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High-resolution mapping of quantitative trait loci (QTL) in animals has
proved to be difficult because the large effect sizes detected in crosses
between inbred strains are often caused by numerous linked QTLs,
each of small effect. In a study of fearfulness in mice, we have shown
it is possible to fine map small-effect QTLs in a genetically heteroge-
neous stock (HS). This strategy is a powerful general method of fine
mapping QTLs, provided QTLs detected in crosses between inbred
strains that formed the HS can be reliably detected in the HS. We show
here that single-marker association analysis identifies only two of five
QTLs expected to be segregating in the HS and apparently limits the
strategy’s usefulness for fine mapping. We solve this problem with a
multipoint analysis that assigns the probability that an allele descends
from each progenitor in the HS. The analysis does not use pedigrees
but instead requires information about the HS founder haplotypes.
With this method we mapped all three previously undetected loci
[chromosome (Chr.) 1 logP 4.9, Chr. 10 logP 6.0, Chr. 15 logP 4.0]. We
show that the reason for the failure of single-marker association to
detect QTLs is its inability to distinguish opposing phenotypic effects
when they occur on the same marker allele. We have developed a
robust method of fine mapping QTLs in genetically heterogeneous
animals and suggest it is now cost effective to undertake genome-
wide high-resolution analysis of complex traits in parallel on the same
set of mice.

Most phenotypes of medical importance can be measured
quantitatively, and in many cases the genetic contribution

is substantial, accounting for 40% or more of the phenotypic
variance. Considerable efforts have been made to isolate the
genes responsible for quantitative genetic variation in human
populations, but with little success, mostly because genetic loci
contributing to quantitative traits (quantitative trait loci, QTL)
have only a small effect on the phenotype (1). Association studies
have been proposed as the most appropriate method for finding
the genes that influence complex traits (2). However, family-
based studies may not provide the resolution needed for posi-
tional cloning, unless they are very large, whereas environmental
or genetic differences between cases and controls may confound
population-based association studies (3).

These difficulties have led to the study of animal models of
human traits. Studies using experimental crosses between inbred
animal strains have been successful in mapping QTLs with
effects on a number of different phenotypes, including behavior,
but attempts to fine map QTLs in animals often have foundered
on the discovery that a single QTL of large effect was in fact
caused by multiple loci of small effect positioned within the same
chromosomal region (4). A further potential difficulty with
detecting QTLs between inbred crosses is the significant reduc-
tion in genetic heterogeneity compared with the total genetic
variation present in animal populations: a QTL segregating in
the wild need not be present in the experimental cross.

In an attempt to circumvent the difficulties encountered with
inbred crosses, we have been using a genetically heterogeneous
stock (HS) of mice for which the ancestry is known. The hetero-
geneous stock was established from an eight-way cross of C57BL,
BALByc, RIII, AKR, DBAy2, I, A, and C3Hy2 inbred strains (5).
Since its foundation 30 years ago, the stock has been maintained by

breeding from 40 pairs and, at the time of this experiment, was in
its 60th generation. Thus each chromosome from an HS animal is
a fine-grained genetic mosaic of the founder strains, with an average
distance between recombinants of 1y60 or 1.7 cM.

Theoretically, the HS offers at least a 30-fold increase in
resolution for QTL mapping compared with an F2 intercross (6,
7). The high level of recombination means that fine mapping is
possible by using a relatively small number of animals; for QTLs
of small to moderate effect, mapping to under 0.5 cM is possible
with fewer than 2,000 animals. The large number of founders
increases the genetic heterogeneity, and in theory one can map
all QTLs that account for progenitor strain genetic differences.
Potentially, the use of the HS offers a substantial improvement
over current methods for QTL mapping.

However, for HS mapping to achieve widespread use, we need
to establish its limitations and provide a robust statistical method
of analysis. In this paper we describe a multipoint method
capable of detecting small-effect QTLs in the HS; we evaluate
both its power of QTL detection and the expected degree of QTL
resolution. The utility of the method is demonstrated by fine
mapping five QTLs for fearfulness in HS mice, only two of which
were detectable by single-marker (SM) association.

