
A Method for Expressing Integrity Constraints in
Database Conceptual Modeling

Alain Pereira Toledo1, Abel Rodríguez Morffi1, Alain Pérez Alonso2, Andy Morfa Hernández1,
Luisa M. González González1

1Universidad Central “Marta Abreu” de Las Villas,
Cuba

2Universidad Técnica Federico Santa María,
Chile

apt@uclv.edu.cu, arm@uclv.edu.cu

Abstract. Traditional methods lack the necessary
or appropriate means for expressing the integrity
constraints during the database conceptual modeling
stage. At most, integrity constraints are informally
documented and then, coded in the application.
This leads to late error detection and database
inconsistencies due to the incapacity of the domain
expert to validate the program code. Thus, it is
necessary to express such constraints in a natural and
formal way in order to close the gap between modelers
and domain experts, and to support the transformation
to other languages and models. As a result, we propose
a controlled natural language based on Semantics of
Business Vocabulary and Business Rules (SBVR) to
help modelers and domain experts in the process of
writing and validating the constraints that cannot be
represented in an Entity-Relationship schema; and the
Alloy language to allow a formal specification. In
addition, all the correspondences between the models
and languages are described in order to consistently
express the constraints and to lay the foundations of
the automatic transformation. Finally, a case study and
a usability survey show that the proposal is feasible,
without abandoning a traditional and popular approach
such as the Entity-Relationship model.

Keywords. Integrity constraints, entity-relationship,
SBVR, alloy.

1 Introduction

Integrity constraints, or just constraints, are that
mechanism used in a database system context

to guarantee some level of integrity. They are
those system rules, formally represented through
Boolean conditions that must be satisfied at all
times [43].

According to some authors [19], constraints are
more than 90% of the sentences necessary to
control the integrity of a database. However, as
David C. Hay noticed [25], data modelers are
mainly concerned with representing the structure
of a business domain, so integrity constraints are
“mostly outside the realm of data models”.

However, this has a side effect. Constraints,
which are not expressed by a conceptual schema,
are implemented without being expressed in a
clear, systematic and controlled way during the
process of conceptual modeling. This leads
to a system which either stores and shows
false information, or which is not a so faithful
implementation due to the incapacity of the domain
expert to validate a programmer’s code. This
problem results from the communication gap
between domain experts and modelers: while
the modeler has a good technical knowledge
about the modeling tools and languages and little
knowledge about the domain; the domain expert
knows all about the domain, but sometimes he
knows nothing about the tools and languages.

According to Snoeck [55], a way of achieving
validity is the expression of rules in terms of
the domain expert’s means of communication,
so it would be convenient to use a natural-like

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

ISSN 2007-9737

expression language. However, verifying that
a certain rule is part of the requirements does
not guarantee there are no redundancies or
contradictions in the set of documented rules.
Therefore, it is also necessary to achieve internal
validity, for which a formal model is required. Two
different levels of expression are then necessary.
The first one is understood by the domain expert,
and the second one, by the system. Von Halle [58]
refers to these levels as the natural language and
specification language, respectively.

From a business perspective, some researchers
have made a substantial contribution to the
problem of integrity constraints expression by
introducing the Business Rules Approach. With
this radical approach, modelers are not only
involved in the modeling process of the system
structures, but also in the specification of those
constraints that come from business rules [47, 58].

On the other hand, database modelers have
traditionally used the Entity-Relationship model
(ER) to represent the information structure of a
problem domain [20]. It is a popular approach
where the modelers concentrate on the database
structure and constraints during the conceptual
database modeling stage. Nevertheless, many
types of constraints are not represented in ER
schemas, as it is focused on data structure.

Other researchers related to Model Driven
Architecture (MDA), a style of software
development based on transformations between
models, have proposed some methods that take
into account a broader set of integrity constraints
through all the levels prescribed by MDA [42, 13, 9].
According to this approach, some terms used are
CIM, PIM, and PSM. This is equivalent to a
treatment from higher levels of abstraction (CIM),
to those linked to a specific technology (PSM), so it
is compatible with the database modeling process.

With these results emerges the opportunity
to address the issues of expressing constraints
identified in a universe of discourse (UoD) during
database conceptual modeling. Therefore, we
get both the benefit of clarity and formality
associated with the Business Rules Approach,
and the ER known capacity to represent concepts
and relationships between them in a simple way
and without losing expressiveness. After all, the

ER model has a long tradition in the database
community, and it is praised for having drawn the
line between expressiveness and simplicity at a
good point [5]. Therefore, we propose a framework
that allows to achieving both external and internal
validity in the specification of constraints.

Specifically, we make the following contributions:

— We identify the ER model as an appropriate
means of describing data requirements.

— We describe a set of templates based on Witt’s
templates [60] in combination with Semantics
of Business Vocabulary and Business Rules
(SBVR), that allows to express in a natural-like
language those data related constraints that
the ER model is incapable to represent by
any means.

— We identify Alloy as an appropriate language
to represent constraints in a formal level.

— Finally, we set the correspondence between
the ER model and the language described for
expressing constraints, and between the latter
and the formal representation language.

Section 2 shows some works related to the
expression of integrity constraints. Section
3 describes the problem of the expression
of constraints during conceptual modeling
and Section 4 proposes how to deal with
constraints in conceptual models. The language
for expressing constraints during conceptual
modeling is explained in Subsection 4.1, while
Subsection 4.2 explains the language chosen to
accurately and formally represent constraints. The
correspondence between all the components of
the proposal are described in Section 4.3. Section
5 illustrates the use of the proposed method for
expressing and transforming a set of constraints
given an ER schema. Finally, Section 6 shows the
results of a survey applied in order to empirically
support the feasibility of the proposed method from
the modeler’s perspective.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.76

ISSN 2007-9737

2 Related Works

In the literature review, we found different
approaches to the problem of expressing integrity
constraints. In the particular context of the ER
model, this problem can be traced back to 1976,
when Peter Chen mentioned it in his seminal article
[15]. Four decades later, there is an extensive
bibliography that we have decided to group into:

— Constraints expression languages:
languages that are or could be used to
express constraints.

— New and more expressive approaches
to conceptual modeling: models with a
greater level of expressiveness, so they
have the capacity of specifying more types
of constraints.

— MDA approaches: they automatically or
semi-automatically transform constraints
expressed by models from higher to lower
levels of expression.

In the first group, the languages are classified
according to means of expression, representation,
and base model (see Table 1). The means of
expression includes visual and textual languages,
and a third subgroup called hybrid, describing a
combination of the first two others. The underlying
logical representation [43], determines whether a
certain language is designed or can be used for
specifying constraints (specification language) or
whether it uses operators for retrieving those cases
that correspond to a violation of a constraint (query
language). Finally, it is possible to distinguish
between languages based on ER concepts, and
those which are not.

A query language can be used for specifying
constraints although its primary purpose is to
retrieve data. Indeed, it can be used to retrieve
those cases that are the cause of the violation
of a constraint. This forces to formulate the
constraint in a different way from what was
thought by the modeler. In contrast, a constraint
specification language is designed to express
the constraint as a condition that must be
satisfied at all times. Therefore, it translates the
underlying logic of the statement directly. However,

specification languages like those in Table 1 are not
oriented to domain experts, so constraints cannot
be validated.

The Object-Role Modeling (ORM) is a
conceptual language created by Terry Halpin
[23]. It is much more expressive than ER or UML
models, and it is an attempt to overcome the
deficiencies identified in those models. However, it
is the more compact ER model and not the ORM
the preferred tool for designing databases [24].

The MDA approaches to constraints
representation are classified as top-down and
bottom-up. A top-down transformation process
begins with a high abstraction representation of
constraints, and ends with a lower one. Usually,
it targets an implementation level, and starts
with a representation closer to the domain expert
[42, 34, 11, 1, 33, 8, 30, 52, 51, 12, 9, 40, 26,
50, 27, 46, 21, 36]. A bottom-up transformation
process works contrariwise: from a low-level
constraints representation, to a higher abstraction
level. Cabot [13], for example, uses SBVR
for verbalizing constraints expressed in Object
Constraint Language (OCL), in order to allow the
domain expert to validate the specification; and
Chittimalli [17] goes further by expressing SBVR
rules extracted from program code. Top-down
approaches also use a higher-level abstraction
language to isolate the modeler from some
of the shortcomings of OCL [7]. The Alloy
language creators have also identified some
of the OCL limitations, and provided a lite and
easy-to-use syntax for their language [32]. Also, a
common factor in those proposals is SBVR. It is a
specification published by the Object Management
Group (OMG), a computer industry standards
consortium, which has received the attention from
the information system and software engineering
communities. SBVR is also a key factor to
our proposal.

