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Abstract

We introduce a general technique for finding sets of axioms for a given class of
semigroups. To illustrate the technique, we provide new sets of defining axioms for
groups of exponent n, bands, and semilattices.

2010 Mathematics Subject Classification. 08B05, 03C05, 20A05, 20M20.

1 Introduction

The general aim of providing new sets of axioms that equivalently define a given math-
ematical structure has been the source of considerable research and progress in mathe-
matics. About one hundred years ago Boolean algebras attracted this kind of attention
in the pioneer work of Sheffer [35], but this was just the first of a vast number of papers
(for example, [9], [10], [12], [17], [20], [23], [26], [28], [31], [39], [41]).

The same can be said about other theories (see, for example, [11], [16], [21], [25], [27],
[32], [33], [34], [37], [42], [43)).

However, one cannot speak about the general problem of finding new sets of axioms
without assigning to groups the most notable place (see the survey paper [30], and also
(4], [6], [14], [18], [19], [22], [29], [36], [38], [40]).

Semigroup theory, as a topic developed under the guidance of A.H. Clifford, might
be seen as a product of these kinds of axiomatic considerations (see [7], Section 6).

It is well known that groups can be defined by a single axiom (see [6]), but the analo-
gous result for, e.g., inverse semigroups (one of the most important classes of semigroups
apart from groups) does not hold (see [3]). It is clear that semigroups offer an enormous
field full of challenges for mathematicians and for experts in automated reasoning willing
to find new sets of axioms for the many notable sub-classes of semigroups.
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The aim of this paper is to provide a general tool for finding new sets of axioms for
classes of semigroups. In Section 2 we give a general explanation of the technique. This
method uses the Cayley representation for semigroups, but it can be similarly used with
different representations. Section 3 is a detailed illustration of the technique applied to
the case of bands. In this section we show how the new defining axioms for bands are
found, we prove that they really define bands, and the independence of the axioms is
verified (see Theorem 3.3 and also Theorem 3.5). Finally, in Section 4 we apply the
technique to the class of groups of exponent n, incidentally finding a single defining
identity of these groups in the class of groupoids with 1 (see Theorem 4.2).

2 A Method Using Cayley Representation

The usual way of defining a class of semigroups is to specify some additional conditions
that a semigroup must satisfy to belong to the class. For example, we say that a semi-
group S is regular if for all a € S, there is € S such that axa = a [8, page 50]. We just
defined the class of regular semigroups. Note that the starting point of this definition is a
semigroup 5, that is, associativity is one of the explicitly given axioms: for all a,b,c € S,
a(bc) = (ab)e.

In our method of finding new axioms for a class of semigroups, we will not start
with a semigroup, but rather with a groupoid or a groupoid with a (right or two-sided)
identity element. The associativity axiom will not be stated explicitly but it will follow
from other axioms. A way to replace the associativity axiom with equivalent axiom or
axioms is given by the following observation. Suppose that we have a Cayley table for
a groupoid (S, ). The rows and columns of the table can be viewed as mappings from
S to S. Then the multiplication * is associative if and only if every row commutes with
every column.

To be more precise we introduce some definitions. A groupoid is a pair (5, %), where S
is a non-empty set and * is a binary operation on S. For a non-empty set X, we denote
by T'(X) the monoid of full transformations on X. The monoid 7'(X) consists of all
functions o : X — X with the function composition as multiplication (for «, 8 € T(X)
and @ € X, (a8)(x) = a(8(x))).

Let S be a groupoid. Every element s € .S induces in a natural way mappings s and
s from S to S defined by: s(x) = sz and s(x) = zs. In other words, the mappings s
and s are elements of 7'(.S) induced by the rows and columns, respectively, of the Cayley
table for S.

The following lemma, well acknowledged in group theory but almost never mentioned
by semigroup theorists, says that a groupoid S is a semigroup if and only if its Cayley
table rows commute with its Cayley table columns.

Lemma 2.1 Let S be a groupoid. Then S is a semigroup if and only if st = ts for all
s,t€S.

