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A Method for Flizzy Rules Extraction
Directly from Numerical Data and Its
Application to Pattern Classification

Shigeo Abe, Senior Member, IEEE, and Ming-Shong Lan

Abstract—In this paper, we discuss a new method for extracting
fuzzy rules directly from numerical input—output data for pattern

classification. Fuzzy rules with variable fuzzy regions are defined -

by activation hyperboxes which show the existence region of data
for a class and inhibition hyperboxes which inhibit the existence
of data for that class. These rules are extracted from numerical
data by recursively resolving overlaps between two classes. Then,
optimal input variables for the rules are determined using the
number of extracted rules as a criterion. The method is compared
with neural networks using the Fisher iris data and a license plate
recognition system for various examples.

I. INTRODUCTION

N theory, neural networks, and fuzzy systems are equivalent

in that they are convertible [1], yet in practice each has
its own advantages and disadvantages. For neural networks,
knowledge is automatically acquired by the backpropagation
algorithm [2], [3], but the learning process is relatively slow
and analysis of the trained network is difficult. On the other
hand, since the input space of fuzzy systems must be divided
into fuzzy regions, it is very difficult to apply fuzzy systems
to problems in which the number of input variables is large.
Moreover, another difficulty arises in knowledge acquisition
through interviewing experts. For fuzzy systems, however,
once the knowledge is acquired, how the systems work is
relatively easily understood. To fill the gap of knowledge
acquisition between the two technologies, several methods
for extracting fuzzy rules from numerical data have been
developed. One approach uses neural networks to extract fuzzy
rules. For example, in [4], neural networks are extended to
automatically extract fuzzy rules from numerical data. The
major restriction of this method is that the number of divisions
of each input variable must be defined in advance. (Division
of an output variable is also necessary. But this is not a
disadvantage since it can be determined easily based on the
approximation accuracy.) Another approach extracts fuzzy
rules directly from numerical data. For example, in [5], fuzzy
rules are derived by dividing the input space into fuzzy regions
and the output space into regions, and by determining in
which fuzzy region each numerical input datum is included
and in which output region the corresponding output datum is
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included. Although the above approach is very straightforward,
again the input space needs to be divided in advance.

In [6], fuzzy rules with variable fuzzy regions are extracted
for classification problems. This approach solves the problems
of fuzzy systems described above. The input region of each
class is represented by a set of hyperboxes, in which overlaps
among hyperboxes for the same class are allowed, but no
overlaps are allowed between different classes. If a datum is
in the hyperbox belonging to a class, it is judged to be that
class. The learning algorithm dynamically expands, split and
contract hyperboxes when several classes overlap.

Our study aims at developing a fuzzy classification system
which:

1) has a classification ability comparable to that of neu-
ral networks with much less computational burden of
learning; and,

2) can handle large-scale classification problems.

In this paper, we discuss how to extract fuzzy rules with
variable fuzzy regions directly from numerical data. First, we
define fuzzy rules for pattern classification recursively; each
rule is composed of an activation hyperbox which defines the
existence region of a class and, if necessary, an inhibition
hyperbox which inhibits the existence of data in that activation
hyperbox. Then, we discuss their inference mechanism. Fur-
thermore, we discuss how to delete redundant input variables
based on the number of fuzzy rules created. Finally, we apply
the fuzzy rule classifier to the Fisher iris data and a license
plate recognition system in which the classification power is
compared with that of neural networks.

II. CLASSIFICATION BY Fuzzy RULES
WITH VARIABLE Fuzzy REGIONS

Representation of an existence region of data for a class by
a set of hyperboxes which was discussed in [6] is efficient to
handle classification problems with a large number of input
variables. But since only one type of hyperbox was defined in
that approach, hyperboxes between different classes cannot
overlap, although overlaps of hyperboxes among the same
class are allowed. Thus to resolve overlaps between different
classes, compaction or splitting of hyperboxes is necessary.

To resolve overlaps between different classes, we introduce
two types of hyperboxes: activation hyperboxes which define
the existence regions for classes, and inhibition hyperboxes
which inhibit the existence of data within the activation hy-

1063-6706/95$04.00 © 1995 IEEE
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Overlap with Class j

Input xg Class i

Fig. 1. Architecture of a fuzzy classification system (only the network for
class 7 is shown).

perboxes. These hyperboxes are defined recursively. Namely,
first we determine activation hyperboxes by calculating the
minimum and maximum values of data for each class. If the
activation hyperbox for class ¢ overlaps with the activation
hyperbox for class j, the overlapping region is defined as
an inhibition hyperbox. If in the inhibition hyperbox data
for classes ¢+ and j exist, we define additional activation
hyperboxes for these classes. Again, if an overlap exists
between these activation hyperboxes, we further define the
overlapping region as the inhibition hyperbox. In this way the
overlap of activation hyperboxes is resolved recursively.

We define a fuzzy rule based on an activation hyperbox
or based on an activation hyperbox and its corresponding
inhibition hyperbox, if generated. A neural network-like in-
ference architecture for our proposed fuzzy system is shown
in Fig. 1 in which only the portion for class ¢ is shown for
simplicity. Different classes have different numbers of units
for the second to fourth layers and there is no connection
among units of different classes. The second layer units
consist of fuzzy rules and they calculate the degrees of
membership for an input vector x. The third layer units take
the maximum values of inputs from the second layer, which
are the degrees of membership generated by resolving overlaps
“between two classes. The number of third layer units for class
¢ is determined by the number of classes that overlap with
class 4. Therefore, if there is no overlap between class 4 and
any other classes, the network for class. 7 reduces to two
layers. The fourth layer unit for class i takes the minimum
value among the maximum values; each of them is associated
with a two-class overlap. Therefore, if class ¢ overlaps with
only one class, the network for class ¢ reduces to the three
layers; in other words, the “min” node in the fourth layer is
not necessary. Calculation of a minimum in the fourth layer
resolves overlaps among more than two classes. Thus in the
process of generating hyperboxes, we need to resolve only the
overlap between two classes. (The validity of the architecture
shown in Fig. 1 is fully discussed in Section II-B.)