UML Class Diagrams (CD) are another common
factor in MDA approaches. As shown in Table
1, CDs are also a frequent base model for those
not ER-based constraints languages. Database
designers are using CDs as a means of expression
for an ER schema. Even more, many database
books have introduced CDs for this purpose
[18, 20]. However, initial versions of UML

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 77

ISSN 2007-9737

Table 1. Constraints expression languages

Author Representation Base
model

Means of
expression

Observations

Angelaccio et
al. [3]

Query ER Visual QBD* is diagrammatic query language, that allows the user to
interact with a database in a fully graphical way.

Thalheim [57] Query ER Visual Visual SQL overcomes the difficulties of complex SQL queries and,
at the same time, follows the ER paradigm.

Hohenstein and
Engels [28]

Query ER Textual SQL/EER is a high-level query language. It supports all the
constructs of the EER model.

Lawley et al.
[39]

Query ER Textual ERQL is a query language based on the EER model, with a defined
formal semantics. It improves some aspects of SQL/EER.

Andries and
Engels [2]

Query ER Hybrid HQL/EER improves SQL/EER by allowing a user to use both
graphical and textual elements in the formulation of the same query.

Bloesch and
Halpin [10]

Query Not ER Textual ConQuer–II is conceptual query language based on ORM that
allows users to formulate queries naturally in terms of elementary
relationships. ConQuer–II queries are automatically translated into
English and into SQL.

Gogolla [22] Specification ER Textual Gogolla describes a form of Calculus for the EER model.
Kent [37] Specification Not ER Visual Constraints Diagrams are proposed for precisely expressing

constraints on object-oriented models, as an alternative to
mathematical logic notation. It borrows much from Venn diagrams.

Ivanov [31] Specification Not ER Visual A visual notation for specifying constraints on diagrams of UML
classes by means of the UML collaboration diagrams is suggested.

Burton [35] Specification Not ER Visual Spider diagrams are based on Euler and Venn/Peirce diagrams. It is
intended to be used by designers for software specification.

Ataullah [4] Specification Not ER Visual Ataullah proposes a graphical notation that is equivalent to integrity
constraints specified in linear temporal logic of the past. It is a part
of a systematic method of mapping a broad set of process centric
business policies onto database level constraints.

OMG [44] Specification Not ER Textual OCL is a formal language used to describe expressions on UML
models. These expressions typically specify constraints that must
hold for the system being modeled.

Jackson [32] Specification Not ER Textual Alloy is a formal language based on binary relations that offers a
declaration syntax compatible with graphical object models, and a
set-based formula syntax powerful enough to express complex
constraints and yet amenable to a fully automatic semantic analysis.

originated with object-oriented methods (OO), and
the OMG has standardized both its syntax and
OO semantics. This forces to adapt UML for ER
modeling in different ways. For example, there is
no concept of identifier in UML.

Therefore, Connolly and Begg [18] propose to
use tags while David C. Hay [25] proposes to use
stereotypes. Moreover, there is no direct support
of relationship attributes or compound attributes
in CDs. Conversely, the ER model does not

support class operations. Other constructs such as
aggregation and composition are not represented
in an ER model, either. They do not have
different structural properties, and the choice as to
which type of relationship to use (aggregation or
composition) is somewhat subjective [20].

From a teacher’s perspective, we have to explain
to students how to use and think about CDs in
the context of ER modeling, due to the difference
between data architecture and OO design [25].

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.78

ISSN 2007-9737

Because we are interested in data conceptual
modeling, we use an ER diagrammatic technique.

3 Integrity Constraints in Data
Conceptual Modeling

From data perspective, a conceptual schema is
“a concise description of the data requirements of
the users and includes detailed descriptions of the
entity types, relationships, and constraints” [24].
These are expressed by means of a high-level
data model; and the task of conceptually modeling
a domain is intended to be executed by humans
instead of machines, so a key is to express a
conceptual schema in terms of concepts readily
understood by a domain expert [23].

Conventionally, conceptual database design is
dominated by the use of the ER model [24].
However, as noticed by Badia [5], this model
is limited regarding its capacity for expressing
some types of constraints identified during the
requirement specification phase. Therefore,
current design approaches mostly ignore these
semantically relevant requirements [6]. According
to Simsion [54] and Olivé [43], the ER model is only
capable of expressing:

— Key constraints.

— Referential integrity constraints.

— Cardinality constraints.

— Participation constraints.

— Inclusion constraints (through generalization/
specialization relationships).

— Constraints on which entity can be associated
with each other (by specifying that a
relationship is with a subtype of an entity
type rather than the entity type itself, or an
entity type is existence-dependent on certain
entity of another entity type).

— Domain constraints over an attribute (whether
each attribute is required, data types and set
of categories, although not directly recognized
by the ER model, can be easily documented
by means of a CASE tool).

Although an ER model is capable to represent
all these constraints, some types left cannot
be modeled due to either their complexity or
nature [56]. A trained modeler can easily check
there is no possible ER representation for the
following constraints:

— The new name specified in each application
form must be different from the previous name
specified in that application form.

— The combination of start date and end date
specified in each project must be such that the
end date is later than the start date.

— The number of passengers specified in each
flight must be at least 50.

3.1 Origin and Levels of Expression

Ronald Ross defends the idea that integrity
constraints differ from so-called business rules
in a fundamental respect: while the former
belong to the system, the latter are "under
the business jurisdiction" [48]. However, an
integrity constraint does not exist if it is not
previously imposed or inferred by the modeler.
Therefore, even if the term business rule is
reserved for the business, integrity constraints
have their origin directly or indirectly in them. We
are just in presence of two different levels of
expression according to whether the "jurisdiction"
is the business or the system. As stated in
[58], there are different levels for expressing
a constraint: the informal version, the natural
language version, the specification language
version and the implementation language version.

Von Halle [58] explains that a constraint begins
its life in the informal business conversation. Then,
it is transformed into a more disciplined version of a
natural language whose audience is the business
community. This controlled natural language has
still some limitations such as lack of precision, so
another version is required. Such is the case
of the specification language. It is declarative
and disciplined, and its intended audience is
both the business and the IT staff. Additionally,
this language has no effect on the system
states, as it is oriented to specify constraints.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 79

ISSN 2007-9737

Therefore, constraints are transformed into the
implementation language, which has the potential
to be executed.

3.2 Classification

As there are some types of constraints that cannot
be represented by the ER model, it is necessary to
specify the ones that must be analyzed in order to
provide adequate support for their expression.

From a business point of view, only those
constraints that are derived from operational
business rules (obligation or prohibition
statements) [45] are of interest. The ER model
cannot represent such constraints, which is only
capable of representing constraints derived from
structural business rules (necessity or impossibility
statements) [45]. However, not every operational
business rule can be implemented or is relevant
to a system. It depends, largely, on the capacity
to operationalize a business rule. Operationalized
means that the desired effect of the rule in a
business can be obtained by having it executed by
a computerized system [16].

Witt describes a more detailed classification of
business rules (Fig. 1). As stated above, we are
only interested in operational and operationalized
business rules, so activity rules and party rules
are out of scope and their documentation is only
of interest to the business. The classification
also introduces other types within the operational
data rule type. However, an ER schema can
represent cardinality rules. Consequently, only
update rules and data content rules are subject
to be operationalized, but we have focused on
integrity constraints derived from data content
rules.

From a formal point of view, integrity constraints
can be classified according to scope and cause of
violation [43].

In this regard, we are only interested in static
constraints where a violation is caused by events.

Business rule

Structural Operational

Party Rule Data Rule

Cardinality
Rule

Data Content
Rule Update Rule

Activity Rule

Fig. 1. Business rule taxonomy proposed by Witt [60]

4 Proposal

It is possible to obtain a more disciplined
version of a business rule by means of a
Controlled Natural Language (CNL). A CNL is
a “constructed language that is based on a
certain natural language, being more restrictive
concerning lexicon, syntax, and/or semantics,
while preserving most of its natural properties” [38].
Such a language has the desired properties of a
conceptual language, as it can be designed to have
independence from implementation details and to
facilitate human communication, understanding,
and validation [24].

The lack of precision is one of the characteristics
that is usually associated with CNLs. Therefore,
in the best scenario, the rule is documented by
the modeler in a natural sentence, and then is
delegated to the programmer. According to Halpin
and Morgan [24], there have been some attempts
to obtain an implementation version directly from
a sentence in a CNL. The result is a lack of
authenticity due to the large gap between the
two levels. Hence, precision is a property of the
conceptual model that cannot be negotiated.

At the same time, the natural expression of
a constraint at the conceptual level is also a
requirement that should not be avoided. That is
why we need a specification language for bridging
the gap between the conceptual level and the

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.80

ISSN 2007-9737

implementation level. Maybe a domain expert
cannot deal with such a language, but a modeler
will be well equipped to deal with the logical
subtleties of a constraint.