Proof: For all s,t,z € S

(st)(x) = (ts)(z)

T ¢
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The result follows. W

In view of Lemma 2.1, we will be interested in the centralizers of transformations
s € T(S), where s is an element of a semigroup S.
For av € T(X), the centralizer of « is a subset C(«) of T(X) defined by:

Cla) ={B € T(X): af = fa}.

It is clear that C(«) is a submonoid of T'(X).

Let S be a semigroup. Define A : S — T(S) by: A(s) = s. The mapping A is
a homomorphism, called the left reqular representation of S. For every s € S, the
transformation A(s) = s is called a left inner translation of S. The image A(S) is
a subsemigroup of T'(S), which is isomorphic to S if S has a right identity element.
Similarly, we have an anti-homomorphism p : S — T'(S) defined by: p(t) = t. For every
t € S, the transformation p(t) = ¢ is called a right inner translation of S.

We are now ready to describe our method. Let C be a class of semigroups and suppose
we want to find a (new) set of axioms for this class. We proceed as follows. Let S € C.

(A) Find necessary conditions that the elements of A\(S) must satisfy. For example, if
C is a class of groups, then every s € A(S) must be a permutation of S.

(B1) For all s € S, characterize the centralizer C(s).

(B2) Use the characterization obtained in (B;) to find necessary conditions that a right
inner translation ¢ must satisfy to commute with s (s,¢ € S).

(C) Translate the conditions obtained in (A) and (B2) to abstract conditions (axioms)
for S.

(D) Prove that the axioms obtained in (C) define the class C.

If the axioms obtained in (C) do not define the class C, we go back to (A) and (Bs)
and try to find more conditions that transformations in A(S) and transformations in C'(s)
must satisfy. If we have a set of axioms for C, it may be possible to simplify this set. For
example, the axioms may not be independent, in which case it will be possible to remove
some of them. It may also happen that some axioms are not first order, in which case we
may try to replace them with first-order statements (statements whose quantifiers range
over elements of S).

3 Application to Bands

In this section we apply the method described in (A)—(D) of Section 2 to the class C of
bands with a right identity element. We will obtain a set of independent axioms for this
class that avoids the associativity law.

A band is a semigroup S that consists entirely of idempotents, that is, aa = a for
every a € S. Let S be a band. For a function f, we denote by dom(f) the domain
of f, by im(f) = {f(z) : * € dom(f)} the image of f, and by ker(f) = {((z,y) €
dom(f) x dom(f) : f(z) = f(y)} the kernel of f.



(A) Find necessary conditions that the elements of A(S) must satisfy.

Since A : S — T'(S) is a homomorphism, s € A(S) is an idempotent transformation
for every s € S. Since every idempotent transformation fixes every element of its image,
we have that for all s,y € S,

y €im(s) = s(y) =y (3.1)
(B1) For all s € S, characterize the centralizer C(s).

A description of the centralizers of idempotent transformations on an arbitrary set is
provided in [1] and [2]:

Lemma 3.1 Let o, 8 € T(X) where « is an idempotent. Then B € C(«) if and only if:
(1) B(im(a)) € im(a);
(2) Forallz,y € X, if (x,y) € ker(a) then (B(x), B(y)) € ker(a).

(B2) Find necessary conditions that ¢ € C'(s) must satisfy.

Let s,t € S. Then t € C(s) by Lemma 2.1. Thus, by Lemma 3.1, we have for all
T,y €5,

t(im(s)) € im(s), (3.2)
(z,y) € ker(s) = (¢(x), {(y)) € ker(s). (3.3)

(C) Translate the conditions obtained in (A) and (Bz) to abstract conditions for S.

Conditions (3.1), (3.2) and (3.3) translate, respectively, to y = sz = sy =y, (s5)t C
sS, and sz = sy = s(at) = s(yt). It is clear that the axiom y = sz = sy = y is
equivalent to the identity s(sx) = sxz. Changing the names of the variables, we obtain
for all a,b,c,d € S,

a(ab) = ab, (3.4)
(aS)b C alS, (3.5)
ab = ac = a(bd) = a(cd). (3.6)

(D) Prove that the axioms obtained in (C) define the class C.