A. Fuzzy Rule Representation

This section describes how to create fuzzy rules based on
a set of input data X; for class 4, where ¢ = 1,---,n, for
classifying an m-dimensional input vector x into one of n
classes. First, using X;, an activation hyperbox of level 1,
denoted as A;; (1), is defined, which is the maximum region

Ax(l) level 1

I;(1)

40

level 2 /

Az (2)
4~ i@
level 3

Fig. 2. Recursive definition of activation and inhibition hyperboxes.

of class 1 data

Aii(l) = {X I viik<l) S Tk S V;,zk(l)a k= 1)‘”7m} (1)

where
zr: the kth element of input vector x;
v;ik(1): the minimum value of zj for x € X;; and

Viir(1): the maximum value of zj of x € X;.

If there is no overlap between activation hyperboxes A;;(1)
and A,;;(1) ( #4,7 =1,---,n), we obtain a fuzzy rule of
level 1 for class ¢ as follows

If x is A;;(1) then x is class 1. )

If the activation hyperboxes A;;(1) and A,;(1) overlap, we
resolve the overlap recursively as illustrated in Fig. 2 in which
we define the overlapping region as the inhibition hyperbox
of level 1 denoted as I;;(1)

Li;(1) = {x | win(1) < ze < Wi(1), k=1,---,m}
€))

where v;;(1) < wijk(1) < Wijk(1) < Viig(1). The minimum

and maximum values of inhibition hyperbox I;;(1) are given

by (cf. Fig. 3)

1) For vj;x(1) < viir(1) < Vjju(l) < Viig ( )

wijk(1) = viar (1), Wiz (1) = Vir(1) @
i) For vk (1) < vjjx(1) < Vir(1) < V5 ( )

wize(1) = vj;k(1), Wije(1) = Viir(1) )
iii) For vj;x(1) < vgr(1l) < Vir(1) < V(1)

wijk(1) = vir(1), Wije = uk( ) (6)
iv) For viir(1) < vj;e(1) < Vijr(1) < Viar(1)
wijk(1) = vjgx(1), Wi (1) = Vjja(1). ™
Then we define a fuzzy rule of‘ level 1 with inhibition by
If x is A;;(1) and x is not [;;(1) then x is class i.  (8)

If A;(1) is included in A;;(1), ie., (6) holds for all k,k =
1,---,m, A;i(1) coincides with I;;(1). In this case (8) is a void
rule,-which is not created, since there is no x that satisfies (8).

If some data belonging to X; exist in I;;(1), we define the
activation hyperbox of level 2 denoted as A;;(2) within the
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inhibition hyperbox I;;(1) by calculating the minimum and
maximum values of zj based on the data in I;;(1)

Aij(2) = {x | vir(2) < zp < Vijr(2), k=1,--

where x € X; and x is in [;;(1)

v;j(2): the minimum value of 3 where x € X;
and x is in I;;(1)

Vijk(2): the maximum value of z; where x € X;
and x is in I;;(1)

wijk(1) < vk (2) < 2 < Vige(2) < Wi (1). (10)

If there is no overlap between the activation hyperboxes of
level 2, we define a fuzzy rule of level 2 for class ¢ by

1n

If A;;(2) and A;;(2) overlap, we define the overlapping region
as the inhibition hyperbox of level 2 denoted as [;;(2)

Li(2) = {x | win(2) <z < Win(2), k=1,---,m}

If x is A;;(2) then x is class d.

where v;5%(2) < wi(2) < Wi(2) < Vijx(2). Then we
define a fuzzy rule of level 2 with inhibition

If x is A;;(2) and x is not I;;(2) then x is class 5. (13)

Similarly, we define fuzzy rules of levels higher than two if an
overlap still remains. In a general form, we define the fuzzy
rule r;;(1) of level [(> 1) without inhibition as follows

If x is A;;(l) then x is class i (14)

where i = j for [ = 1 and ¢ # j for [ > 2. Or we define the
fuzzy rule r;;(I) of level I with inhibition as follows

If x is A;;+(I) and x is not I;;(!) then x is class ¢ (15)

where ' =i for/=1and 5/ = j for [ > 2.

The recursion process for defining fuzzy rules terminates
when there is no overlap between A/ () and Ay (I) or
A (1) = Aji (1) = I;;(1—-1) holds. In the latter case, since the
overlap cannot be resolved by the recursive process, instead of
defining A;; (1) and A;i/ (1) by (9), for each datum of class ¢
and/or j in I;;(I — 1) we define an activation hyperbox which
includes only that datum. In this case we no longer define
inhibition and activation hyperboxes with levels higher than [,
because as long as no identical data exist in classes ¢ and j,
no overlap exists between the activation hyperboxes of level /.