Materials and Methods
Open-field behavioral testing, genotyping, mapping and gener-
ation of markers was performed as described in ref. 8. The
following microsatellites were generated: chromosome 1 mark-
ers, 103.37 ATAGAACCTGGTGCCTGTGG, TCCCCAG-
GAGAAGACACAAG and 103.64B AAGGGTTCTGAGGT-
GCAGAA, TAGTGGTGCACATCTGCA; and chromosome
12 markers, 419.2 TCCAGATCTCCCCACAGTTC, CCA-
CACTCCAGGAAAGGATC, 419.19 GGCAGTGGTAAT-
CAGGATGTG, TCCCTTCTCCTGGTTGTTGT, and 419.21
TCACTGGGCTCTAACCTTGG, GTAAAATGGTGGC-
AGTGGTG.

Statistical Theory
Failure of SM Association Analysis. It has been noted in association
studies in human populations that SM association analysis may
fail to detect QTLs expected to be segregating (1). We encoun-
tered the same problem in a study (8) of open-field behaviors of
HS mice, a validated animal model of susceptibility to anxiety
(9). We typed a total of 67 markers approximately 1 cM apart on
750 HS mice, over five regions where previous F2 intercrosses
had detected QTLs (refs. 10 and 11; Table 1). We expected to
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confirm QTLs in all five regions because the strains that were
used in the F2 detection experiments were among the founders
of the HS.

We used SM analysis of variance to map the QTLs. At each
marker the animals were grouped according to their genotype
and one-way ANOVA was used to test for significant differences
between the group means. Marker-QTL association was indi-
cated by a significant F-statistic in the ANOVA. We confirmed
and fine mapped QTLs in only two of the five regions (Table 1).
On chromosome 1 a QTL accounting for 6% of the phenotypic
variance was mapped into an interval of 0.8 cM, so in some
circumstances SM association works well. We therefore sought
an explanation for the three failures.

One possible reason is that genetic drift in the HS has resulted
in allele fixation, but computer simulations of the HS breeding
protocol indicate that only 5% of the genome should be fixed,
consistent with the observed level of marker homozygosity. In fact,
the explanation is that alleles of the same size are descended from
different strains. SM association analysis does not use information
about the founder haplotypes or from neighboring markers and
cannot distinguish between strains having different QTL effects but
identical alleles at a nearby marker. At most markers there are only
two or three alleles, so one cannot determine from which of the
eight strains a single allele has descended.

For example, consider two markers (D1Mit100, D1Mit496),
less than 500 kb apart, near the QTL at position 64 cM on
chromosome 1 (Fig. 1A). SM ANOVA yielded a logP of 5.35 at
D1Mit100, but gave a logP of 0.04 at D1Mit496 (all significance
levels are given here as logP values, i.e., log10p, so e.g., P-value
1024 corresponds to logP 4). The proximity of the markers rules
out recombination as a reason for the difference in significance.
Rather, the important difference between D1Mit496 and
D1Mit100 is that strain RIII can be distinguished from AyJ,
C3H, I at D1Mit100.

A Multipoint Model Using Progenitors. To incorporate information
from flanking markers and the progenitor haplotypes, we de-
veloped a multipoint method that determines the probability of
each founder strain being the ancestor of a given allele in the HS.
QTLs then are detected by testing for differences between the
genetic effects of the progenitor haplotypes rather than by
association at each locus. Note that it would not help to
reconstruct the haplotypes of the HS at the generation we tested,
as this would not determine whether (in the example) an allele
at D1Mit496 was derived from RIII or from one of the other
strains. The critical issue is to calculate the probability that an
allele is descended from one of the eight progenitors, which is
different from standard interval mapping (12) or interval map-
ping with marker cofactors (13–15).