In consequence, we propose a method for
expressing integrity constraints during the
conceptual modeling phase of a database
(Fig. 2). It has three components: an ER
schema, a controlled natural language based
on SBVR for expressing those constraints not
represented by the ER schema, and Alloy, a
simple but expressive language for specifying an
implementation independent model of the structure
and constraints of a domain.

ER/SBVR2Alloy

ER schema

SBVR-based
constraint

ER2Alloy

SBVR2Alloy

Alloy
scheme

Alloy
predicate

uses uses

Fig. 2. Proposed method

4.1 Expression of Constraints in a
SBVR-Based Controlled Natural Language

The SBVR is a specification published by the
OMG. It is not really a CNL, but a disciplined and
formalized way to share vocabulary and business
rules between organizations and software tools
[45]. In addition, it is based on first-order logic, with
an extension of modal operators and second-order
logic with Henkins semantics. The purpose
of using SBVR is to design a transformation
process independent of the notation and, in
consequence, the language (multi-lingual). This
is possible because of SBVR’s concept-centric
approach [14], so the expression is separated from
its meaning. In addition, with SBVR it is possible
to obtain an unambiguous definition, apart from a
formal interpretation of the meanings of business
concepts and rules.

Properly constructed natural language
constraints may provide both the domain expert
and the modelers with the necessary information.
However, unless carefully created, they may be
ambiguous or vague. Thus, it is necessary to use
a more restrictive version of the natural language
while its comprehensibility is maintained.

Ronald Ross is the author of RuleSpeak, a
well documented [47, 45] CNL that has been
used with business people in actual practice in
large-scale projects. It is SBVR-compliant and,
although originally conceived in English, already
has versions in other languages. However,
the sentence forms described in [49] allow for
considerable freedom, so it is difficult to achieve
quality constraints.

Graham Witt, on the other hand, proposes
a controlled natural language including the best
experiences with RuleSpeak but overcomes the
difficulty to assure quality. The CNL described
in [60] is designed to help modelers to specify
an organization’s business rules using natural
language in a clear, succinct, unambiguous, and
consistent manner. That is why we have selected
and adapted the templates proposed by Witt in
his book [60] to deal with constraints based on an
ER schema.

4.1.1 Purpose and Notation of Templates

Templates are a very popular approach to help
business analysts in the process of writing
business rules. They are possible syntactic
structures of a CNL, patterns in a natural language
used to express constraints in a well-organized
and consistent manner [49]. Their purpose is to
ensure that a domain expert easily understands a
constraint, but in a way that different members of
the same speech community can express the same
ideas in the same manner. In no way they define a
formal grammar of a language, but rather simplify
the base natural language [38].

According to [60], there are various places in a
template where any term or verb phrase can be
substituted. A label enclosed in angle brackets
indicating the type of word or phrase by which it
will be replaced will denote these placeholders. In
addition, a font style and a color distinguishes the

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 81

ISSN 2007-9737

placeholders. This practice proposed in Annex A of
the SBVR specification helps a person to recognize
the integral parts of a restriction quickly. Table
2 shows the five types of placeholders, their font
styles and colors.

Table 2. Types of Placeholders in the Templates

Placeholder Description
<term> A term is a designation for a noun

concept, one that is part of the
vocabulary.

<literal> A literal is a designation for an
individual noun concept. Literals
tend to be names, numerical
values, date or time values.

<verb
phrase>

A verb phase is a designation for a
verb concept. It is usually a verb,
preposition, or combination thereof.

<keyword> Keywords are used for linguistic
symbols used to formulate
sentences and propose definitions.

<symbol> It designates a subtemplate. A
subtemplate is a template for a
syntactic element that may appear
in more than one type of constraint.

4.1.2 Keywords

The terms, literals and phrases are usually
linked to the problem domain. However, the
keywords represent those words or phrases that
are frequently used to construct a sentence.
Therefore, the most frequent phrases such as
quantifiers, logical operators and modal operators
are predetermined and designate concepts defined
in SBVR. The keywords used are explained in
Annex A of the SBVR specification [45].

Annex A introduces prefixing rule keywords
and embedded equivalent keywords, but only the
embedded alternative is used.

4.1.3 Templates for Constraints

The first type of data content rule are the
constraints derived from range rules. They require
certain values to be within an open or closed range,
with one or two bounds. For example:

The order date specified in each online order
must be no earlier than 2014-01-01.

These constraints can be written by means of the
template shown in Fig. 3.

{The|Each} <attribute>
specified {{in|for} {the|each} <composite attribute> |}
in each <entity type>
must be <inequality operator> <object> {and <inequality operator> <object>|}

Fig. 3. Range constraints template

Both attribute and the composite attribute are
not concepts of SBVR, but definitions based on
it. They correspond to the simple and composite
attributes in the ER model, respectively. However,
knowing this correspondence is irrelevant as it is
centered on the concept.

This will be explained later in section 4.3.1.
Likewise, the placeholder <entity type> is a term
corresponding to an entity type in the ER model,
and it is optionally followed by a qualifying clause.
In contrast, the placeholder <object> is not a term,
but a predicate following the main verb phrase of
the constraint. As it is a range constraint, this
predicate is related to the range bounds. There are
fixed and variable bounds. A fixed bound is usually
a number or a date value, while a variable bound is
some term related to the constrained term.

If we follow the taxonomy within a data content
rule, then there are some other possible templates.
These templates are depicted in Fig. 4, and are
mostly based on Witt’s proposal [60].

4.2 Expression of Constraints in Alloy

Although more unambiguous and consistent, the
proposed templates are not as precise as a
specification language. Therefore, we still need
to express the constraints that cannot be specified
through an ER schema in the selected specification
language: Alloy. For this reason, we summarize
some Alloy mechanisms for expressing constraints.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.82

ISSN 2007-9737

{The|Each} <attribute>
specified {{in|for} {the|each} <composite attribute> |}
in each <entity type>
must be <equality operator> <object>

(a) Equality constraint

{The|Each} combination of <attribute, and>
specified {{in|for} {the|each} <composite attribute> |}
in each <entity type>
{<qualifying clause> |}
must be such that <conditional clause>

(b) Consistency constraint over a combination of elements

{The|Each} set of <attribute>
specified {{in|for} {the|each} <composite attribute> |}
in each <entity type>
{<qualifying clause 1> |}
must {be {the same as| different from}| include} the set of <term>}
{<qualifying clause 2> |}
 (c) Consistency constraint over a set of elements

The number of <attribute>
specified {{in|for} {the|each} <composite attribute> |}
in each <entity type>
{<qualifying clause> |}
must be {<inequality operator>|<equality operator>} <object>

(d) Consistency constraint over the aggregation of a set of elements

Fig. 4. Other templates for constraints derived from data content rules

4.2.1 Alloy Fundamentals

According to Daniel Jackson [32], Alloy combines
three logics in one: relational algebra, predicate
calculus and a navigational expression style.
With “logics”, Jackson means expression styles
based on predicate calculus and relational algebra
with the relevant inclusion of the transitive
closure operator. For example, consider the
following constraint:

A name in an address book always have
an address.

This constraint is written as a natural language
expression, and could be translated to Alloy in the
three alternatives:

// Predicate Calculus Style

2 a l l n: Name , d, d': Address |
n->d in address and n->d'

4 in address impl ies d = d'

6 // Relational Algebra Style

no ~address.address - iden
8

// Navigational Expression Style

10 a l l n: Name | lone n.address

The first style is too verbose, but is clearer than
the relational algebra style, where expressions
tend to be obscure. However, the navigational
style, combining both the calculus and the algebra
styles, is often more concise without losing clarity.

4.2.2 Constraints in Alloy

Alloy not only offers three alternatives for
expressing a constraint according to its base logic,
but also classifies them according to their function
during their modeling process. A fact is used
for expressing those constraints that are already
part of a model. An assert expression is used
for checking the validity of a model when a new
constraint is introduced. That new constraint
is known in Alloy as a predicate. This points
towards a methodology for system modeling where
constraints are incrementally added to a model and
checked one by one, beginning their life-cycle as
a predicate, then as an assert expression, and
finally, as a fact. As the Alloy constraints will be
obtained from the translation of SBVR concepts,
it is advisable to code them through a predicate
expression. For example:

The application date specified for each loan
must be later than 1985-01-01.

The corresponding predicate expression in Alloy
will be:

pred r3{ a l l p: Loan |
2 #p.application_date ≥ #d1985_01_01}

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 83

ISSN 2007-9737

4.3 Correspondences and Mappings

As Fig. 2 suggests, it is necessary to find
the correspondence between the ER model
and SBVR on the one hand and the mapping
between ER+SBVR and Alloy on the other. The
correspondence obeys to the necessity of having a
coherent representation of the domain with these
two different conceptual models.