B. Fuzzy Rule Inference

For pattern classification, a natural assumption is that the
degree of membership of x for a fuzzy rule given by (14) is
one if x is in the activation hyperbox A;;(!), and the degree of
membership decreases as x moves away from the activation
hyperbox. Namely, if all the input variables are normalized
to the same scale, e.g., [0, 1], the contour surface, which has
the same degree of membership, is parallel to, and lies at an
equal distance from the surface of the activation hyperbox as
shown in Fig. 4. To realize a membership function with this

12)
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Fig. 3. Definition of activation and inhibition hyperboxes (' = ¢ and 7/ = j
forl =1,7 =jandi =i forl > 2).

d.o.m. = degree of membership

a3
d | dom.=1|d
[t

Al

<

< Contour Line

x1

Fig. 4. The contour line of membership function for the activation hyperbox
(two-dimensional case).

characteristic we use the following funcﬁon which is similar
to that proposed in [6]
ma(x) =, min my, (% k), (16)
M, (% k) = [1 — max(0, min(L, v (vii (1) — z)))]
x [1 = max(0, min(1, v (z — Vijr(1))))]
a7

where -y, is the sensitivity parameter for the kth input variable
. Even if we normalize all the input variables, it is still pos-
sible to tune the recognition rate by setting different values for
each sensitivity parameter -y;. But in the following we assume
that z;’s are normalized and v = « for kK = 1,---,m. The
one-dimensional membership function m 4, 1y(x, k) becomes
as shown in Fig. 5. The parameter v serves to control the
generalization region.

In the following, we show that (16) and (17) give a contour
surface which is parallel to, and lies at an equal distance from
the surface of the activation hyperbox. For x = (21, -+, Zm),
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Degree of Membership

vy - Uy vuell) Vi) Virl) + Uy

Xk

Fig. 5. One-dimensional membership function of the activation hyperbox

Aiz (D).

if

vij(l) <z < Vigr(l) (18)

holds m 4,;1y(x, k) = 1. Thus, the degree of membership is
determined by zx whose min(|vijx(l) — =&, |zx — Vijr(D)])
is the maximum among those of zi,-:-Z, which do not
satisfy (18). Now without loss of generality we can assume that
Tr, k=1, -,k satisfy (18) while zx, k = k' +1,---,m(m—
k' —1 > 0) do not satisfy (18) but they satisfy

min(|vijx (1) — zx|, |2k — Vigr(D)]) = d(> 0). (19)

From (16) and (17), mg4,,)(x) = 1 — vd. Then the degree
of membership m 4, ;;)(x) does not change even if any zy, is
changed between

’Uijk(l) —d<z < V”k(l) +d (20)

which means that the contour surface is parallel to, and lies at
an equal distance from the surface of the activation hyperbox.

Thus the degree of membership of x for a fuzzy rule r;;({)
given by (14) is

dnj(l)(x) = mAij(l)(x)' (21)

The degree of membership of x for a fuzzy rule given by
(15) is 1 when x is in the activation hyperbox but not within
the inhibition hyperbox, i.e., x is in A;;(I) — I;;(l), where
S denotes the closure of set S and 5/ = 4 for [ = 1 and
j/ = j for | > 1. If x moves away from this region the
degree of membership decreases. Namely, in this case it is also
favorable that the contour surface is parallel to, and lies at an
equal distance from the surface of A;;/ (1) — I;;(!)-as shown in
Fig. 6. (If A;; (1) = I;;(I), i.e., if the rule is void, we do not
calculate the degree of membership for this rule.) To realize
this membership function we first define the region H;;(l)
associated with A;; (I} and I;;(1) as follows (c.f. Fig. 3)

{x|zr < Wi(l) for vjik(l) < vijie(l) < V(1)

< V;j’k(l))
Tk 2 wijk(l) for ’Uijlk(l) < 'Ujilk(l) < Wj’k(l)
< Viu(l),
—00 < Zp <0 for vjik(l) < vije(l) < V(1)
< Vi (D),
wijk(l) < @ < Wis(l)  for v (l) < vk (1) < Viur(l)
< V;j’k(l))
k=1,---,m}
(22)

21

Hil)

d 1)

£90

X2

fir

d | Aed gy

dom.=1 fumi

ay

( Contour Line

X1

Fig. 6. The contour line of membership function for the activation and
inhibition hyperboxes (two-dimensional case).

where ;' =7and ¢ =jforl=1,7 =jandi =iforl > 2,
and H;;(l) and Hj;(1) are in general different. According to
the definition

Hij(l) » Iij(l). (23)
The region H;;(l) defines an input region where the inhibition
hyperbox affects the degree of membership of the rule given by
(15). If x & H;;(l), the degree of membership for a fuzzy rule
r;; (1) given by (15) is the same as (21).-Then for x € I;;(()
the degree of membership my,;)(x) is given by

m_;ij ) (X) = m?f?{mmIij 0] (X, k) (24)

k=1,
where m, (;)(x, k) is the degree of membership of z and is
calculated by:
1) For Ujiik(l) < ’U.L‘j/k(l) < Vji/k(l) < Vijlk(l) (c.f.
Figs. 3(a) and 7(a))

mr,; (%, k) = 1 — max(0, min(1,y(Wi;x(l) — zz)))
(25)
2) For ’Uijlk(l) < ’Uji/k(l) < Vij/k(l) < Vj.,'/k(l) (c.f.
Figs. 3(b) and 7(b))

mIij(l)(X’k) =1- max(O,min(l,'y(:vk - wl]k(l))))
(26)
3) For v(l) < viyw(l) < Vije(l) < Viar(l).
Since z = vi;/k(l) and z; = V;;/% (1) do not constitute
the surface of A;j (I) — I;;(l), we need not define the
membership in the xj axis. Thus we get

m[ij 0] (X, k) = 0. (27)

Equation (27) holds for all k,k = 1,---,m only when
A (1) D Ay (1) = I;;(1), which corresponds to a void
rule. Thus, the zj, axis is neglected when calculating the
degree of membership using (27) and (24).