We prove that, in the class of groupoids, (3.4)—(3.6) define the class of semigroups
satisfying the identity a(ab) = ab. In the class of groupoids with a right identity element,
(3.4)—(3.6) define the class of bands. A right identity element is needed for bands since
when we pass from a semigroup S to A(S), we cannot tell the difference between the
axioms aa = a and a(ab) = ab. Both axioms translate to A(a) being an idempotent for
all @ € S. Indeed, if aa = a, then A(a) = A(aa) = A(a)A(a); and if a(ab) = ab, then for
all b € S, Ma)(b) = ab = a(ab) = (aa)b = A(aa)(b), and so A(a) = A(aa) = A(a)\(a).

Theorem 3.2 Let S be a groupoid. Then S is a semigroup satisfying the identity a(ab) =
ab if and only if (3.4)—(3.6) hold for all a,b,c,d € S. In particular, if S has a right identity
element, the S is a band if and only if (3.4)—(3.6) hold for all a,b,c,d € S.



Proof: It is clear that (3.4)—(3.6) hold for every semigroup satisfying the identity a(ab) =
ab. Conversely, suppose that the groupoid S satisfies (3.4)—(3.6).

For all s,z € S, we have s(sz) = sz by (3.4), and so s(s(x)) = s(sx) = sz = s(x).
Thus every element of A(S) is an idempotent. Let s,¢ € S. We will prove that ¢ € C(s).
First, by (3.5), (sS)t C sS, and so

t(im(s)) = t(sS) = (sS)t C sS = im(s).

Second, suppose (z,y) € ker(s), that is, s(x) = s(y). Then sz = sy, and so, by (3.6),
s(xt) = s(yt). Thus

s(t(x)) = s(xt) = s(xt) = s(yt) = s(t(y)) = s(t(y)),

and so (t(x),t(y)) € ker(s). Hence t € C(s) by Lemma 3.1, and so S is a semigroup by
Lemma 2.1. Of course, S satisfies the identity a(ab) = ab by (3.4).

Now, suppose a groupoid S has a right identity element. It is clear that (3.4)—(3.6)
hold for every band. Conversely, suppose that S satisfies (3.4)—(3.6). We have already
established that S is a semigroup and that every element of A(S) is an idempotent. Since
S has a right identity element, S is isomorphic to A\(S), and so S is a band. W

Note that (3.5) can be expressed as a first-order proposition:
V(a,b,z € S)3(y € S) ((azx)b = ay).

This proposition contains the existential quantifier, but it is possible to replace it with
the following universally quantified proposition: for all a,b,c,d € S,

a((ab)c) = (ab)e. (3.7)

We note that (3.7) implies (3.5): Let (ax)b € (aS)b. By (3.7), we have (az)b =
a((ax)b) € aS. Therefore (aS)b C aS. Clearly every band S satisfies (3.7), and so
Theorem 3.2 gives:

Theorem 3.3 Let S be a groupoid with a right identity element. Then S is a band if
and only if (3.4), (3.6), and (3.7) hold for all a,b,c,d € S:

Observe that (3.5) does not imply (3.7), but (3.4) and (3.5) together do imply (3.7).
Hence we have:

Corollary 3.4 Let S be a groupoid with a right identity element. Then the following are
equivalent:

(a) S is a band.
(b) S satisfies (3.4), (3.5), and (3.6).
(c) S satisfies (3.4), (3.6), and (3.7).
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Figure 1: Independence of (3.4), (3.5), and (3.6).

O |TH® | =] %
O |THY ||
oOlo|o0 || ®
o|x|ojo|lo
olojlojlo|lo
o|T| || %
oO|TH® |~
sV IV (VI Y <V V)
v|lo|v oo
olojlo|lo|lo

Figure 2: Independence of (3.4), (3.6), and (3.7).

We will prove that the axioms (3.4), (3.5), and (3.6) are independent. First observe
that a group with at least two elements satisfies (3.5) and (3.6) but it does not satisfy
(3.4). Thus (3.4) is independent from (3.5) and (3.6).