The mapping is related to the fact that both the
SBVR based constraint and an ER schema, have
to be transformed into an Alloy model.

4.3.1 Correspondence Between ER and SBVR
Models

Although both are known as conceptual models
[24], SBVR is based on a model that is different
from the ER model. Actually, SBVR is based
on a fact-oriented modeling approach [24]. This
approach enables one to model information in
terms of the underlying facts of interest about
objects. It is also attribute-free. This means that
every fact is treated as a relationship between
objects (entities or values), so this is the main
difference from the ER model.

Despite the differences between both models, a
fact model can be used as the basis for the creation
of an ER model, with more business-friendly terms
[60]. This means that there is a correspondence
between them.

Therefore, Table 3 shows the correspondence
between the concepts of the SBVR interpretation of
the fact-oriented modeling approach, and the ones
of the ER model. It was obtained by semantically
equating the concepts from both models.

4.3.2 ER2Alloy Mappings

Some researchers [41] have already studied Alloy
mapping onto UML class diagrams, but that is
not the case with the ER model. This is
probably caused by the extensive use of UML class
diagrams in the MDA platform. However, due to
the similarities between UML class diagrams and
ER diagrams, we must take into account these
results. Table 4 shows a correspondence between
basic concepts of the ER model and equivalent
expressions in Alloy.

We have obtained this correspondence by
choosing the Alloy expression that, in our criteria,
is the best match for every ER concept analyzed.
For example, Alloy provides the mechanism of
fields for representing the association between
two signatures. However, we chose to use
signatures for representing both the entity types
and the relationship types. We think this captures
the relationship set semantics more accurately,
and provides its own structure. In addition,
we proposed a more compact representation
for identifiers, based on the Alloy’s relational
algebra style.

Regarding the representation of the domains
and their values, Alloy does not have an integrated
type system. Instead, everything in Alloy is a
relation and there are no other data types, nor the
distinction between sets and scalars.

Jackson [32] argues that such a design decision
provides simplicity, uniformity and power of
abstraction. In addition, it is a conceptual
modeling language in which everything related
to the computational system must be avoided.
Therefore, as a domain is simply a set of values, we
use signatures for its representation. In the case of
discrete values, we use a signature with multiplicity
one, a set of a single value. We must notice
that, even when the Integer data type is available
in Alloy, it is reserved for dealing with cardinality
expressions of relations. If it is necessary to use
them, then the problem must be rethought and a
more abstract representation sought.

Moreover, if we are dealing with a problem of
numerical nature, then perhaps Alloy is the least
appropriate language.

4.3.3 SBVR2Alloy Mappings

For mapping an Alloy expression onto its source
SBVR constraint, we also have to obtain a
correspondence between the concepts of these
two models. For this, we use the logical formulation
associated to constraints that are written through
one of the templates shown in Fig.3 and Fig. 4.
Logical formulations in SBVR are not a formal
language in which a rule can be rewritten, but
a means of documenting the logical structure of
meaning [45]. Therefore, the intention is to develop

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.84

ISSN 2007-9737

Table 3. Correspondence Between the Concepts of the ER Model and SBVR

ER model Meaning in SBVR Representation in SBVR
Entity type general concept term
Attribute verb concept role of the

property association
term

Association between an entity type and
a binary attribute

unary verb concept verb concept wording

Relationship type binary verb concept verb concept wording
N-ary relationship type general verb concept verb concept wording
Association between an entity type and
one of its non-binary attributes

property association verb concept wording

Table 4. Correspondence between ER and Alloy

ER
model

Alloy Example

Entity type Signature
declaration

sig employee{}

Attribute Field declaration
with one multiplicity

sig employee{idemp:
Tidemp, namemp:
Tnamemp, age:
Tage}

Identifier Fact uniqueness
declaration

fact {#employee =
#employee.idemp}

Domain Signature
declaration

sig Tnamemp{}

Value Singleton signature
declaration

one sig john
extends Tnamemp{}

Relationship
type

Relation declaration one sig works{ rel:
employee some ->
lone bank}

a concept-centric transformation approach. Since
the Alloy language and SBVR logical formulations
are basically first-order logic, the correspondence
between the two is not difficult to obtain.

Every closed semantic formulation uses a
quantification for introducing a variable. A
variable ranges over the concepts represented in a
constraint. So, for every new concept, a variable
and its quantifier must be introduced. Table 5
shows the correspondence for quantifiers.

Logical operators are explicitly available in both
models. Therefore, the correspondence is very
straightforward with the exception of the exclusive
disjunction, for which an equivalent logical

Table 5. Correspondence between quantification
concepts in SBVR vocabulary for logical formulations
and Alloy quantifiers

SBVR Alloy
universal quantification all x: e | F
existential quantification some x: e | F

at-most-one quantification lone x: e | F
exactly-one quantification one x: e | F

formulation was provided. The correspondence is
shown in Table 6.

Table 6. Correspondence between logical operators
concepts in SBVR vocabulary for logical formulations
and Alloy logical operators

SBVR Alloy
logical negation not !

conjunction and &&
disjunction or ||

exclusive disjunction (not p and q) or (p
and not q)

(! p &&
q) || (p &&

!q)
implication implies =>

equivalence iff <=>

In the particular case of comparison operators,
there are some concepts already defined in SBVR.

However, they do not include adequate verb
concept wordings for dates, and have a reduced
set of synonymous forms for every operator. This is
not a limitation in any regard, as the solely purpose
of SBVR is to serve as the basis to formulate
a business vocabulary and rules. Therefore, we

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 85

ISSN 2007-9737

have defined a list of verb concepts for comparison
operators, and set the correspondence between
them and the ones from Alloy language (Table 7).

Table 7. Correspondence between SBVR-based verb
concepts and the comparison operators in Alloy

SBVR Alloy
general concept1 is the same as

general concept2
=

general concept1 is different from
general concept2

!=

quantity1 is equal to quantity2 =
quantity1 is unequal to quantity2 !=
quantity1 is less than quantity2 <
quantity2 is more than quantity1 >

quantity1 is no more than quantity2 =<
quantity2 is no less than quantity1 >=

date1 is no earlier than date2 >=
date2 is no later than date1 =<
date1 is earlier than date2 <

date2 is later date1 >
set1 includes set2 in

Unlike SBVR, in which we are able to distinguish
different types of data, in Alloy, there is no
distinction between scalars and sets, and there
are no previously interpreted data types either
(numeric, integer, string, Boolean). Therefore,
the comparison operators are the same for all
data types.

5 Case Study

From the correspondences described between the
components illustrated in Fig. 2, the process of
obtaining an Alloy model given an ER schema
and a SBVR-based constraint can be summarized
as follows:

1. Validation: to check that each term is
expressed as an entity or an attribute, and a
verb concept wording is either a relationship
type or an association between and entity type
and an attribute.

2. Transformation from ER to Alloy: to obtain
the equivalent structures in Alloy given an
ER schema.

3. Transformation from SBVR to Alloy: to obtain
the equivalent expression in Alloy to an
SBVR-based constraint.

In order to illustrate the transformation process
using the described correspondences, we have
created a case study based on another from [42].
This case study shows the main concepts of the
ER model (Fig. 5a), for which we provided a
set of constraints that are representative of every
type described (Fig. 5b). These constraints are
the result of using the templates from Fig. 3
and Fig. 4 although in a common scenario they
would be elicited from records, forms, subforms
or transactions.

5.1 Checking for Validity

The first step is very straightforward. Using the
correspondence shown in Table 3, we are able
to check that every term is expressed in an ER
schema as an entity type or an attribute. For
example, C1 in Fig. 5b has two terms: amount and
Loan. Both are represented as an attribute and an
entity type respectively in Fig. 5a.

Likewise, we have to check that every verb
concept wording is expressed as an association
between an attribute and an entity type, a
relationship type, or a predefined verb concept
wording. In C1, there are three verb concept
wordings: specified for, be no less than, and no
greater than.

The first one connects the terms already
identified, and corresponds to the association
between the attribute amount and the entity type
Loan. The second and the third one, have
no counterpart in the ER schema, but they are
the main verb concept wordings on which the
constraint is based to compare the term amount
to the quantities 50 and 10 000.