4) For ’l)ij'k(l) < Uji/k(l) < Vji/k(l) < Wj!k(l) (c.f.
Figs. 3(d) and 7(c))

mr,, 1) (X, k) =
1 — max(0, min(1, y(Wy;x (1) — zx)))
for (wij(l) + Wijk(1))/2 < ze < Wigr(l),
1 — max(0, min(1, y(zr — wijr(1))))

. for wijk(l) <ap < (wijk(l) + Wij;c(f))/z (28)
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Fig. 7. One-dimensional membership function with respect to the inhibition
hyperbox I;;(1).

To see that (24) gives the contour surface which is
parallel to, and lies at an equal distance from the surface
of A;j (1) — I;;(1), assume my,,y(z, k) gives the maximum
value among my, ) (X, k'), k" = 1,---,m. Namely (c.f.
Figs. 3(a), (b), and (d))

|Wijk(l) — zx| = d for vjirk (1) < vig(l) < Viarw(l)
< Vigr(l),

lze — wijp()] =d for vy (1) < Vier(DleqVijp(l)

< Vir(l),

(Wijk() ~ze] =d  for vign(l) < vjare(l) < Viirr(l)
< Vije(l)

or |:IIk — wijk(l)| =d < V;j/k(l)

(29)
where d is the maximum distance from the surface of I;;({).
Then the degree of membership my,,(;)(x) does not change
even if zp, k' = 1,---,k — 1,k + 1,---,m, moves to the
point until it satisfies any of (29) for &'. (If vj(l) <
vije(l) < Vz’jlk(l) < Vji/k(l) holds, the change of zjs does
not affect the degree of membership.) Thus the contour surface
is parallel to, and lies at an equal distance from the surface
of A4y (1) — I (D).

The degree of membership for x € H;;(!) and x ¢ I;;(1)
is obtained by calculating both m 4, y(x) and my,; ) (%),
and taking the minimum, i.e., mm(mA”(g)( X), mI”(l)(x))
To show this, assume that for x € H;;({) and x ¢ I;;(1),
mr,@(x) = mr,a)(x,k) = ma;0(x) = mA”(z)(X k)
holds. Let k and k' be different. Then, if z/ is changed until
it satisfies (29) for k', the value of m 4, (y(x) increases but
that of my, (;)(x) does not change. Thus, the resulting degree
of membership does not change. This means that the contour
surface is parallel to the surface of I;;(I) which is included
in Ay (1) — I;;(1). Also if zj is changed so that the value d
of (29) is decreased, my,,(1)(x) is increased but m 4, (1y(x)
is constant. Thus, the resulting membership function does not
change. This means that x lies on one edge of the. contour
surface and it is parallel to the surface of A;;(l).

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995

x2 k=k'=1

Ap()

0 / .............................

Fig. 8. Special case of the inhibition hyperbox.
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- il
sl

Ai(h
dom=1

LkContour Lines

X1

Fig. 9. The contour lines of membership function for the activation and
inhibition hyperboxes (one dimension of the hyperbox is completely included).

The subscripts k and k' are the same when 1) vj;5(l) <
'Uij’k(l) = Vji/k(l) < V;jlk(l) (cf. Fig. 3(a)), or 2) ’l)ijlk(l) <
vk (1) = Vijie(l) < V(1) (cf. Fig. 3(b)) holds. For 1) and
2) (see Fig. 8), the inhibition hyperbox does not work at all.
This situation is avoided by expanding the inhibition hyperbox
as discussed in Section II-D.

Thus d,._y(x) for (15) is given by

for x & H;;(1)
for x € I;;(1)
for x € Hm(l)
and x ¢ Iij(l).
(30)

=TAQ) (X)
mr, . () (X)
min(mAij ) (X), mr;Q) (X))

drij 0 (X)

Since m 4, (1y(x) = 1 for x € I;;(l), (30) can be rewritten
as follows

dr;)(X) = ma;0)(%) for x ¢ H;;(1)
min(mAij(l)(x),mL.j(l)(x)) for x € H;;(1).
(31

Fig. 9 shows an example of contour lines when A;;:(I) in-
cludes Aj; (1) in the z; axis (cf Fig. 3(d)). As the distance
from the surface of A;j (1) — I;;(1) becomes large the effect
of concave of the hyperbox is dlmlmshed

Thus, the final degree of membership of x for a set of fuzzy
rules {ry;(l) | I =1,---} denoted as d,,(x) is given by

d'f'ij (X) = llzlla’?_(i(dnj(l) (X)) (32)
We take the maximum because the activation hyperbox A;;({+
1), if it exists, is included in the inhibition hyperbox I;;(l),
and thus each fuzzy rule in {r;;(!) |l = 1,---} is exclusive of
one another. (Equation (32) corresponds to the “max” operator
in the third layer of the architecture shown in Fig. 1.)
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Now the degree of membership of x for class ¢ denoted as
di(x) is given by
min
J#Li=1m,
Ai(1)NA;;5(1)#0

di(x) = (drij (x))- (33)

When the activation hyperbox of class ¢ overlaps with those
of classes 7 and k, we resolve the conflict, independently,
first between classes ¢ and 7, then between classes ¢ and k.
This process is reflected by taking the minimum in (33). For
example, if d, (x) = 1 and d,,, (x) = 0, this means that x
is in the region inhibited by the inhibition hyperbox between
classes ¢ and k and thus x should not be classified as class i.
(Equation (33) corresponds to the “min” operator in the fourth
layer of the architecture shown in Fig. 1.)

The input x is then classified as class ¢ if d;(x) is the
maximum among d;(x),j = 1,---,n.

C. Class Boundaries

In this section, we explain the class boundaries of the fuzzy
classifier using a two-class classification problem in which two
input variables are considered.