To prove that (3.5) is independent from (3.4) and (3.6), let S be the groupoid on the
left in Figure 1. It is straightforward to verify that S satisfies (3.4) and (3.6). However,
(aS)b = {ab,cb} = {a,b} and aS = {a,c}, so S does not satisfy (3.5).

Finally, it is easy to verify that the groupoid on the right in Figure 1 satisfies (3.4)
and (3.5), but it does not satisfy (3.6) because aa = ab but a(ab) # a(bb). We have
proved that the axioms (3.4)—(3.6) are independent.

Now we prove that (3.4), (3.6) and (3.7) ((1), (2), and (3) of Theorem 3.3) are
independent. First, (3.4) and (3.6) do not imply (3.7) since they do not imply (3.5)
and (3.7) implies (3.5). The left groupoid in Figure 2 satisfies (3.6) and (3.7) but it
does not satisfy (3.4) since bb = a and ba = c. Finally, the groupoid on the right in
Figure 2 satisfies (3.4) and (3.7) but it does not satisfy (3.6) since ab = a = aa and
a(bb) = ¢ # a = a(ab).

Observe that every semigroup satisfies conditions (3.5) and (3.6). However, the con-
verse does not hold as the groupoid in Figure 3 shows. That groupoid satisfies (3.5) and
(3.6), but it is not a semigroup since it does not have an idempotent whereas every finite
semigroup has an idempotent. Thus we propose the following problem:

Problem. Is it possible to find a set P of independent axioms containing (3.5) and (3.6)
such that a groupoid is a semigroup if and only if it satisfies the axioms in P?

*
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Figure 3: Groupoid satisfying (3.5) and (3.6) that is not a semigroup.



The axioms of Theorem 3.3 can be easily modified to obtain the following result about
semilattices (commutative bands).

Theorem 3.5 Let S be a groupoid with a left identity element. Then S is a semilattice
if and only if it satisfies the following axioms:

(1) a(ab) = ab;
(2) ab = ac = a(bd) = a(dc);
(3) a((ab)c) = (ab)c.

Proof: It is clear that every semilattice satisfies (1)—(3). Conversely, suppose that a
groupoid S with a left identity element, say f, satisfies (1)—(3). Taking a = f and b = ¢
in (2), we obtain bd = db for all b,d € S. Thus S is commutative and f is also a right
identity element. But then (2) implies (3.6), and so S is a band by Theorem 3.3. There-
fore, S is a semilattice. W

We point out that axioms (1)—(3) do not work if we do not assume that a groupoid S
has a left identity element. Indeed, suppose S is a left zero semigroup, that is, xy = x for
all z,y € S. Then (1)—(3) are clearly satisfied (and every element of S is a right identity
element) but S is not a semilattice (if S has more than one element).

4 Application to Groups of Exponent n

In this section we apply the method described in (A)—(D) of Section 2 to the class C of
groups of exponent n. We will obtain a single axiom that defines this class in the class
of groupoids with a right identity element.

Let n > 1 be an integer. We say that a group G is a group of exponent n if 2™ =1
for every x € G. Let G be a group of exponent n.

(A) Find necessary conditions that the elements of A(G) must satisfy.

For an integer k > 0 and o € T'(X), we denote by o the composition of a with itself
k times, where it is understood that a® = idx (the identity transformation on X).
Since A : G — T'(G) is a homomorphism, we have s" = idx for every s € G. Thus,
for every x € G,
s"(z) == (4.1)

(B1) For all s € G, characterize the centralizer C(s).
Let 6 € T(X) be one-to-one. Denote by S(d) and F(J) the following subsets of X:
S@O)={reX:d(x)#x} and F()={re X :d(x)=uxz}

Let §,0 € T(X) be one-to-one. We say that ¢ included in o, and write 6 C o, if
d(z) = o(x) for every x € S§(0). We say that § and o are disjoint if S(6) N S(o) = 0.



Let A be a set of pairwise disjoint one-to-one elements of T'(X). The formal product
[I5c4 6 of elements of A is a one-to-one element of T'(X) defined by

(H 5) (z) = { i(f’«") if x € S(§) for some § € A

otherwise.
deA

If A =0, we agree that []5., ¢ is the identity transformation. The following lemma
follows from [13, Theorem 4]. (This theorem has been proved for a finite set X. However,
for a one-to-one o € T'(X), the proof of the theorem carries over to the infinite case.)

