 1.838 1.748
QOS Improvement % 8.48 4.21 10.88 8.07 4.15 3.92 6.25 5.45
Fuel Increase % 5.43 2.31 4.88 4.00 6.69 5.59 291 2.90
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Table B.3 The MVAC ZEDS—the energy-based QOS failure determined by minimizing the QOS failure via the SOPSO vs. the
energy-based QOS failure obtained from minimizing the fuel consumption (MF) of each design alternative, respectively

Index 1 2 3 4 5 6 7 8
SOPSO 0 0 0 0 0 0 0 0
Mission Segment 1*
MF 0.307 0 0.032 0 0 0 3.749 0.307
Failure Improvement % 100.00 0 100.00 0 0 0 100.00 100.00
Fuel Increase % 26.75 0 35.67 0 0 0 22.95 14.91
SOPSO | 0.901x10° 0.090 1.013x10° 14.236 1.102x10° 0 33.618 7.814
Mission Segment 2 . .
MF 1.230x10° | 0.659%x10* | 1.052x10* | 0.063x10° | 1.183x10° | 0.627x10° | 0.092x10°® | 0.293x10°
Failure Improvement % 26.76 99.98 3.68 77.40 6.80 100.00 63.46 97.33
Fuel Increase % 8.40 6.03 1.29 8.45 7.40 5.30 6.03 2.63
SOPSO | 7.845x10° | 7.109x10° | 7.533x10° | 4.835x10° | 7.544x10° | 5.258x10° | 4.168x10° | 4.470x10°
Mission Segment 3
MF 7.859x10° | 7.232x10° | 7.541x10° | 4.852x10° | 7.607x10° | 5.776x10° | 4.254x10° | 4.476x10°
Failure Improvement % 0.18 1.70 0.10 0.34 0.83 8.98 2.01 0.13
Fuel Increase % 1.13 0.52 2.09 1.03 1.87 1.29 0.77 1.22
SOPSO | 8.746x10° | 7.109x10° | 8.546x10° | 4.850x10° | 8.647x10° | 5.258x10° | 4.202x10° | 4.478x10°
Total QOS Failure (MW-h) 3 3 . 3 3 3 3
MF 9.089x10° | 7.892x10* | 8.593x10° | 4.915x10° | 8.789x10° | 6.402x10° | 4.350x10° | 4.769x10°
Failure Improvement % 3.78 9.91 0.54 1.33 1.63 17.89 3.40 6.11
Fuel Increase % 5.62 2.86 5.12 3.21 7.52 5.35 4.43 2.88

* The energy-based QOS failure in each mission segment is measured in MW-h.
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Table B.4 The MVDC ZEDS—the energy-based QOS failure determined by minimizing the QOS failure via the SOPSO vs. the
energy-based QOS failure obtained from minimizing the fuel consumption (MF) of each design alternative, respectively

Index 1 2 3 4 5 6 7 8
SOPSO 0 0 0 0 0 0 0 0
Mission Segment 1*
MF 0 0 0.258 2.456 0.516 0 0.774 0.258
Failure Improvement % 0 0 100.00 100.00 100.00 0 100.00 100.00
Fuel Increase % 0 0 36.89 19.13 0.37 0 37.61 14.11
SOPSO 61.00 0 6.392 2415 15.465 2.526 1.416 1.217
Mission Segment 2 . . ;
MF 0.265x%10° 62.064 0.185x%10° 10.382 0.204x10° 22311 29.777 25.647
Failure Improvement % 76.98 100.00 96.54 76.74 9242 88.68 95.24 95.25
Fuel Increase % 6.54 19.15 5.10 5.37 12.23 5.79 10.01 6.04
SOPSO | 7.732x10° | 7.029x10° | 7.410x10° | 4.768x10° | 7.324x10° | 5.138x10° | 4.043x10° | 4.329x10°
Mission Segment 3 3
MF 7.753x10° | 7.319x10° | 7.416x10° | 4.770x10° | 7.767x10° | 5.328x10° | 4.241x10° | 4.658x10°
Failure Improvement % 0.28 3.97 0.08 0.03 5.71 3.56 4.68 7.06
Fuel Increase % 1.20 1.33 1.60 1.58 1.11 1.23 0.49 0.86
SOPSO | 7.791x10° | 7.029x10° | 7.416x10° | 4.771x10° | 7.339x10° | 5.141x10° | 4.044x10° | 4.331x10°
Total QOS Failure (MW-h) 3 3 3 . . 3
MF 8.018x10* | 7.381x10° | 7.601x10° | 4.783x10° | 7.972x10° | 5.350x10° | 4.271x10° | 4.684x10°
Failure Reduction % 2.81 4.77 2.43 0.24 7.94 3.92 5.32 7.54
Fuel Increase % 5.67 8.39 5.98 0.98 439 5.55 6.83 3.64

* The energy-based QOS failure in each mission segment is measured in MW-h.
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