Therefore, it is fair to conclude that C1 is a
constraint based on the ER diagram from Fig.
5a. However, we must notice that a verb concept
wording may be different from the label used in
its equivalent. For example, it is unlikely to find
specified for and its variants in an ER schema. It
is recommended in the templates for connecting
terms in the subject of a constraint statement

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.86

ISSN 2007-9737

(a) ER diagram

C1. The amount specified for each Loan must be no less than 50 and no greater than 10000.
C2. The requestDate specified for each Loan must be no earlier than 1985-01-01.
C3. The requestedDate specified for each Loan must be no earlier than the startingDate specified for the Bank that
gives that Loan.
C4. The city specified for the Person in each Loan must be the same as the city specified in the Bank that gives that
Loan.
C5. The combination of returnDate and requestDate specified in each Loan must be such that the returnDate is later
than the requestDate.
C6. The set of Person specified for each Loan in each Bank must be the same as the set of Person specified for
another Loan in that Bank.
C7. The number of Accounts specified for each Person must be no greater than 50.

(b) SBVR-based constraints

Fig. 5. The Contract Loans case study

that are usually linked in an ER schema by an
attribute-entity-type kind of association.

The same happens with C4, where the
relationship label connecting the entity types
Person and Loan is gets, while the verb concept
wording used is Person in Loan. Therefore, we
just need to look for an association between an
attribute and an entity type, or a relationship
between two or more entity types despite the
label used.

5.2 Transforming an ER Schema to Alloy

The second step is to transform the ER schema
into the corresponding Alloy structures. In Table 4,
we show that each entity type can be transformed
into an Alloy signature; and its attributes into field
declarations. From line 16 to 46, Fig. 6 shows
the Alloy code obtained for every entity type in
the ER diagram. After each signature declaration
corresponding to an entity type, there is a fact
constraining the field that represents the identifier.
For example, line 19 shows a fact declaration that

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 87

ISSN 2007-9737

sets the cardinality of the entire signature Person
equal to the cardinality of the set of code. As
both the Person.code expression and the Person
signature evaluate to sets, then the code field is
always unique. Domains and values are expressed
as signatures as well. Both are just abstractions of
domains and values, and no specific semantics is
captured here.

Loan, AcceptedLoan and RejectedLoan
participate in a hierarchy, as Fig. 5a shows.
Alloy signatures are designed to support this kind
of representations accurately. Line 37 shows the
Loan signature with an abstract declaration. This
tells Alloy analyzer that the Loan signature has no
atoms. If there exists an atom, it must be in one
of the subsets. A subset expression in Alloy is
denoted by the words extends or in.

When two or more signatures extend another,
then the extending signatures are disjoint. If
the word in is used instead, then they are
overlapped. This explains why lines 45 and 46
show two signature declarations that extend the
parent signature Loan. We must also notice that
the fact expression for representing an identifier of
an entity type, is only added once in the Alloy code
obtained from a hierarchy in an ER diagram, as the
extending signatures are just subsets of the parent
signature (see line 43).

All binary relationship types are transformed
into Alloy relations. Lines 56 to 60 show five
signatures for the five binary relationship types
found in Fig. 5a. In every signature, there is
a relation between the signatures representing
the involved entity types. The cardinality and
participation constraints are represented through
the Alloy multiplicities one, lone, some, and set.
Thus, in a declaration like the one in line 56, zero
or more members of Loan are related to exactly
one member of Person. While in line 58, at least
one Account is related to exactly one Person. In
a way, this is a kind of minimum and maximum
look-across style; while in the notation of Elmasri
& Navathe used in the ER diagram, the style is
minimum look-here (represented as a participation
constraint) and maximum look-across.

The recursive relationship belongsTo, is also
transformed into an Alloy relation. However,
to represent this in Alloy it is necessary to

materialize the roles in the recursive relationship
as signatures like in lines 48 and 49. Then,
the recursive relationship is also represented as a
binary relationship. Additionally, some facts must
be added in order to represent the semantic of this
kind of relationship more accurately. Line 52 shows
that all banks play one role or another, 53 that a
bank cannot be related to itself, and 54 that the
relation is acyclic.

A weak entity type is always weak regarding
some other entity type. Therefore, this involves
both the entity type and the relationship type that
links to the regular entity type. The effect on
the transformation process to Alloy is the fact
expression regarding the identification. Lines 43
and 44 show an Alloy code for the identification of
the weak entity type Loan.

This fact is equivalent to say that for each
member of Person, the number of members of
Loan must be equal to the number of requestDate.
In other words, the requestDate is unique in the
context of a certain Person.

5.3 Transforming SBVR-Based Constraints to
Alloy

Based on the correspondence between Alloy
operators and concepts from logical formulations
in SBVR, it is possible to obtain an equivalent
predicate expression for every constraint in Fig.
5b. The keyword each in a template embeds a
universal quantification, while the keyword and is
a logical operator. Of course, a quantifier always
introduces a variable. In the case of the C1
constraint, the universal quantification introduces a
variable that ranges over the concept Loan. The
underlying verb concept quantity2 is no less than
quantity1 has two roles. The first one binds to
the variable that ranges over the concept amount.
The second role binds to the unitary variable that
ranges over the concept 50.

Therefore, line 62 shows the equivalent code
in Alloy. The quantifiers, logical operator, and
comparison operator are obtained by mapping
them to their counterpart in the logical formulation
of C1. Those mappings are based on the
correspondence established in Tables 5, 6, and
7. Line 64 shows a very similar constraint that is

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.88

ISSN 2007-9737

module loan_contract

// domains

sig tcode{}

sig taccount_number {}

sig taddress {}

sig tprice {}

abst rac t s ig tdate{}

one sig d1985_01_01 extends tdate{}

sig tamount {}

one sig n50 ,n10000 extends tamount {}

sig tcity{}

abst rac t s ig Bool{}

one sig True extends Bool

one sig False extends Bool

// entity types

sig Person{

code: tcode , city: tcity

}

f a c t {# Person=#Person.code}

sig Account{

accountNumber: taccount_number

}

f a c t {# Account=#Account.accountNumber}

sig Bank{

code: tcode ,

startingDate: tdate ,

city: tcity

}

f a c t {#Bank=#Bank.code}

sig RealEstate{

address: taddress ,

price: tprice ,

iBail: Bool

}

f a c t {# RealEstate=#RealEstate.address}

//weak + disjoint and total hierachy

abst rac t s ig Loan{

requestDate: tdate ,

returnDate: tdate ,

amount: tamount ,

isRetruned: Bool

}

f a c t { a l l p: Person |
(gets.rel)=#p.~(gets.rel).requestDate}

sig AcceptedLoan extends Loan{}

sig RejectedLoan extends Loan{}

//roles

sig branch in Bank{}

sig parent in Bank{}

// recursive relationship

one sig belongsTo{rel: branch some -> one parent}

f a c t {Bank=branch + parent}

f a c t { a l l b: Bank | belongsTo.rel[b] 6= b}

f a c t { a l l b: Bank | b not in b.^(belongsTo.rel)}

// binary relationships

one sig gets{rel: Loan set -> one Person}

one sig owns{rel: RealEstate some -> one Person}

one sig holds{rel: Account some -> one Person}

one sig isIncludedIn{rel: Account set -> one Bank}

one sig gives{rel: Loan set -> one Bank}

// Constraints

pred c1{ a l l p: Loan |
#p.amount ≥ #n50 and #p.amount =< #n10000}

pred c2{ a l l p: Loan | #p.requestDate ≥ #d1985_01_01}

pred c3{ a l l p: Loan |
#p.requestDate ≥ #p.(gives.rel).startingDate}

pred c4{ a l l p: Loan |
p.(gets.rel).city = p.(gives.rel).city}

pred c5{ a l l p: Loan | #p.returnDate > #p.requestDate}

pred c7{ a l l p: Person | #holds.rel.p =< 50}

pred show{}

run show

Fig. 6. Alloy code for the Contracts Loan case study

the result of the transformation of the C2 range
constraint. The date literal is the only fundamental
difference from C1, but this has no effect on how it
is transformed into Alloy.

The cardinality operator is used in every
constraint in Alloy involving a signature that
represents a numeric concept. This is a resource
added to simulate expressions in Alloy involving

quantities, as it is an abstraction language with no
integrated type system. Instead, we encourage
the modeler to use more abstract concepts for
denoting range bounds. That is why a range
constraint like C3 has a dynamic bound instead of
a fixed one. Compared to C1, the C3 constraint
involves more than one entity type through the
qualifying clause that gives that Loan.

So, the underlying verb concept Bank gives Loan
is transformed into a join expression in Alloy. For
this purpose, the dot notation is provided (see lines
65 and 67).

The C4 equality constraint is very similar to the
previous ones in terms of structure. In fact, it
is its use what differentiates them. In general,
equality constraints are required when some data
must be verified previous to some operation. For
example, if, as in C4, it is requested for a person
to live in the same city as the bank for giving
and approving a loan, then an equality constraint
must be formulated. The equivalent expression
in Alloy for the C4 constraint is shown in line
67. The underlying verb concepts Person gets
Loan and Bank gives Loan are transformed to join
expressions to both sides of the equality operator.