First, consider the simple case where there is no overlap.
Fig. 10 shows the classification regions, in which a given
datum can be classified into a class, when the sensitivity
parameter -y is large, in other words, the generalization region
for each class is small. In this case, a region exists in which
data cannot be classified because the degrees of membership
for both classes are zero. By using a small sensitivity parameter
<, thus increasing the generalization region of each class, all
the data in the input space can be classified as shown in
Fig. 11, Since the contour lines are paralle] to the surface of the
activation hyperboxes, the class boundary becomes as shown
in Fig. 11. If we make the sensitivity parameter - small enough
so that the degree of membership for any given point in the
input space is greater than 0, in this case, the class boundary
does not change even if. we make the $ensitivity parameter
7 smaller. This means that as the sensitivity parameter -y is
decreased from a large value to a small one the recognition
rate of test data increases and reaches a plateau. If each input
variable is normalized as [0, 1], it is sufficient to set the
sensitivity parameter smaller than 1 to obtain the maximum
recognition rate. (Suppose there is a fuzzy rule given by (14).
Then the degree of membership m Al.j(l)(x, k) is nonzero in
(vir(l) — 1/, Vise) + 1/v) D [0, 1].) Or if we want
to know whether the input data are used for training or not,
we may set the sensitivity parameter large. If a datum is not
classified because the degree of membership is zero, we know
that data which are near to this datum are not used for training.

Fig. 12 shows the class boundary when two classes overlap
but no data are included in the inhibition hyperbox, including
its surfaces, and the sensitivity parameter is small. If data
exist on the surface of the inhibition hyperbox a problem
arises as shown in Fig. 13. According to the definition of
membership function, the degree of membership for one class
is one on the surface of the inhibition hyperbox which is
nearer to the activation hyperbox associated with that class.
Thus the degrees of membership of class 2 datum which is
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A A2
X2 A

X1
Fig. 10. Classification region when sensitivity parameter is large.

—r
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Fig. 11. Classification region when sensitivity parameter is small.

~——Class Boundary

X1

Fig. 12. Class boundary when two classes overlap (no data exist in the
inhibition hyperbox).

on the surface of the inhibition hyperbox are one for both
classes 1 and 2. And there is a region where a datum cannot
be classified because the degree of membership is the same for
two classes. This situation arises because on the boundary of
inhibition hyperbox, data of two classes are allowed to exist.
This can be avoided if we expand the inhibition hyperbox. In
the next section we discuss how to avoid this situation and
achieve a 100% recognition rate for the training data.

D. Expansion of Inhibition Hyperboxes

To overcome the problem when data exist on the sur-
face of the inhibition hyperbox, we expand the inhibition
hyperbox I;;(l) associated with A;;(I) as shown in Fig. 14.
We denote the resulting expanded inhibition hyperbox as
Jij() = {x | wii(l) < o < Uie(D),k = 1,---,m}.
The expanded inhibition hyperboxes for A;; ({) and A;y (1)
are J;;(1) and Jj;(1), respectively, which are different. The
expanded inhibition hyperbox J;;({) is defined as follows (cf.

Fig. 3).
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Two classes have the
same degree of
membership.

Xz

X1

Fig. 13. Class boundary when two classes overlap (a datum exists on the
boundary of the inhibition hyperbox).
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Fig. 14. Expansion of the inhibition hyperbox.

1) For vjx(l) < vij(l) < Vierr(l) < Vigrr(D)
uk(l) = virji(l)

Uijr(1) = Virr(D) + a(Vigre(l) = Vier(D)) 34
where a(>0) is an expansion parameter.
2) For vijk(l) < vjan(l) < Vigre(l) < Viirw(D)
’U/ijk(l) = vji’k(l) - Od(?]jilk(l) —_ ’U,;j/k(l))
Uijr() = Vije(l). (35)

3) For Uj,;/k(l) < Uij/k(l) < V,;jlk(l) < Vﬂlk(l) In this
case we do not expand the inhibition hyperbox for class
1 since we need not calculate the degree of membership
for the zj axis. Namely

u(l) = ik (1)
zgk(l) ”Ik(Z) (36)
4) For vijre(l) < vjok(l) < Vier(l) < Vigru(l)
ik (1) = vjire(l) — evjirk(l) — vigr(l)
Uiji(1) = Vi (D) + a(Vije(l) = Vi(D).  G7)
Now the rule shown in (15) is modified as
If x is A;j (1) and x is not Jy;(I) then z is class ¢ (38)

where 7' =iforl =1and 5/ = j for [ > 2.

We define the activation hyperbox in the expanded inhibition
hyperbox. Namely, if data for class 7 exist in J;;(I), we define
the activation hyperbox A;;/ ({+1). For example, in Fig. 14, an
additional hyperbox A;;/ (I+1) is defined for data D; and Ds.
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Class Boundary

X2

X1

Fig. 15. Class boundary when two classes overlap (expansion of the inhi-
bition hyperbox).

- The inference method for the rules with expanded inhibition

hyperboxes is the same as discussed in Section II-B.

Fig. 15 shows the class boundary of Fig. 13 when expanded
inhibition hyperboxes are used. With this expansion, 100%
recognition for the training data set is assumed.

E. Selection of Input Variables

As long as there are no identical data between different .
classes for a given set of training data, the fuzzy classifier
can classify the training data 100%. But considering the
generalization ability for a classifier, the smaller the number
of fuzzy rules the better. Therefore, if the number of rules
obtained for one class is larger than that for another, the former
class is considered more difficult to classify than the latter.
(The sensitivity parameter v does not affect the number of
rules generated but the expansion parameter « does. Since
« is introduced only to avoid that any of the training data
which exist on the surface of the inhibition hyperbox fail to be
classified, we set o small enough to avoid creating additional
rules.) Next, we discuss the method to select input variables
using the number of fuzzy rules as a selection criterion.