Lemma 4.1 Let S be a semigroup, and let o, € T'(S) such that o = s for some s € S
and a = [[5c4 9 is a formal product of cycles 6 € A. Then B € C(«a) if and only if:

(1) B(F(e)) € F(a);

(2) For every cycle (xox1... xp—1) € A, either f({xo,1,...,25-1}) = {y} for some
y € F(«) or there is a cycle (Yoyi - - - Ym—1) € A such that m divides k and B(z;) =
y; for every 0 < i < k—1, where the subscripts on the y; are calculated modulo m.

(B2) Find necessary conditions that ¢ € C(s) must satisfy.

Let s,t € G. Then t € C(s) by Lemma 2.1. Since G is a group of exponent n,
s € T(G) is a formal product of cycles, each of length < n. (We will call them cycles
in s.) Let (z s(z)... s" 1(x)) be a cycle of length n in s. Let y = (x). Since f € T(G) is
a permutation, it follows from Lemma 4.1 that there is a cycle (yoyi . .. yn—1) of length n
in s such that #(s’(z)) = y; for every 0 < i < n—1. Thenf(z) = yo and £(s" () = yn_1.
Thus y = t(x) = yo, and so £(s"1(z)) = yn_1 = 5" (yo) = 5" !(y). The latter implies

s(E(s" (@) = s(s" () = 5" (y) =y = ().

We have proved that for all s,t,x,y € G,

s(t(s" (@) = t(a). (4.2)
(C) Translate the conditions obtained in (A) and (Bz) to abstract conditions for G.
Let S be a groupoid. For all a,b € S and every integer n > 0, we define a(™b

recursively by
a9 = b and a™b = a(a™ V) for n > 1.

For example, aMb = ab, a®b = a(ab), and a®b = a(a(ab)). Note that for all m,n > 0,
a™ (a(Mb) = a(mtmp,
Now, conditions (4.1) and (4.2) translate, respectively, to

sMy =g, (4.3)
s((s"Va)t) = xt. (4.4)

If S is a groupoid with right identity element, then (4.4) clearly implies (4.3). Thus
we are left with one axiom, namely (4.4). Changing the names of the variables, we obtain
for all a,b,c,d € G,

a((a™Vb)e) = be. (4.5)



(D) Prove that the axioms obtained in (C) define the class C.

We prove that (4.5) defines the class of groups of exponent n in the class of groupoids
with a right identity element.

Theorem 4.2 Let S be a groupoid with a right identity element and let n > 1 be an
integer. Then S is a group of exponent n if and only if for all a,b,c € S,

a((a™ Yb)e) = be. (4.6)

Proof: It is clear that every group of exponent n satisfies (4.6). Conversely, suppose
that a groupoid S with a right identity element, say e, satisfies (4.6). Taking ¢ = e in
(4.6), we obtain

a™b=1b (4.7)

for all a,b € S. Let a,b,¢,d € S and suppose ab = cd. We have a((a(® Ve)d) = ed by
(4.6), and so

a((@™Veyd) =ed = a((a™ Ve)d) =ab  (since ab = cd)
= " V(a((@™Ve)d)) = a™ Y (ab)
= (™ Ye)d) = a™b
= (™ Ve)d=0b (by (4.7)).

We have proved that for all a,b,c,d € S,
ab = cd = (6" Ve)d = b. (4.8)

Let s,u,t € S. We want to prove that (su)t = s(ut). Let x = su, z = xt and
y = s Dz Then, by (4.7),

s Vg = s D(su) = sMu=u and sy =s(s"Vz) = sM

z=z.
Thus sy = zt and so, by (4.8), (s(®*"Vx)t = y. Hence ut = y and so s(ut) = sy. On the
other hand, sy = zt = (su)t, and so s(ut) = (su)t.

