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Abstract	

Knowledge	 of	 genome-wide	 genealogies	 for	 thousands	 of	 individuals	 would	 simplify	 most	 evolutionary	

analyses	for	humans	and	other	species,	but	has	remained	computationally	infeasible.	We	developed	a	method,	

Relate,	scaling	to	>	10,000	sequences	while	simultaneously	estimating	branch	lengths,	mutational	ages,		and	

variable	historical	population	sizes,	as	well	as	allowing	for	data	errors.	Application	to	1000	Genomes	Project	

haplotypes	 produces	 joint	 genealogical	 histories	 for	 26	 human	 populations.	 Highly	 diverged	 lineages	 are	

present	in	all	groups,	but	most	frequent	in	Africa.	Outside	Africa,	these	mainly	reflect	ancient	introgression	

from	groups	related	to	Neanderthals	and	Denisovans,	while	African	signals	instead	reflect	unknown	events,	

unique	to	that	continent.	Our	approach	allows	more	powerful	inferences	of	natural	selection	than	previously	

possible.	We	identify	multiple	novel	regions	under	strong	positive	selection,	and	multi-allelic	traits	including	

hair	colour,	BMI,	and	blood	pressure,	showing	strong	evidence	of	directional	selection,	varying	among	human	

groups.	
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Large-scale	genetic	variation	datasets	are	now	available	for	a	variety	of	species,	including	tens	of	thousands	

of	 humans.	 In	 principle,	 all	 information	 about	 a	 sample’s	 genetic	 history	 is	 captured	 by	 their	 underlying	

genealogical	 history,	 which	 records	 the	 historical	 coalescence,	 recombination,	 and	 mutation	 events	 that	

produced	 the	 observed	 variation	 patterns.	 In	 practice,	 several	 key	 existing	 approaches	 (e.g.,	 Refs.	 [1,2])	

leverage	an	underlying	coalescent	model,	because	this	provides	a	 flexible	modelling	 framework	and	 is	 the	

limiting	 behaviour	 of	 a	 variety	 of	 finite-population	models3,4.	 However,	 inference	 under	 the	 coalescent	 is	

complicated	by	the	structure	of	the	model,	uncertainty	over	the	correct	genealogy	conditional	on	observed	

data,	 and	 the	 large	 resulting	 space	of	possible	 sample	histories5.	Other	 approaches6–11	 use	more	heuristic	

approximations	to	the	coalescent,	sometimes	reducing	accuracy:	regardless,	all	published	existing	methods	

scale	to	tens	or	a	few	hundred	samples	at	most.	

As	a	result	of	these	issues,	the	use	of	direct	genealogy-based	inference	to	detect	recombination	events,	date	

mutations,	and	reveal	evidence	of	positive	selection	has	been	limited	to	smaller	datasets1,2,	while	for	larger	

datasets	approaches	based	on	data	summaries12–14	or	downsampling15,16	have	predominated.	A	diverse	set	of	

tools	have	detected	genetic	structure	that	is	in	good	agreement	with	geopolitical	separation	over	generations17.	

Admixtures	 of	 ancient	 populations	 have	 been	 identified	 and	 dated18.	 Other	 applications	 have	 found	

bottlenecks	in	population	sizes	that	are	consistent	with	anthropological	evidence	of	initial	human	migration	

from	 the	African	 continent15,19–21	 and	 evidence	of	 subsequent	 introgression	with	 archaic	 humans,	 such	 as	

Neanderthals22.	

We	have	developed	a	scalable	method,	Relate,	to	estimate	genome-wide	genealogies	(see	Figure	1;	Methods;	

URLs	for	implementation).	Relate	separates	two	steps;	firstly	identifying	a	genealogical	framework	at	each	

site	in	the	genome,	which	describe	ancestry	relationships	among	sequences	but	not	the	times	of	particular	

events.	Secondly,	these	times	are	estimated	after	mutations	are	mapped	to	branches	of	these	trees,	allowing	

for	variable	population	sizes	which	are	inferred	from	the	data,	to	produce	complete	genealogies.	These	are	

then	used	directly	for	downstream	inferences.	Our	approach	approximates	the	coalescent	model,	but	performs	

as	well	as	or	better	than	existing	approaches	in	our	simulations,	whilst	being	thousands	of	times	faster.	
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We	demonstrate	the	utility	of	a	genealogy-based	analysis	by	applying	Relate	to	4956	haplotypes	of	the	1000	

Genomes	Project	dataset23,24.	We	estimate	population	sizes	of	all	26	populations	in	the	dataset	and	their	split	

times	using	cross-coalescence	rates	between	populations.	In	agreement	with	a	previous	study,	we	identify	an	

increase	in	the	mutation	rate	of	TCC	to	TTC	mutations,	which	we	date	at	around	10,000	to	20,000	years	ago25.	