Because the number of possible ancestral haplotype recon-
structions increases exponentially with the number of markers,
it is impossible to calculate the probability of each haplotype
separately. However a dynamic programming (DP) algorithm

greatly reduces the complexity. DP was first used by Lander and
Green (16) in a different context to reconstruct haplotypes from
pedigrees. Our method does not use pedigree information. The
analysis is in two stages: ancestral haplotype probability recon-
struction using dynamic programming followed by hypothesis
testing using linear regression.

We assume that at a QTL locus, L, a chromosome originating
from the progenitor strain s, contributes an unknown additive
amount Ts to the phenotype, so that the expected genetic effect
for a diploid individual with ancestral alleles labeled s, t at the
trait locus is Ts 1 Tt; a test for a QTL is equivalent to testing for
differences between the Tss. The DP method computes the
probability FLi(s, t) that individual i has the ancestral alleles s, t
at L. Then the expected phenotype is

O
st

FLi~s, t!~Ts 1 Tt! 5 OsTs Ot2FLi~s, t! 5 OsTs XLis , [1]

say, and the Tss are estimated by a linear regression of the
observed phenotypes across all individuals using the design
matrix XL, followed by an ANOVA to test whether the progen-
itor estimates differ significantly. The method’s effectiveness
depends on the ability to distinguish ancestral haplotypes across
the interval; clearly the power will be lower where all markers
have the same noninformative allele distribution, but markers
share information where there is a mixture.

This problem can be thought of as a Hidden Markov model,
where the hidden states are the progenitor haplotypes and the
observed data the genotypes. Define Pmi(s, t) to be the probability
that for a certain individual i, the progenitor haplotypes are s, t at
marker m, given (i) the genotypes for the ordered markers num-
bered 1–m, (ii) the founder strain haplotypes, expressed as the
probability pm(sua) that the ancestral state at marker m on a
particular chromosome is s given the allele observed at that locus
is a, (iii) the genetic distances dm between markers m, m 1 1.
Ignoring interference and nonrandom mating effects (i.e., pedigree
information), the number of recombinants between markers is
distributed as a Poisson random variable with mean Gdm, where G
is the number of generations since the HS was founded. Conse-
quently the prior probability that on a certain chromosome locus m
1 1 is in state s given locus m is in state is s is

rm~sus! 5 He 2 Gdm 1 ~1 2 e 2 Gdm!yS s 5 s
~1 2 e 2 Gdm!yS s Þ s

, [2]

where S is the number of strains. The prior probability of each
of the S progenitor strains is 1yS at any locus, and missing data
are treated as an allele with equal probability in the founder
strains. Conditional on the genotype a, b for individual i at
marker m 1 1 and the ancestral haplotypes at m being s,t the
transition probability that the haplotypes at m 1 1 are s, t is:

fmi~s, tus,t,a,b!

5
r~sus!r~tut!@p~sua!p~tub! 1 p~tua!p~sub!#Os9, t9r~s9us!r~t9ut!@p~s9ua!p~t9ub! 1 p~t9ua!p~s9ub!#

[3]

(the subscript m has been dropped from r,p for clarity). As the
phase of the genotypes is unknown we must consider both
possibilities. Therefore the total probability that that the hap-
lotypes at m 1 1 are s, t can be expressed as a DP recurrence
relation

Pm 1 1 i~s, t! 5 O
s,t

fmi~s, tus,t,a,b!Pmi~s,t! , [4]

summed over all possible haplotypes s,t at m. Pmi(s, t) is
computed iteratively across the chromosome, starting at the first
marker. Similarly, we can find Qm11 i(s, t), the probability that

Table 1. QTLs detected in F2 intercrosses and corresponding SM
ANOVA logP of HS mice

Closest
marker

Position,
cM LOD % var. Cross

SM
logP

D1Mit150 84.4 13.4 9.2 b 0.5
D1Mit116 80.2 7.1 6.3 a 6.8
D10Mit237 76.0 8.8 8.3 a 1.8
D12Mit47 31.5 4.3 4.4 b 4.5
D15Mit63 44.0 11.0 8.1 b 1.4