In a consistency constraint over a combination
of elements, there is more than one constrained
element. Moreover, those elements are always
terms representing attributes of the same entity
type. This is the difference from a range constraint.
Consequently, we cannot write any object after the
main verb concept wording. Instead, we are only
able to write a conditional clause. This conditional
clause embeds a condition that must be satisfied
for each combination of elements. Line 69 shows
the Alloy code obtained.

Aggregation is also possible with an
SBVR-based constraint. The C7 constraint is
a consistency constraint over the aggregation of
a set of elements. Although other aggregation
functions are possible, the template in Fig. 4d
only includes the set cardinality operator. The
equivalent expression in Alloy is shown in line 70.
In this case, the cardinality operator accurately
captures the semantics of the keyword The
number of.

The transformation of the C6 constraint from Fig.
5 is similar to that of the equality constraints. That

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 89

ISSN 2007-9737

is why it is not shown in Fig. 6. The difference
from an equality constrains is the comparison
between set values instead of single values. This
comparison can be also established between the
set of instances of an entity type, as it is the case
in C6.

6 Evaluation

In order to evaluate the usability of the proposed
method, we have conducted an empirical study
over a sample of 30 students, who held a bachelor
in Computer Science or in Software Engineering.
They attended a Master´s degree course on
Models for Data and Knowledge Management
where the proposed method was taught, after
which they spent one month to analyze a case
study and design a conceptual schema in order
to develop a database system. Each student was
asked to model the same case study with the
following methods: UML Class Diagrams with OCL
constraints (UMLOCL) [44], ORM [23], Extended
Entity-Relationship approach (EER) [20], and the
proposed method.

To evaluate usability, we selected some of the
factors involved in the modeling process of the
method. There are also many descriptions in
literature of factors or attributes that contribute to
usability. According to ISO 9241-11, usability is the
“extent to which a product can be used by specified
users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of
use” [29]. Weichbroth [59] conducted a rigorous
literature review and showed that efficiency,
satisfaction, learnability and effectiveness were the
most frequent attributes referred to in literature.
A more recent study aimed to measure the
perceived effectiveness and perceived efficiency
on model-driven architecture techniques [53]. In
consequence, we have selected the perceived
effectiveness and efficiency as factors for having
an estimate of the method usability.

In our study, perceived effectiveness is
the degree to which the intended goals of
conceptually modeling a domain, specifically
integrity constraints, are achieved by the proposed
method. Perceived efficiency, on the other hand,
is the degree to which resources such as mental

effort must be expended to use the proposed
method.

We applied a questionnaire adapted from [53]
to each student, for each model being compared.
Each dependent variable (perceived effectiveness
and perceived efficiency) is associated with four
closed questions.

Table 8. Reliability scores for perceived efficiency and
perceived effectiveness. Cronbach’s alpha values

Proposed
Method

UMLOCL ORM EER

Perceived
Efficiency

0.9004651 0.85826 0.9264641 0.8832984

Perceived
Effectiveness

0.8198758 0.8319709 0.8127624 0.8185452

Table 9. Perceived efficiency and perceived
effectiveness of the proposed method. One-sample
t-test, N=30 and µ = 4

Mean SD t value p-value*
Perceived
Efficiency

4.916667 0.799925592 4.4382 0.000281

Perceived
Effectiveness

6.233333 0.437797518 19.757 6.344e-12

* 99% confidence interval.

Each question has a Likert scale of five items
(1= Strongly disagree, to 7=Strongly agree).
Before applying any statistics, we analyzed the
reliability of the multi-item scale. The Cronbach’s
α > 0.8 shows that the scales are reliable for
both the perceived efficiency and the perceived
effectiveness (See Table 8).

We used a one-sample t-test for testing the
alternate hypothesis: the perceived effectiveness

Table 10. Average rankings for the methods. Bold values
show the best ranks. Friedman’s Rank test

Proposed
Method

UMLOCL ORM EER

Perceived
Efficiency

3.600 2.967 2.300 1.133

Perceived
Effectiveness

1.533 2.700 1.967 3.800

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.90

ISSN 2007-9737

and perceived efficiency of the proposed method
are greater than the mean value µ = 4 (neither
agree nor disagree). As shown in Table 9, both
p-values are smaller than a 0.01 significance level.

Therefore, the null hypothesis is rejected,
and that is why we can state that the actual
means of the perceived efficiency and perceived
effectiveness are significantly greater than 4. In
other words, the subjects perceive the proposed
method as an efficient and effective one.

However, there are some interesting differences
in the mean values of the variables. Although
both are greater than 4, the mean of the perceived
effectiveness is greater than that of the perceived
efficiency. In addition, the standard deviation
is smaller in the perceived effectiveness. This
seems to point out that the subjects perceived
a greater effectiveness in the proposed method
than an efficiency, and agreed on that perception.
This situation may be related to the fact that
the proposed method lacks tooling support.
Although they claim that the method enables them
to do more important things about the model
construction that are not possible without the
method, they also rate with lower values the
statement related with the temporal efficiency of
the modeling tasks.

However, how the proposed method compares
to the other three? In order to answer that question
we applied a Friedman’s test. Regarding perceived
efficiency, the P − value computed by Friedman
Test is 1.367e−06. In the same way, the P−value =
7.351e − 06 computed regarding the perceived
effectiveness is lower than a significance level of
α = 0.05. Therefore, the null hypothesis is rejected
at a significance level of α = 0.05 in both cases.
Then, we are able to state that there is a significant
difference between the four methods. Table 10
shows that the proposed method is the best ranked
regarding perceived effectiveness, but the worst
in the case of perceived efficiency. However, this
test does not show which methods are significantly
different from the proposed method.

Therefore, it is necessary to call the Bergmann
and Hommel’s procedure in order to perform an
all-pairwise comparison. Table 11a shows that
the proposed method has a significant difference
with ORM and EER regarding perceived efficiency.

Subjects are encouraged to model those integrity
constraints not expressed in an ER schema. So,
they are expected to perceive the EER approach
more efficient than the proposed method.

Regarding ORM, the procedure shows a
difference at a significant level of α = 0.05, but
there is not enough evidence to reject the equality
hypothesis at a level of α = 0.01. In consequence,
the proposed method is perceived at least as
efficient as ORM and UMLOCL.

In contrast, Table 11b shows that the proposed
method is perceived as more effective than EER
and UMLOCL, but has no difference with ORM at
a significance level of α = 0.05. OCL has been
recognized as a specification language with some
usability problems that make its adoption difficult
[7]. It is only not impossible to understand by
a domain expert, but also has a difficult syntax,
an ambiguous nature and low understandability
of overly complex expressions commonly used in
large software models. As for the ORM, it is
necessary to note its ability to capture more types
of integrity constraints than EER and UML Class
Diagrams, while focusing only on those aspects of
the domain that are conceptually relevant. That is
why, ORM helps the modeler to focus more on the
ultimate goals of conceptual modeling and to do
more important things about modeling that were
impossible without it.

However, the simplicity and popularity of the ER
model supports the idea of using it instead. A
modeler familiar with this approach will find it easier
to accept and adopt the new language, as they only
have to use the proposed templates to write those
integrity constraints that cannot be represented in
an ER schema. This is why the subjects perceive
the proposed method as more effective, as it allows
them to model more constraints and to fulfill the
assigned task.

Additionally, the Alloy constraints resulting from
the transformation process can be logically
validated in order to obtain a consistent
representation of the UoD. Moreover, the domain
experts are able to read and validate those
integrity constraints expressed by means of the
proposed templates without any previous training.
All these advantages are supported by the results
of this study, as predicting the future success of

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 91

ISSN 2007-9737

Table 11. All-pairwise comparison between the four methods. P−values < α = 0.05 are shown in bold. Bergmann and
Hommel’s procedure

(a) Regarding perceived efficiency

ProposedMethod UMLOCL ORM EER
ProposedMethod n/a 0.179 0.017 0.000
UMLOCL 0.179 n/a 0.157 0.000
ORM 0.017 0.157 n/a 0.027
EER 0.000 0.000 0.027 n/a

(b) Regarding perceived effectiveness

ProposedMethod UMLOCL ORM EER
ProposedMethod n/a 0.040 0.358 0.000
UMLOCL 0.040 n/a 0.120 0.040
ORM 0.358 0.120 n/a 0.000
EER 0.000 0.040 0.000 n/a

modeling languages and software development
techniques greatly depends on their efficiency and
effectiveness [53].

Being an exploratory study, these results are
preliminary and show the necessity of more
empirical evidence to corroborate these findings.