We have proved that S is a semigroup. It is clear that in a semigroup, a(™b = a"b
for all elements a and b. Thus, by (4.7), we have that for all a € S,

a" =a"e =aMe = e. (4.9)

Thus, S is a semigroup with a right identity e such that every a € S has a right inverse
(namely, a”~!). Tt is well known that such a semigroup is a group with identity e. It
follows by (4.9) that S is a group of exponent n. W

Axiom (4.6) is of the form a = bc, where « is a term constructed from multiplication
and variables. For example, for n = 3, the axiom is a(a(a(bc))) = be, so a = a(a(a(bc))).
Denoting by V(a) the number of variable occurrences in «, we have V(a) = n+2 (n
occurrences of a and one occurrence of b and ¢ each). We point out that axiom (4.6) does
not work if we do not assume that a groupoid S has a right identity element. Indeed,



suppose S is a right zero semigroup, that is, zy = y for all z,y € S. Then (4.6) is clearly
satisfied but S is not a group (if S has more than one element).

Single axioms for groups of exponents n exist for every n > 2, without the assumption
of a right identity element [15]. If such an axiom has the form « = x, where x is a variable
and « is a term constructed from multiplication and variables, then V(«) > 2n + 1 [5].
Single axioms o = x with V(a) = 2n + 1 have been constructed for n = 4 [15] and all
odd n > 3 [5].

Modifying (4.6), we obtain an axiom that defines the class of abelian groups of expo-
nent n in the class of groupoids with identity.

Theorem 4.3 Let S be a groupoid with a right identity element and let n > 1 be an
integer. Then S is an abelian group of exponent n if and only if for all a,b,c € S,

a((a™ Yb)c) = cb. (4.10)

Proof: It is clear that every abelian group of exponent n satisfies (4.10).

Conversely, suppose S is a groupoid with a right identity element, say e, satisfying
(4.10). We start by proving that e is also a left identity element. Indeed, using (4.10),
we obtain for all a,c € S,

c=ce=a((a™Ve)e) = a(a™Ve) = a((a™ Ye)e) = ec,

and hence e is also a left identity element. Now, taking a = e in (4.10), we obtain bc = ¢b
for all b,c € S. Thus S is abelian. But then (4.10) implies (4.6), and so S is a group of
exponent n by Theorem 4.2. W

Again, the example of right zero semigroups shows that axiom (4.10) does not work
if we do not assume that a groupoid S has a right identity element.

It is worth observing that identity (4.10) found by our method yields, for the case of
exponent 3, an identity very close to the identity (4.3) of [24] found by a computer.

5 Final Remarks and Problems

The general method explained in Section 2 is based on the Cayley representation of
semigroups. Variations of the method based on other representations of classes of semi-
groups will lead to different sets of axioms. For example, the same idea can be used
with the Vagner-Preston representation for inverse semigroups [8, Theorem 5.1.7] to find
axioms that define subclasses of inverse semigroups. However, since the inner trans-
lations that occur in the Vagner-Preston representation cannot be defined for an arbi-
trary groupoid S, we start with a groupoid (S,*,~!) with an involution and such that
r = (zz~Yz. (Recall that a unary operation ~! on a groupoid S is called an invo-
lution if for all a,b € S, (ab)™ = b~la™! and (a7!)~! = a.) For s € S, we define
the inner translations s, : s71S — S and s* : Ss7! — S by s,(s7'z) = s(s7'2) and
s*(rs™!) = (xs71)s. (These are the equivalents of the inner translations s and 5 used
in the Cayley representation.) If S is an inverse semigroup, then both s, and s* are
one-to-one, that is, they are elements of the symmetric inverse semigroup Z(S) of partial
one-to-one transformations on S. The mapping ¢ : S — Z(S) defined by ¢(s) = s, is a
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monomorphism from S to Z(.S) [8, Theorem 5.1.7], called the Vagner-Preston represen-
tation of S. (The monomorphism ¢ is the equivalent of the Cayley representation A for
general semigroups.)

For the sake of illustration, we will provide axioms for semilattices that we have
obtained using our method with the Vagner-Preston representation, that is, axioms that
follow from translating the commutativity of partial one-to-one transformations to the
language of groupoids with involution.