The inbred crosses are: (a) AyJ X C57BLy6 (11), (b) BALBcyJ X C57BLy6 (10).
LOD, logarithm of odds.
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Fig. 1. SM (green) and DP (red) analyses of
regions of chromosomes (Chr) 1 (A and B),
chromosome 10 (C), chromosome 12 (D),
and chromosome 15 (E). Distances along
each chromosome are given in cM (x axis).
The y axis measures logP values. DP thresh-
olds (blue) are the empirical 0.1% logP
thresholds derived by permuting the geno-
types 1,000 times. Selected markers are la-
beled.
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locus m 1 1 is in state s, t given all information from markers m
1 1 through M by running the algorithm backward from the
terminal marker. Analysis of N individuals, M markers, and S
strains requires space proportional to NMS2 and time propor-
tional to NMS4.

QTL Detection. Suppose the QTL at locus L is between markers
m, m 1 1 at an unknown distance cdm from m. The probability
FLi(s, t) that the haplotypes are s, t at L in individual i will depend
on the flanking marker distributions and the pattern of recom-
bination in the interval. Fixing on one chromosome, the locus
must either be linked to both markers, or just the left marker, or
just the right, or be unlinked, with respective probabilities

pB~c! 5 e 2 Gdm

pL~c! 5 e 2 Gcdm 2 e 2 Gdm

pR~c! 5 e 2 G~1 2 c!dm 2 e 2 Gdm

pU~c! 5 1 2 pB~c! 2 pL~c! 2 pR~c! .

[5]

A diploid individual’s chromosomes need not be linked the same
way. By integrating over c we obtain the intervalwide prior
probability that the joint linkage state for the the QTL is XY, as
pXY 5*0

1 pX(c)pY(c) dc. Then, dropping the subscripts for clarity,
the probability that the founder alleles are s, t at the QTL L is
found by summing over all possible linkage states XY:

FLi~s, t! 5
P~s, t!Q~s, t!pBB 1 P~s, t!Q~z, t!pLB 1
P~z, t!Q~z, t!pUByS 1 P~z, t!Q~s, t!pRB 1
P~s, t!Q~s, z!pBL 1 P~s, t!pLL 1
P~z, t!pULyS 1 P~z, t!Q~s, z!pRL 1
P~s, z!Q~s, z!pBUyS 1 P~s, z!pLUyS 1
pUUyS2 1 Q~s, z!pRUyS 1
P~s, z!Q~s, t!pBR 1 P~s, z!Q~s, z!pLR 1
Q~z, t!pURyS 1 Q~s, t!pRR,

[6]

where the probability an unlinked locus is in any given state 5
1yS, and P(z, t) 5 ¥s Pmi(s, t), Q(z, t) 5 ¥s Qm11i(s, t), etc. For
example, the term P(z, t)Q(s, t)pRB is the probability that
chromosome 1 of the QTL is in state s and linked just to the
right-hand marker, and chromosome 2 is in state t and linked to
both left and right markers.

We found that greatest sensitivity to detect a QTL occurs
when the generations G is set substantially higher that the true
number. Likely reasons for this phenomenon are that the
distances of nearby markers may be inaccurate, and the presence
of erroneous genotypes that create false recombinant events. On
a 450-Mhz Pentium III running REDHAT LINUX 2.2, 750 mice, 45
markers, and eight strains can be analyzed (i.e., DP plus linear
regression) in 73 central processor unit s using a C-program,
HAPPY.

We test for a QTL in the intervals between adjacent markers
rather than at each marker locus; DP logP values refer to marker
intervals and SP logP values to markers at the interval endpoints.
In Fig. 1, DP logP values are plotted as step functions that are
constant over each interval. It is possible to generate pointwise
logP values but they do not differ significantly from the interval-
wise values.

Results
Significance Levels and Resolution. We examined a 10-cM region
around each of the five QTLs identified in the F2 intercrosses
(Table 1), placing markers on the radiation hybrid map and,
where possible, the European Collaborative Interspecific Back-
ensi genetic map to provide accurate marker positions necessary
for the method. The results are shown in Fig. 1.