7 Conclusions and Future Work

In order to express constraints identified in a
UoD during database conceptual modeling, we
proposed a method that allows expressing such
constraints in a way that is comprehensible by the
domain expert and, at the same time, processable
by a computer machine. The method relies on a
transformational approach, in which a controlled
natural language based on SBVR is proposed to
express the integrity constraints. It also includes
Alloy as the appropriate language to represent
the constraints accurately and formally. Also, we
use the Entity-Relationship model to represent
constraints derived from structural business rules.

We defined a set of templates that allows
expressing constraints given an ER schema in a
natural way. Likewise, we explored the capacity
of Alloy to formally represent such constraints.
The correspondence between SBVR and the ER
model sets the basis for expressing the integrity
constraints by using both models coherently. In

contrast, the correspondences between ER and
Alloy, and between SBVR and Alloy are the basis
for the transformation process.

The case study showed that the
correspondences can be used to transform
the constraints and the ER schema into an Alloy
model. This process is achieved in three steps:
validation, transformation of an ER schema
to Alloy, and transformation of a SBVR-based
constraint to an Alloy expression. Although
this was done manually, the whole process
could be formalized in order to be automated.
Therefore, the feasibility of the transformation
process becomes a guarantee for the construction
of a conceptual database-modeling tool for
documenting data requirements, and automatically
generating consistent and formally correct
database applications that conforms to the
requirements.

The usability study confirms this need for tooling
support. It also substantiates the feasibility claim
of the proposed method by suggesting that it is
perceived as an effective and efficient one.

The high score for perceived effectiveness
empirically supports the goal of expressing
constraints identified in a UoD during database
conceptual modeling. Additionally, an all-pairwise
comparison of the proposed method with other
three representative methods from literature was

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.92

ISSN 2007-9737

carried out. It showed that the subjects perceived
the proposed method as more effective than UML
Class Diagrams with OCL constraints and the EER
approach, but has no difference with ORM.

Unlike ORM, the proposed method supports the
expression of integrity constraints in a manner
readily understood by a domain expert without
abandoning a traditional and popular approach
such as the Entity-Relationship model. However,
we recognize the limitations of this kind of studies.
The use of students as subjects on one hand, and
the use of subjective measures on the other, may
jeopardize the validity of this study by introducing
certain bias. In addition, this is an exploratory study
where independent variables were not controlled
or manipulated.

In consequence, future directions are divided
in two ways. First, we must extend the
set of templates to allow the expression of
dynamic constraints. Then, we will formalize
the transformation process for which the
correspondences described are the foundations.
Second, more evidence is needed.

Therefore, we will conduct an experiment
to test the accuracy, completeness and effort
that the proposed method actually takes to
express integrity constraints during database
conceptual modeling.

References

1. Akbar, S. & Bajwa, I. S. (2014). Scope
Resolution of Logical Connectives in Natural
Language Constraints. International Journal of
Computational Linguistics Research, 5(4), 131–139.

2. Andries, M. & Engels, G. (1996). A Hybrid Query
Language for an Extended Entity-Relationship
Model. Journal of Visual Languages & Computing,
7(3), 321–352.

3. Angelaccio, M., Catarci, T., & Santucci, G.
(1990). QBD*: A Graphical Query Language
with Recursion. IEEE Transactions on Software
Engineering, 16(10), 1150–1163.

4. Ataullah, A. (2014). Business Policy Modeling and
Enforcement in Relational Database Systems. PhD
Thesis, University of Waterloo, Waterloo, Ontario,
Canada.

5. Badia, A. (2004). Entity-Relationship modeling
revisited. ACM SIGMOD Record, 33(1), 77–82.

6. Badia, A. & Lemire, D. (2011). A Call to Arms:
Revisiting Database Design. ACM SIGMOD Record,
40(3), 61–69. DOI: 10.1145/2070736.2070750.

7. Bajwa, I. S., Bordbar, B., & Lee, M. (2014). OCL
Usability: A Major Challenge in Adopting UML.
In Proceedings of the 3rd International Workshop
on Realizing Artificial Intelligence Synergies in
Software Engineering, RAISE 2014. ACM, New
York, NY, USA, 32–37. DOI: 10.1145/2593801.

2593807.

8. Bajwa, I. S., Sarwar, N., & Naeem, M. A. (2016).
Generating EXPRESS Data Models from SBVR.
Proceedings of the Pakistan Academy of Sciences:
A. Physical and Computational Sciences, 53(4),
381–389.

9. Bajwa, I. S. & Shahzada, M. A. (2017). Automated
Generation of OCL Constraints: NL based Approach
vs Pattern Based Approach. Mehran University
Research Journal of Engineering & Technology,
36(2), 243–254.

10. Bloesch, A. C. & Halpin, T. A. (1997). Conceptual
Queries Using ConQuer-II. In Embley, D. W. &
Goldstein, R. C., editors, Proc. ER’ 97. Springer,
113–126.

11. Bonais, M., Nguyen, K., Pardede, E., & Rahayu,
W. (2014). A Formalized Transformation Process for
Generating Design Models from Business Rules. In
Proceedings of PACIS 2014. Chengdu, China.

12. Bonais, M., Nguyen, K., Pardede, E., & Rahayu,
W. (2016). Automated generation of structural
design models from SBVR specification. Applied
Ontology, 11(1), 51–87. DOI: 10.3233/AO-160162.

13. Cabot, J., Pau, R., & Raventós, R. (2010). From
UML/OCL to SBVR Specifications: A Challenging
Transformation. Information Systems, 4(35),
417–440.

14. Chapin, D. (2008). SBVR: What is now Possible
and Why? Business Rules Journal, 9(3).

15. Chen, P. P.-S. (1976). The Entity-Relationship
Model—Toward a Unified View of Data. ACM
Transactions on Database Systems (TODS), 1(1),
9–36.

16. Chisholm, M. (2004). How to Build a Business
Rules Engine. Morgan Kaufmann Publishers, San
Francisco, CA, USA.

17. Chittimalli, P. K. & Bhattacharyya, A. (2019).
SBVR-based Business Rule Creation for Legacy

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 93

ISSN 2007-9737

http://dx.doi.org/10.1145/2070736.2070750
http://dx.doi.org/10.1145/2593801.2593807
http://dx.doi.org/10.1145/2593801.2593807
http://dx.doi.org/10.3233/AO-160162

Programs Using Variable Provenance. In
Proceedings of the 12th Innovations on Software
Engineering Conference (Formerly Known As
India Software Engineering Conference), ISEC’19.
ACM, New York, NY, USA, 16:1–16:11. DOI:
10.1145/3299771.3299786.

18. Connolly, T. & Begg, C. (2015). Database
Systems: A Practical Approach to Design,
Implementation, and Management. Pearson
Education, UK, 6 edition.

19. Date, C. J. (2000). An Introduction to Database
Systems. Addison Wesley Longman, Inc, Reading,
Massachusetts, 7 edition.

20. Elmasri, R. & Navathe, S. B. (2016). Fundamentals
of Database Systems. Pearson, New York, USA, 7
edition.

21. Essebaa, I. & Chantit, S. (2019). Tool Support
to Automate Transformations from SBVR to UML
Use Case Diagram. In Proceedings of the 13th
International Conference on Evaluation of Novel
Approaches to Software Engineering - Volume 1:
MDI4SE. SciTePress, Funchal, Madeira, Portugal,
525–532. DOI: 10.1145/2975941.2975943.

22. Gogolla, M. (1994). An Extended
Entity-Relationship Model. Fundamentals and
Pragmatics. Springer-Verlag, Berlin Heidelberg.

23. Halpin, T. (2015). Object-Role Modeling
Fundamentals: A Practical Guide to Data Modeling
with ORM. Technics Publications, first edition.

24. Halpin, T. & Morgan, T. (2008). Information
Modeling and Relational Databases. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2 edition.

25. Hay, D. C. (2011). UML & Data Modeling:
A Reconciliation. Technics Publications, LLC,
Westfield, New Jersey.

26. Hnatkowska, B. & Alvarez-Rodriguez, J. M.
(2017). Business Rule Patterns Catalog for
Structural Business Rules. In Madeyski, L.,
Śmiałek, M., Hnatkowska, B., & Huzar, Z., editors,
Software Engineering: Challenges and Solutions,
number 504 in Advances in Intelligent Systems and
Computing. Springer International Publishing, 3–16.
DOI: 10.1007/978-3-319-43606-7_1.

27. Hnatkowska, B. & Gawęda, T. (2018). Automatic
Processing of Dynamic Business Rules Written in
a Controlled Natural Language. In Towards a
Synergistic Combination of Research and Practice
in Software Engineering, Studies in Computational

Intelligence. Springer, Cham, 91–103. DOI: 10.

1007/978-3-319-65208-5_7.