Theorem 5.1 Let S be a groupoid with an involution 1 such that (aa™')a = a for all
a € S. Then S is a semilattice if and only if for all x,a,b € S:

(1) z€a 'S = ar =uz;
(2) = € Sb= (ax)b = ax;
(3) aSNbS C (ab)sS.

Proof: That this result is true follows from the way conditions (1)-(3) were found
(applying the obvious analogous of our method to the Vagner-Preston representation).
Here we provide an equational proof of the result just for the sake of completeness.

Let S be a semilattice and let a € S. Then aa~'a = a (by the assumption), and so
al = (aa"ta) ' =at(a!)"ta=t = a~taa™t. Thus a~! is an inverse of a [8, (2.3.1)].
Since S is a semilattice, a is clearly an inverse of itself, and so a~*
inverse semigroup every element has a unique inverse [8, Theorem 5.1.1]. Thus (1) can
be rewritten as ¢ € aS = ax = x, which is clearly satisfied in a semilattice. It is also
clear that S satisfies (2) and (3).

Conversely, let S be a groupoid with an involution ~' such that (aa=')a = a for
all @ € S, and suppose (1)-(3) hold for all x,a,b € S. We want to prove that S is
a semilattice, that is, for all z,y,z € S, zz = z, vy = yz, and x(yz) = (xy)z. Let
x,y,z €85.

Since z = (zz~!)x, we have 27! = ((zz~1)2)"! = 27 (zx=1)~! € 2715, Thus, by
(1), zz ' =271 andso z = (z71)7! = (zz7 )"t = (271) "'~ = zaz~!. It follows that
r =x"! and xz = 2. The commutativity also follows since 2y = (zy)~! =yl ! = ya.
Since a=! =a fo all a € S, (1) can be rewritten as

= @ since in an

x €aS = ar = z. (5.11)

To prove associativity, we will need a series of identities. Throughout the argument,
we will use commutativity implicitly.

e (5.12): We have yz € Sz, and so by (2)

w(yz) = (2(yz))z = 2(x(y2))-

11



(5.13): By (5.12), z(yz) = z(z(yz)) € SN zS. Thus z(yz) € (zz)S by (3), and so
(z2)(x(yz)) = z(yz) by (5.11).

(5.14): First, (zy)z = z(yx) = z(2(yx)) = z((xy)z) by (5.12) (and commutativity).
Second, x((xy) ) = (z2)(x((zy)z)) by (5.13). Substituting (xy)z for z((xy)z) in
the last equality, we obtain (zy)z = (x2)((zy)z).

(5.15): Applying (5.13) twice, we obtain
z(yz) = (zz)(z(yz)) and (z2)(z(yz)) = ((z2)(y2))((z2)(z(y2))).

Substituting (zy)z for (zz)(z(yz)) in the second equality, we obtain (zxy)z =

((z2)(y2))(x(y2)).
(5.16): We have
(z2)(y2) = (x(y2))(22)(y2)) = ((22)(y2))(2(yz)) = 2(y2),

where the first equality follows from (5.14) and the last from (5.15).

Now, applying (5.16) twice, we obtain

z(zy) = (zy)(2y) = (2y)(zy) = 2(zy),

and so z(yz) = z(zy) = z(zy) = (zy)z. W

In the previous result, the assumption that the unary operation satisfies (aa™1')a = a
cannot be removed. Indeed, consider the groupoid S

W N = O %
W wWw o oo
W N = O
W NN WN
W W W W w

with a unary operation ! defined by 07 =2,2 =0and1 ' =1,3 =3. It is easy
to see that 1 is an involution and that S is a semilattice. We have 2 € 071S (since
07 'x1=2%1=2)but 0%x2=3#2,s0 S does not satisfy (1) of Theorem 5.1.

We conclude with the following two problems.

Problem 1. Use the method described in this paper to find new axioms for other
classes of semigroups or inverse semigroups, for example for the class of completely
regular semigroups.

Problem 2. The method introduced in this paper has been used to produce new defining
axioms for varieties of semigroups. Is it possible to use this method to find new systems
of axioms for classes of semigroups that do not form a variety?

12
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