To check the accuracy of the tabulated ANOVA significance
levels, we permuted the phenotypes between animals and re-
peated the ANOVA 1,000 times, thereby taking into account the
large number of markers, the fact that the tests are no longer
independent, and that the phenotypes may not be normally
distributed. At each marker interval the logP values were ranked,
and the 5%, 1%, and 0.1% significance levels were defined as the
corresponding percentiles. They are slightly less than their
theoretical values, so the use of logP derived from a tabulated F
distribution is reliable and conservative. Fig. 1 shows the 0.1%
significance levels. Additionally, the most significant permuted
logP in each region was close to the reciprocal of the number of
intervals, so the tests may be treated as independent. Therefore,
to establish significance levels appropriate for any mapping
experiment, we need only divide the individual regression P-
value by the number of intervals. We analyzed a total of 63
intervals, so the 1.0% and 0.1% logP thresholds are 3.8 and 4.8,
respectively. All of the QTLs we have detected exceed the 1%
level, and only one (near D15Mit134, logP 3.95) fails to exceed
the 0.1% level.

We used a bootstrap procedure to determine mapping reso-
lution. A data set was created by sampling the animals with

Table 2. Bootstrap estimates of QTL locations compared with
positions determined by RIST analysis of BALBcyJ X C57BLy6 (17)

Chromosome DP range
Bootstrap

probability RIST range

Chr1 64.0–65.0 0.92
82.3–83.8 0.96 80.0–84.3

Chr10 69.5–70.0 0.99
Chr12 31.0–32.0 0.80

32.5–33.0 0.20
Chr15 42.0–43.5 0.91 43.0–47.2

The bootstrap probability is the proportion of times the highest logP value
in the neighborhood of the QTL fell in the specified DP range. RIST, recom-
binant inbred segregation test.

Table 3. DP effect sizes, T statistics, and alleles at three marker intervals containing QTLs undetected by SM analysis

Strain

Chromosome 1 Chromosome 10 Chromosome 15

Effect T D1Mit541 D1Mit115 Effect T D10Mit103 D10Mit271 Effect T D15Mit29 D15Mit134

A 21.39 24.67 122 146 4.31 4.48 148 111 21.29 22.76 151 145
AKR 0.11 0.56 118 122 5.02 4.31 142 103 1.93 2.76 151 145
BALBycJ 22.84 22.10 126 142 23.81 20.39 148 111 21.29 22.76 151 145
C3H 2.84 2.10 126 142 23.21 23.40 144 103 21.29 22.76 151 145
C57BLy6 1.61 2.14 126 148 20.24 20.31 148 115 1.93 2.76 151 145
DBA 21.71 22.31 114 148 1.74 2.04 144 115 0.88 4.65 151 145
I 1.79 2.37 114 142 0.30 0.46 142 109 20.04 20.09 183 139
RIII 0.84 1.22 122 122 24.21 23.90 142 113 4.20 22.09 177 145

12652 u www.pnas.org Mott et al.



replacement and the regression analysis repeated in the neigh-
borhood of each QTL. The number of times that each marker
interval contained the most significant logP was recorded in 500
iterations. Table 2 gives the intervals with the highest percentage
of QTL locations. On chromosome 10, 99% of bootstraps placed
the QTL into a 0.5-cM interval; however, on chromosome 12 we
found that almost 20% of bootstraps indicated a second location
for the QTL. The bootstrap-defined range for chromosomes 1
and 15 agree with an independent high-resolution haplotype and
recombinant inbred segregation test carried out on the BALBycJ
and C57BLy6 crosses (17) (see Table 2). Consequently, we
conclude that the QTLs have been replicated in the HS.

Table 3 documents the DP effect sizes and the T statistics
associated for the three QTLs where SM analysis failed, together
with the ancestral alleles of the two flanking marker loci. This
confirms that the DP method succeeds over SM when QTLs with
opposite effects are associated with the same allele.