Let M be the set of input variables, and 7;(M) be the
number of fuzzy rules obtained for class ¢ with M and a given
set of training data. We set the maximum number of rules r,
to obtain enough generalization ability. If for some ¢

ri(M) <7 (39)

does not hold, we conclude that the set M is insufficient to
get enough generalization ability.

If (39) holds for all ¢, an attempt to eliminate redundant
input variables can be performed as follows. Let M’ be the set
in which one input variable is deleted from M. Then acquire

new fuzzy rules using the training data set with M’. If
ri(M) = ry(M’) (40)

holds for all 4, delete the variable deleted from M’ also from
M. Repeat the above procedure until testing is finished for all
the input variables initially included in the set M.

III. PERFORMANCE EVALUATION

A. Iris Data

We used the Fisher iris data [7], which are widely used for
comparing various pattern classification methods, to compare
the performance of the fuzzy classifier with that of the fuzzy
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min-max neural networks [6]. The iris data included 150 data
with four input features and three classes. Both training and
test data sets were the same as those used in [6]. Namely, for
each class, the first 25 data and the remaining 25 data were
included in the training and test data, respectively. Two test
data were misclassified by the fuzzy min-max neural network
with 48 hyperboxes (fuzzy rules).

Table I shows the number of rules generated and number
of misclassified test data for various ¢ and v = 1 using the
method described in this paper. There were no misclassifica-
tion for the training data and also for class 1 of the test data.
As o increased, the number of misclassfied data decreased,
and when o was equal to or greater than 0.9, the number of
misclassfied test data was the same as that obtained by using
the fuzzy min-max neural network. Although the number of
rules increased as « increased, the number of rules generated
for our fuzzy classifier was still less than that in the fuzzy
min-max neural network. Since the number of rules for class
1 was always 1, that clearly indicated that no overlap existed
between classes 1 and 2, and between classes 1 and 3.

For o = 0.001, we applied the input selection method
discussed in Section II-E. As seen in Table II, when we deleted
input feature 1, the number of rules increased. Thus we kept
“input feature 1 in the input variable set. When we deleted input
feature 2, the number of rules was the same as that when four
input features were used. Therefore, we removed the input
feature from the input variable set. When input features 2 and
3, or 2 and 4 were deleted, the number of rules increased.
Thus, we could delete only input feature 2 without increasing
the number of rules. Table II also shows the numbers of
misclassified test data for different o values. The performance

~of the classifier using input features 1, 3, and 4 is comparable
to that using all four input features.

B. A License Plate Recognition System

A license plate recognition system [8], [9], which was orig-
inally developed using a decision tree algorithm, recognizes
10 numbers using 12 input features extracted from the images
of running cars as taken by a TV camera. (The features used
are the number of holes, the depth from the left-hand side, the
curvature of some point, etc. [9]). The numbers were distorted
and covered with dirt. In our study a total of 1630 data were
divided into two combinations of training and test data: 1)
200 training data and 1430 test data, and 2) 810 training data
and 820 test data. We compared the classification performance
with that of a three-layered neural network with six hidden
units. The number of hidden units was determined using the
statistical method discussed in [10]. Since the performance
of the network varies according to the initial values of the
weights, we trained the network 100 times with initial values
randomly assigned between -0.1 and 0.1, and calculated the
average recognition rate.

Effect of Sensitivity Parameters: Using a 16 MIPS work-
station, fuzzy rules based on 200 or 810 training data were
generated in less than one second. For each, except class 7
for the 810 training data, one rule was extracted; for class
7 two rules were generated using the 810 training data, and
the recognition rate for the same set of data was 100%
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TABLE I
PERFORMANCE FOR THE IRIS TEST DATA BY THE Fuzzy CLASSIFIER (7 = 1)

a No.of Rules No. of Wrongs

0.001 5 6
0.1 7 5
0.2 7 5
0.3 9 5
0.4 9 4
0.5 9 4
0.6 11 4
0.7 11 3
0.8 13 3
0.9 17 2
0.99 17 2

TABLE I
SELECTION OF INPUT VARIABLES FOR THE IRIS DATA (7 = 1)

Input Deleted No. of Wrongs
a = 0.001 a=0.3 =06 o=0.99
None 6(5) 5 4 2
1 6 (6) 6 3 2
2 5(5) 3 3 4
2,3 8N 8 8 9
2,4 4(8) 4 4 5

() indicates the number of rules generated for each case.

irrespective of the sensitivity parameter v and of the positive
expansion parameter «. Then, we measured the recognition
rates for different values of the sensitivity parameters using
1430 and 820 test data with o = 0.001; the results are
shown in Tables III and IV, respectively. As the sensitivity
parameter becomes larger, the generalization region for each
class becomes smaller. Thus, for v = 100, the rules are
considered to be crisp. Since the recognition rate was only
42.80% for the 1430 test data, the training data and test data
were very different from each other; while for the 820 test
data, this indicates that the training and test data were very
similar. As the values of the sensitivity parameters decreased,
the recognition rate improved and reached a plateau of 97.06%
at v = 2 for the 1430 test data and 99.63% at v = 8 for the
820 test data. Therefore, for the study described in the next
section, we set v = 2 for both the 1430 and 820 test data. The
recognition rate for the 1430 test data was constant even if
we changed the expansion parameter c.. Also the recognition
rate of the 820 test data did not change much. This is because
class regions did not overlap. So in the following we used
a = 0.001. When class regions overlapped because of the
deletion of the input variables, we changed the expansion
parameter « and checked the change of the recognition rate.
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TABLE III
RECOGNITION RATE FOR THE 1430 TEST DATA BY THE Fuzzy
CLASSIFIER (200 TRAINING Data UsED, @ = 0.001)