28. Hohenstein, U. & Engels, G. (1992).
SQL/EER: Syntax and Semantics of an
Entity-Relationship-Based Query Language.
Information Systems, 17(3), 209–242.

29. International Organization for Standardization
(1998). Ergonomic requirements for office work with
visual display terminals (VDTs), Part 11: Guidance
on usability. Technical Report ISO 9241-11:1998(E),
Geneva.

30. Iqbal, U. & Bajwa, I. S. (2016). Generating UML
activity diagram from SBVR rules. IEEE, 216–219.
DOI: 10.1109/INTECH.2016.7845094.

31. Ivanov, A. N. (2004). Graphic Language for
Describing Constraints on Diagrams of UML
Classes. Programming and Computer Software,
30(4), 204–208.

32. Jackson, D. (2012). Software Abstractions: Logic,
Language, and Analysis. MIT Press, Cambridge,
MA, revised edition edition.

33. Jesus, J. S. & Melo, A. C. (2015). An Architectural
Pattern to Implement Business Rules in Information
Systems. In 2015 IEEE 17th Conference on
Business Informatics (CBI), volume 2. 80–87. DOI:
10.1109/CBI.2015.35.

34. Jesus, J. S. d. & Melo, A. C. V. d. (2014). Business
Rules: From SBVR to Information Systems. In
Fournier, F. & Mendling, J., editors, Business
Process Management Workshops, number 202 in
Lecture Notes in Business Information Processing.
Springer International Publishing, 489–503.

35. Jim Burton & Howse, J. (2017). The Semiotics
of Spider Diagrams. Logica Universalis, 11(2),
177–204. DOI: 10.1007/s11787-017-0167-2.

36. Jodłowiec, M. & Pietranik, M. (2019). Towards
the Pattern-Based Transformation of SBVR Models
to Association-Oriented Models. In Nguyen, N. T.,
Chbeir, R., Exposito, E., Aniorté, P., & Trawińsky,
B., editors, Computanional Collective Intelligence,
volume 11683 of Lecture Notes in Computer
Science. Springer, Cham, Hendaye, France. DOI:
10.1007/978-3-030-28377-3_7.

37. Kent, S. (1997). Constraint Diagrams: Visualizing
Invariants in Object-Oriented Models. In
OOPSLA’97 Proceedings of the 12th ACM
SIGPLAN Conf. on Object-Oriented Programming
Systems, Languages & Applications. ACM
Press, Atlanta, Georgia, USA, 327–341. DOI:
10.1145/263698.263756.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

Alain Pereira Toledo, Abel Rodríguez Morffi, Alain Pérez Alonso, Andy Morfa Hernández, et al.94

ISSN 2007-9737

http://dx.doi.org/10.1145/3299771.3299786
http://dx.doi.org/10.1145/2975941.2975943
http://dx.doi.org/10.1007/978-3-319-43606-7_1
http://dx.doi.org/10.1007/978-3-319-65208-5_7
http://dx.doi.org/10.1007/978-3-319-65208-5_7
http://dx.doi.org/10.1109/INTECH.2016.7845094
http://dx.doi.org/10.1109/CBI.2015.35
http://dx.doi.org/10.1007/s11787-017-0167-2
http://dx.doi.org/10.1007/978-3-030-28377-3_7
http://dx.doi.org/10.1145/263698.263756

38. Kuhn, T. (2014). A Survey and Classification
of Controlled Natural Languages. Computational
Linguistics, 40(1), 121–170. DOI: 10.1162/COLI_
a_00168.

39. Lawley, M. & Topor, R. W. (1994). A Query
Language for EER Schemas. 292–304.

40. Manaf, N. A., Antoniades, A., & Moschoyiannis,
S. (2017). SBVR2alloy: An SBVR to Alloy Compiler.
In 2017 IEEE 10th Conference on Service-Oriented
Computing and Applications (SOCA). 73–80. DOI:
10.1109/SOCA.2017.18.

41. Maoz, S., Ringert, J. O., & Rumpe, B. (2011).
CD2alloy: Class diagrams analysis using Alloy
revisited. In Model Driven Engineering Languages
and Systems. Springer, 592–607.

42. Nemuraite, L., Skersys, T., Sukys, A.,
Sinkevicius, E., & Ablonskis, L. (2010). VETIS
tool for editing and transforming SBVR business
vocabularies and business rules into UML&OCL
models. In 16th International Conference on
Information and Software Technologies, Kaunas:
Kaunas University of Technology. 377–384.

43. Olivé, A. (2007). Conceptual Modeling of
Information Systems. Springer, Berlin.

44. OMG (2014). Object Constraint Language, v2.4.

45. OMG (2017). Semantics of Business Vocabulary
and Business Rules (SBVR) v 1.4.

46. Pastor, O. & Ruiz, M. (2018). From Requirements
to Code: A Conceptual Model-based Approach
for Automating the Software Production Process.
Enterprise Modelling and Information Systems
Architectures, 13, 274–280. DOI: 10.18417/emisa.
si.hcm.21.

47. Ross, R. G. (2003). Principles of the Business Rule
Approach. Addison-Wesley Longman Publishing
Co., Inc., Boston, USA.

48. Ross, R. G. (2007). Are Integrity Constraints
Business Rules? Not! Business Rules Journal, 8(3).

49. Ross, R. G. (2009). RuleSpeak Sentence Forms.
Specifying Natural-Language Business Rules in
English. v2.2.

50. Roychoudhury, S., Sunkle, S., Kholkar, D., &
Kulkarni, V. (2017). From Natural Language to
SBVR Model Authoring Using Structured English for
Compliance Checking. In Hallé, S., Villemaire,
R., & Lagerström, R., editors, 2017 IEEE

21st International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, Quebec City,
QC, Canada, 73–78. DOI: 10.1109/EDOC.2017.19.

51. Salemi, S., Selamat, A., & Penhaker, M. (2016).
A model transformation framework to increase
OCL usability. Journal of King Saud University -
Computer and Information Sciences, 28(1), 13–26.
DOI: 10.1016/j.jksuci.2015.04.002.

52. Selway, M., Grossmann, G., Mayer, W., &
Stumptner, M. (2015). Formalising natural
language specifications using a cognitive
linguistic/configuration based approach.
Information Systems, 54, 191–208. DOI:
10.1016/j.is.2015.04.003.

53. Shin, S.-S. (2019). Empirical study on the
effectiveness and efficiency of model-driven
architecture techniques. Software &
Systems Modeling, 18(5), 3083–3096. DOI:
10.1007/s10270-018-00711-y.

54. Simsion, G. C. & Witt, G. (2005). Data Modeling
Essentials. Morgan Kaufmann Publishers, San
Francisco, USA, 3 edition.

55. Snoeck, M. (2014). Enterprise Information Systems
Engineering. The Enterprise Engineering Series.
Springer International Publishing, Cham.

56. Speelpenning, J., Daux, P., & Gallus, J. (1999).
Data Modeling and Relational Database Design,
volume Volume 1. Oracle Corporation.

57. Thalheim, B. (2008). Visual SQL: Towards
ER-Based Object-Relational Database Querying. In
Li, Q., editor, Conceptual Modeling - ER 2008,
volume 5231 of LNCS. Springer-Verlag, Barcelona,
Spain, 520–521.

58. Von Halle, B. (2002). Business Rules Applied:
Building Better Systems Using the Business Rules
Approach. John Wiley & Sons, New York.

59. Weichbroth, P. (2018). Usability attributes revisited:
a time-framed knowledge map. In Ganzha, M.,
Maciaszek, L., & Paprzycki, M., editors, Annals
of Computer Science and Information Systems,
volume 15. 1005–1008. DOI: 10.15439/2018F137.

60. Witt, G. (2012). Writing Effective Business Rules.
Morgan Kaufmann, USA, 1 edition.

Article received on 10/07/2019; accepted on 20/10/2019.
Corresponding author is Alain Pereira Toledo.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 75–95
doi: 10.13053/CyS-24-1-3217

A Method for Expressing Integrity Constraints in Database Conceptual Modeling 95

ISSN 2007-9737

http://dx.doi.org/10.1162/COLI_a_00168
http://dx.doi.org/10.1162/COLI_a_00168
http://dx.doi.org/10.1109/SOCA.2017.18
http://dx.doi.org/10.18417/emisa.si.hcm.21
http://dx.doi.org/10.18417/emisa.si.hcm.21
http://dx.doi.org/10.1109/EDOC.2017.19
http://dx.doi.org/10.1016/j.jksuci.2015.04.002
http://dx.doi.org/10.1016/j.is.2015.04.003
http://dx.doi.org/10.1007/s10270-018-00711-y
http://dx.doi.org/10.15439/2018F137