The	 estimated	 genealogies	 contain	 a	 strong	 signal	 of	 introgression	 between	 Neanderthals	 and	 modern	

humans	in	Eurasia,	and	a	weaker	introgression	signal	between	modern	East	and	South	Asians	and	Denisovans,	

alongside	other	signals	specific	to	African	groups.	Finally,	we	suggest	a	test	statistic	that	can	identify	loci	under	

positive	selection	by	tracking	frequencies	of	mutations	through	time.	We	demonstrate	that,	for	biologically	

plausible	scenarios	of	selection	on	complex	traits,	where	selection	is	relatively	weak,	this	test	is	more	powerful	

than	the	integrated	Haplotype	Score	(iHS)26,	and	we	identify	genomic	regions	under	strong	positive	selection	

that	 were	 previously	 unreported.	 We	 find	 a	 remarkable	 enrichment	 of	 SNPs	 identified	 in	 genome-wide	

association	studies	(GWAS)	among	these	targets	of	selection,	and	identify	evidence	of	widespread	directional	

polygenic	adaptation,	using	SNP-trait	associations	identified	in	GWAS.	

Results 

Overview of the Relate approach  

At	each	particular	position	along	the	genome,	Relate	first	identifies	a	non-symmetric	distance	matrix	whose	

rows	each	estimate	the	relative	order	of	coalescence	events	between	a	particular	sequence	and	the	remaining	

observed	sequences,	at	that	position.	To	do	this,	Relate	uses	the	posterior	probabilities	output	by	a	hidden	

Markov	model	(HMM)	similar	to	that	proposed	by	Li	and	Stephens27,	but	leveraging	knowledge	of	ancestral	

and	derived	status	at	each	single	nucleotide	polymorphism	(SNP)	to	improve	speed	and	accuracy.	The	distance	

matrix	 is	 then	used	 to	construct	a	rooted	binary	 tree	using	a	bespoke	algorithm.	Mathematical	arguments	

demonstrate,	encouragingly,	that	if	the	“infinite-sites”	model	is	satisfied	so	that	each	observed	mutation	occurs	

exactly	once,	our	approach	is	guaranteed	to	generate	a	set	of	genealogies	exactly	producing	the	observed	data,	

in	the	limiting	cases	where	either	there	is	no	recombination,	where	the	recombination	rate	is	very	large,	or	

where	all	 recombination	occurs	 in	 intense	widely	 spaced	hotspots	 (Supplementary	Note:	Method	details).	

Because	the	distance	matrix	is	position	specific,	these	binary	trees	adapt	to	changes	in	local	genetic	ancestry	
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that	arise	due	to	recombination.	In	practice,	we	save	computational	time	by	only	rebuilding	trees	at	a	subset	

of	sites	along	the	genome	(Methods).	

The	binary	tree	construction	step	does	not	estimate	branch	lengths.	To	achieve	this,	while	allowing	for	variable	

population	sizes	over	time,	we	first	map	mutations	onto	each	genealogical	tree	and	then	apply	an	iterative	

Metropolis-Hastings	type	Markov	Chain	Monte	Carlo	(MCMC)	algorithm	to	estimate	branch	lengths	under	a	

coalescent	prior.	We	simultaneously	estimate	a	stepwise	varying	effective	population	size	through	time,	using	

the	genome-wide	collection	of	estimated	genealogies	(Methods).	Our	final	time	estimates	then	account	for	

changes	 in	 population	 size,	 assuming	 an	 unstructured	 population.	 We	 can	 also	 explore	 population	

stratification	within	a	large	sample,	by	leveraging	Relate’s	estimates	of	the	coalescence	rate	through	time	of	

any	pair	of	sampled	sequences.	By	averaging	pairwise	coalescence	rates	within	and	across	groups,	we	obtain	

estimates	of	effective	population	sizes	for	sub-populations	and	cross-coalescence	rates	between	populations.	

As	we	show	in	the	next	section,	this	can	provide	accurate	estimates	despite	the	fact	that	our	tree-builder	does	

not	account	for	such	population	stratification.	