Simulations. We also compared the DP and SM methods by
simulating the HS breeding protocol for 60 generations. The
large number of variables involved means that is not feasible to
simulate all possible combinations of effect size and progenitor
allele distributions, so instead we used the DP-estimated pro-
genitor effects and the observed progenitor alleles for the loci on
chromosomes 1, 10, 12, and 15, which captures the QTL phase
association derived from the DP analysis. QTL effect sizes were
scaled so that the QTL accounted for 5% of the total phenotypic
variance in the final generation. In about 5% of simulations the
QTL alleles went to fixation and these results were discarded.
The percentages of successful detections for the two methods are
given in Table 4. DP was always more efficient than SM. The
efficiencies vary between loci, which we attribute to the different
phase relationships between alleles and QTLs. Additional sim-
ulations using other phase associations confirm a marked vari-
ation in detection rates. We also performed 500 computer
simulations where there was no QTL present. After taking into
account the number of simulations made, no false positives were
found.

Discussion
We have shown that using DP generally improves QTL detection
and fine mapping. The failure of SM methods appears to be
because of different QTL alleles occurring on similar haplotypes.
In human populations a similar phenomenon has been observed,
where numerous mutations for thalassaemia have been found on
apparently identical haplotypes (18). In particular, the oscilla-

tory behavior of SM analysis in Fig. 1 A is similar to that often
observed in studies of linkage disequilibrium. Presumably the
relationship between QTLs and ancestral human chromosomes
is equally complex, reducing the power of genomewide associ-
ation studies unless ancestral chromosomes can be recon-
structed (19).

DP analysis of HS animals provides a fast, robust, and
cost-effective strategy for high-resolution analysis of complex
quantitative traits. There are many possible applications of the
method.

Genomewide Scans. Multipoint DP analysis of HS mice seamlessly
combines data from any marker type [especially single nucleo-
tide polymorphism (SNPs) and microsatellites] thus making it
ideal for high-resolution genomewide scans, as has become
possible with the publication of a first-generation set of high-
density SNPs for the mouse (20). We used simulation of the HS
breeding protocol to estimate the power of our method for a
whole genome scan with SNPs. We simulated 50 diallelic mark-
ers spaced at 1-cM intervals, with a QTL that explained 2.5%,
5%, and 10% of the phenotypic variance placed midway between
the two central markers, in populations sizes of 500 and 1,000
animals. To establish significance levels appropriate for a ge-
nome scan, we divide the individual P-value by the number of
intervals (3,000) analyzed. In Table 5 we show the probabilities
of successful QTL detections obtained for three genomewide
significance levels (5%, 1% and 0.1%, corresponding to log
P-values of 4.38, 5.08, 6.08).

Mapping Traits in Parallel. Not only can the method simultaneously
map multiple QTLs of small effect, it also can fine map many
traits in parallel, removing the need for separate F2 QTL
detection experiments, and avoiding problems where a QTL is
present in the HS but not in the F2. The only requirements in trait
selection are that the measurements do not interfere with each
other and each phenotype has a heritable variance in the
founders of the HS. Based on our work required to fine map a
single trait, whole-genome mapping would be cost effective when
20 or more traits are mapped in parallel on the same set of mice.
A potential disadvantage of this approach would be that the
number of tests performed per trait would be about 20 times
larger (3,000 markers in a genome scan at 1-cM resolution
compared with an F2 detection experiment on 100 markers
followed by fine mapping about a further 100), so significance
thresholds would be correspondingly higher.

Mapping Modifier Genes. Numerous mouse models of human
disease, either spontaneous or genetically engineered mutants,
have been established. These animals are either maintained on
an inbred background, or by continually backcrossing onto a F1
between two inbred lines (21). It has been shown that the
phenotype of the mutant will vary depending on the genetic
background, indicating that modifier genes can have a significant
effect. Consequently molecular characterization of modifiers is
likely to provide novel insights into pathogenesis.