Y Recognition Rate
in %

100 42.80
10 84.90
90.70
92.87
95.66
97.06
97.06

— N A~ O\ 00

TABLE IV
RECOGNITION RATE FOR THE 820 TEST DATA BY THE Fuzzy
CLASSIFIER (810 TRAINING DaTA USED, o = 0.001)

¥  Recognition Rate
in %

100 94.13
10 99.63
99.63
99.63
99.63
99.63
99.63

— N AN

Training a six-hidden-unit neural network using the 200
training data took an average 11.7 seconds on a 31 MIPS
mainframe computer. The average recognition rate for 1430
test data was 96.54% with maximum and minimum recognition
rates of 98.25% and 95.17%, respectively. Thus, fuzzy rule
acquisition described in this paper is more than 20 times faster
than that of neural networks. Also, the recognition rate of the
fuzzy rule inference proposed in this paper is higher than the
average recognition rate by the neural network.

As for the 810 training data, training the six-hidden-unit
neural network took an average 2.63 minutes on the 31 MIPS
computer. The average recognition rate for the 820 test data
was 99.41% with maximum and minimum recognition rates of
99.76% and 98.90%, respectively. Thus, fuzzy rule acquisition
is more than 300 times faster than that of neural networks.
Meanwhile, the recognition rate by the fuzzy classifier is better
than the average recognition rate by the neural network.

Selection of Input Features: We selected input features ac-
cording to the method discussed in Section II-E, in which
the input features were deleted from the first to the twelfth
features. Table V shows the number of rules generated using
200 training data when one or more than one input feature is
deleted from a total of 12 input features. The recognition rate
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TABLE V
SELECTION OF INPUT VARIABLES FOR THE 200 TRAINING DATA (DELETED
FROM THE FIRST INPUT FEATURE, THE 1430 TEST DatA, o = 0.001)

Recognition Rates in %
Fuzzy Classifier  Neural Network
Training Test Training Test

Input Deleted Number of Rules

None 1 100 97.06 100 96.54
1 2 for Classes 5 & 9 100 93.08 99.67 86.59
1 for Others (93.85)

2 1 100  97.06 100 96.82
2,3 1 100 9594 100 96.37
2,3,4 1 100 95.94 100 97.82
2,3,4,5 1 100 95.94 100  96.82
2,3,4,5,6 2forClass 5 100 92.59 99.77 93.57

1 for Others (93.71)
2,3,4,5,7 1 100 96.08 99.96 97.60

(): the maximum recognition rate by varying o
=100 for the training data and y= 2 for the test data

of the fuzzy classifier and the average recognition rate of the
neural networks are also included in the table. As illustrated
in Table V, when deleting the first feature, two rules were
generated for classes 5 and 9. Therefore, the deleted feature
was restored in the set of input features used in the fuzzy
rules. Since the number of rules for each class by deleting the
second feature was one, we deleted this feature. In doing so,
five features were deleted and the recognition rate for the test
data was slightly lower than that of using all 12 input features.

As for the training data the recognition rate of the fuzzy
classifier was always 100%, while the average recognition rate
of the neural network was less than 100% for three cases. As
for the test data the average recognition rate of the neural net-
work increased while the recognition rate of the fuzzy classifier
decreased. Also the maximum difference of performance was
1.88% when only nine input features were uséd. This can be
explained as follows. The performance degradation occurred
when the number of rules generated for each class was one.
Namely, there was no overlap between classes, or even if there
was an overlap, no data existed in the inhibition hyperbox. In
other words, thé class boundaries of the fuzzy classifier were
determined by the single activation hyperbox for each class.
Thus the approximation of the separation boundaries became

* coarser than that of neural networks which were determined

by the linear combinations of input features [11].

Since there is no reason to start deleting from the first
input feature, we also deleted. from the twelfth to first input
features. Table VI shows the results. In this case only three
input features were deleted but the recognition rate for the test
data by the fuzzy classifier was better than that in Table V.
Also the performance of the fuzzy classifier was comparable
to that of the neural network.

Tables VII and VIII show the number of rules generated
using 810 training data when one or more input features were
deleted from the first input feature and from the twelfth input
feature, respectively. In Table VII three features were deleted
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TABLE VI
SELECTION OF INPUT VARIABLES FOR THE 200 TRAINING DATA (DELETED FROM
THE TWELFTH INPUT FEATURE, THE 1430 TEST DATA, o = 0.001)

» Recognition Rates in %
Input Deleted Number of Rules  Fuzzy Classifier ~ Neural Network
Training Test Training Test

None 1 100 97.06 100 96.54
12 1 100 97.20 100  96.91
11,12 1 100 96.92 100 97.06
10,11,12 1 100 96.92 100 97.10

=100 for the training data and = 2 for the test data

TABLE VII .
SELECTION OF INPUT VARIABLES FOR THE 810 TRAINING DATA (DELETED
FROM THE FIRST INPUT FEATURE, THE 820 TEST DaTA, o = 0.001)

Recognition Rates in %

Input Deleted Number of Rules . Fuzzy Classifier ~ Neural Network
Training Test Iraining Test
None 2 for Class 7 100 99.63 99.99 99.41
1 for Others ’
1 8 for Class 9 99.51 98.66 97.54 96.60
4 for Class 2
2 for Classes 5 & 7
1 for Others
2 2 for Classes 1,5,7 100 99.51 99.98 99.26
1 for others
3 2 for Class 7 100 99.63 99.99 99.49
1 for others
3.4 2 for Class 7 100 99.63 99.99 99.49
1 for others
‘3,4,5 2 for Class 7 100 99.63 99.98 99.49

1 for others

=100 for the training data and y= 2 for the test data

TABLE VII
SELECTION OF INPUT VARIABLES FOR THE 810 TRAINING DATA (DELETED
FROM THE TWELFTH INPUT FEATURE, THE 820 TEST DaTa, @ = 0.001)

Recognition Rates in %
Fuzzy Classifier ~ Neural Network
Training Test Training Test

Input Deleted Number of Rules

None 2 for Class 7 100 99.63 99.41 99.41
1 for Others

12 2 for Class 7 100 99.51 99.98 99.28
1 for Others

=100 for the training data and y= 2 for the test data

while in Table VIII one feature was deleted. But for both cases
the recognition rate of the fuzzy classifier was always better
than the average recognition rate of the neural network for
both the training and test data.

Training Time Comparison: We compared the training ca-
pabilities between our method and the neural network under
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severe convergence conditions. Namely, -we set the input
features so that the recognition rate for the training data by
the fuzzy classifier was 100% but if any of the input features
was deleted the recognition rate was no longer 100%.

In this case, we used the features from the ninth to twelfth
as input features for the 200 training data. For classes 4, and
8, two rules were extracted; for class 9, three rules were
extracted; for class 5, four rules were extracted; and one
rule was extracted for each of the remaining classes. The
recognition rate for the 200 training data was 100%. For the
1430 test data, the recognition rate was 72.10% for o = 0.001.
The maximum recognition rate of 75.52% was obtained for
a = 0.6. The training time was less than one second using the
16 MIPS computer. Using the neural network, it converged
only four times out of 100 trials with the maximum number of
epochs of 10000. The average training time was 4.49 minutes
using a 31 MIPS computer. Thus the fuzzy rule extraction
was at least 500 times faster than training the neural network
(the average recognition rate for the 200 training data was
98.55%), and the average recognition rate for the 1430 test
data was 74.50% (the maximum and minimum recognition
rates were 77.76% and 71.33%, respectively).

For the 810 training data, we used the 1lst and the 8th to
twelfth features as input features. For classes 2, 4, 5 and
7, two rules were extracted; for class 10, three rules were
extracted; and one rule was extracted for each of the remaining
classes. The recognition rate for the 8§10 training data was
100%. For the 820 test data, the recognition rate was 98.05%
for « = 0.001. The maximum recognition rate of 98.17%
was obtained for @ = 0.2. The training time was less than
one second using the 16 MIPS computer. Using the neural
network, the average recognition rate for the 810 training data
was 99.88%. It converged 22 times out of 100 trials with the
maximum number of epochs of 10000. The average training
time was 13.90 minutes using the 31 MIPS computer. Thus,
extracting fuzzy rules was at least 1500 times faster than
training the neural network. The average recognition rate for
the 820 test data was 97.78% (the maximum and minimum
recognition rates were 98.66% and 96.83%, respectively).

IV. DISCUSSION

The difference between our fuzzy classification system and
the fuzzy min-max neural networks discussed in [6] is that
fuzzy rule extraction by our method is easier but the inference
procedure is more complicated. In addition, our method tends
to define larger hyperboxes or smaller number of fuzzy rules.
When using the training data for testing, both methods give
a recognition rate of 100% if there are no identical data
presented in different classes. As for the generalization ability,
we cannot say which is better. That means the performance
may vary according to applications. Thus, two methods can
be said to be alternative methods to realize a fuzzy classifier.

The advantages of our fuzzy classification system over
neural networks are as follows:

1) The network structure is automatically determined

. through the acquisition of fuzzy rules according to
the overlap between classes. Namely, the network is
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two layers if there is no overlap between classes, three
if each class overlaps with only one class at most, and
four if one class overlaps with more than one class.

2) Knowledge acquisition or training is very fast. As long
as there are no identical data presented in different
classes, we can obtain a recognition rate of 100% for
training data. Thus, retraining according to misclassifi-

- cation is not a problem.

3) Misclassification can be easily analyzed by fuzzy rules.
Thus modification of rules is also possible.

4) Generalization ability can be directly controlled by mod-
ifying the sensitivity parameter . If a test datum is
in the region where no activation hyperbox is in the
neighborhood, the system can determine that the input
is not classifiable.

5) Implementation is relatively easy since activation and
inhibition hyperboxes can be determined recursively.

The disadvantages as compared to neural networks are as
follows:

1) Generalization ability may be lower than that of neural
networks when only one rule per class is extracted and
when the characteristics of the training and test data are
very different.

2) Since the overlapping is resolved by considering two
classes each time, the network shown in Fig. 1, created
by using our method may be larger then the conven-
tional backpropagation networks for difficult classifica-
tion problems.

There are two advantages of our fuzzy classification system

over conventional fuzzy systems.

1) Fuzzy rules can be easily obtained from numerical data.

2) The classifier can be generated even for a large number
of input variables.

V. CONCLUSION

In this paper, we discussed how to extract fuzzy rules
directly from numerical data for pattern classification. Fuzzy
rules with variable fuzzy regions were defined by activation
hyperboxes which show the existence region of data for a
class and inhibition hyperboxes which inhibit the existence
of the data for that class. These rules were extracted from
numerical data by recursively resolving overlaps between two
classes. Then according to the number of rules extracted,
we developed an approach to the selection of optimal input
variables. The method described in this paper was compared
with neural networks using the Fisher iris data and a license
plate recognition system.
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