Mapping modifier loci by crosses between inbred mutant
strains is qualitatively similar to and has the same limits of

Table 4. Estimated probabilities of detecting a QTL accounting
for 5% of phenotypic variance modeled on observed allele and
trait effects from Fig. 1 and Table 3

Chr1 Chr1 Chr10 Chr12 Chr15

DP 0.92 0.80 0.86 0.50 0.62
SM 0.89 0.69 0.65 0.23 0.38

Five hundred simulations were performed in each case. A 0.1% significance
level on 63 intervals defined a successful detection. Chr, chromosome.

Table 5. Estimated DP probability of detecting a QTL explaining 2.5%, 5%, and 10% of the phenotypic variance at genomewide
significance levels of 5%, 1%, and 0.1% using 3,000 diallelic (SNP) markers 1 cM apart and population sizes 500 and 1,000 HS mice

QTL 2.5 5 10

Sig 5 1 0.1 5 1 0.1 5 1 0.1

500 0.07 0.07 0.03 0.55 0.49 0.30 0.60 0.53 0.37
1,000 0.18 0.12 0.05 0.92 0.88 0.85 0.97 0.95 0.89

SNP, single nucleotide polymorphism.
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resolution as standard QTL detection experiments. However, it
is possible to extend our method to fine map modifier genes.
Consider an F1 cross between an HS animal and a mutant. For
simplicity we will assume the mutant is on a constant inbred
background, so that all modifier loci may be treated as coming
from the HS chromosome. Therefore, the expected effect on the
observed phenotype of a modifier locus descended from pro-
genitor strain s will be Ts, that is, the analysis resembles that of
a haploid genome.

Proceeding analogously to the analysis of a pure HS popula-
tion, at the marker m, let bm(a) be the probability that a
chromosome around marker m is from the inbred background,
given the allele observed is a. Let pm(sua) be the probability that
a chromosome around m is HS and derived from ancestral strain
s, given a. Then the transition probability that the HS ancestral
strain at m 1 1 is s given the observed genotype a,b for individual
i at m 1 1, and the HS is in state s at m, is

fmi~sus,a,b! 5
r~sus!@p~sua!b~b! 1 b~a!p~sub!#O s9r~s9us!@p~s9ua!b~b! 1 b~a!p~s9ub!#

. [7]

Consequently the probability Pm11 i(s) that the HS chromosome
is from founder strain s at marker m 1 1, conditional on all of
the genotypes for markers 1,2 . . . m 1 1 satisfies

Pm 1 1i~s! 5 O
s

fmi~sus,a,b!Pmi~s! . [8]

The remaining analysis follows the previous case with the
obvious simplifications for a haploid genome and is omitted.

In the case of a HS intercrossed with a backcross, it can be
shown that the backcross-derived chromosome will resemble an

HS chromsome derived from two founder strains after three
generations of breeding. Consequently, we can analyze the data
as a cross between two HS of different founders and ages.

QTL Detection and Fine Mapping Using F2 3 HS Hybrids. Consider a
hybrid whose parents are an HS and an F1 intercross of two
inbreds. The HS-derived chromosome will have a high level of
recombination, whereas the other will be an F2 intercross. Such
animals can be used for both a genome scan with 100 markers
at 20- to 30-cM spacing, using information from just the F2

chromosomes, followed by fine mapping at 1-cM resolution those
regions likely to contain a QTL, using the HS chromosomes. The
method of analysis is similar to that of a cross between two
distinct HS. During the QTL detection phase, the high level of
recombination in the HS chromosome means that HS QTLs will
probably be unlinked to the markers, so their state cannot be
determined and their effects contribute to the residual variance.
However, during the fine mapping, the state of the F2 chromo-
some can in general be determined and is usually constant across
each region.

The relative merits of this approach over performing two
separate experiments depend on the costs of the animals,
phenotyping, and the phenotypic variance between the HS
founders. If necessary, the increased residual variance during the
QTL detection phase could be offset by increasing the marker
density.

We thank L. Cardon for helpful discussions. This work was supported by
the Wellcome Trust (R.M., C.J.T., and J.F.). The analysis software and
data sets are available from http:yywww.well.ox.ac.ukyhappy.
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