Simulations 

We	 evaluated	 Relate	 in	 terms	 of	 its	 speed,	 accuracy	 of	 inferred	 trees,	 robustness,	 and	 ability	 to	 infer	

evolutionary	 parameters,	 by	 simulating	 data	 under	 the	 standard	 coalescent	 with	 recombination	 using	

msprime28.	We	compared	performance	to	ARGweaver2,	which	samples	from	a	time-discretised	approximation	

of	the	standard	coalescent	with	recombination	and	a	constant	population	size,	and	which	we	therefore	expect	

to	perform	well	on	the	simulated	datasets.	Relate	was	>4	orders	of	magnitude	faster	than	ARGweaver,	 for	

cases	we	were	able	to	apply	the	latter,	and	also	much	faster	than	RENT+11	(Figure	2	a,b).	Our	approach	scales	

linearly	in	sequence	length	and	quadratically	in	sample	size	𝑁,	allowing	it	to	be	applied	to	e.g.	10,000	human	

samples	genome-wide,	using	a	compute	cluster.	

To	 evaluate	 accuracy	 of	 tree	 topology	 and	 branch	 lengths,	 at	 each	 locus	 and	 for	 each	 of	 the	"𝑁2$	pairs	 of	

haplotypes,	we	 compare	 the	 estimated	 time	 to	 their	most-recent	 common	ancestor	 (TMRCA)	 to	 the	 truth	

(Figure	2c	and	d),	observing	improved	performance	relative	to	both	ARGweaver	and	RENT+.	Compared	to	
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these	approaches,	Relate	also	showed	excellent	robustness	to	errors	in	the	data,	as	well	as	to	misclassified	

ancestral	 alleles,	 and	 was	 able	 to	 estimate	 times	 well	 in	 the	 presence	 of	 changes	 in	 population	 size	

(Supplementary	 Figure	 3).	 Other	 accuracy	 measures	 yielded	 similar	 results	 (Supplementary	 Note:	

Simulations).	We	next	compare	the	accuracy	of	Relate’s	inferred	population	sizes	to	those	based	on	applying	

two	leading	specialist	approaches,	MSMC20	and	SMC++21.	Relate	obtains	more	accurate	estimates	than	these	

methods,	 particularly	 in	 the	 recent	 past,	 for	 a	 variety	 of	 previously	 tested20,21	 population	 size	 histories	

including	 oscillating	 population	 sizes	 and	 bottleneck	 scenarios	 similar	 to	 those	 observed	 in	 out-of-Africa	

events	of	modern	humans	 (Figure	2	e	 and	Supplementary	Figure	3).	While	our	method	assumes	a	 single	

population	 when	 estimating	 branch	 lengths,	 when	 applied	 to	 a	 combined	 sample	 from	 two	 diverged	

populations,	it	still	performs	well	in	recovering	their	distinct	population	histories	and	estimating	their	split	

time(s)	(Figure	2	f,g).	

Genome-wide human genealogies 

We	applied	Relate	to	data	of	 the	1000	Genomes	Project,	comprising	2478	individuals	with	diverse	genetic	

ancestry	and	approximately	81	million	SNPs	(see	Methods	for	details	on	data	pre-processing).	Our	method	

terminated	after	4	days	using	a	compute	cluster	with	up	to	300	processors	(Supplementary	Table	1).	86%	of	

all	SNPs	(>96%	of	SNPs	at	>0.2%	derived-allele	frequency	(DAF))	map	uniquely	to	trees,	falling	to	76%	of	CpG	

dinucleotides,	which	are	known	to	possess	strongly	elevated	mutation	rates	(Supplementary	Figure	5).	The	

number	of	trees	constructed	in	a	genomic	subregion	is	correlated	to	recombination	distance	(𝑟& = 0.63)	and	

the	average	tree	has	3883	SNPs	mapped	to	it,	reflecting	block-like	structures	of	human	haplotypes	between	

recombination	hotspots	(Supplementary	Figure	5).	

We	 estimated	 within-group	 and	 pairwise	 coalescence	 rates	 for	 pairs	 of	 groups,	 by	 first	 extracting	 the	

genealogy	for	members	of	a	particular	subsample	of	interest	embedded	within	the	full	genealogy,	and	then	re-

estimating	 coalescence	 rates	 through	 time	 for	 this	 genealogy.	We	observe	a	 clear	out-of-Africa	bottleneck	

following	 the	migration	 of	 Asian	 and	 European	 populations	 (CHB:	 Chinese	 in	 Beijing	 and	 GBR:	 British	 in	

England	and	Scotland	shown),	and	a	split	from	African	populations	(YRI:	Yoruba	in	Ibadan,	Nigeria	shown)	

already	visible	at	200,000	years	before	present	(YBP)	and	lasting	to	around	60,000YBP	(Figure	3	a,b).	This	is	
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consistent	with	recent	studies15,29	and	supports	a	slow	separation	between	African	and	non-African	groups	

that	might	reflect	e.g.	several	out-of-Africa	dispersal	events.	Asian	(CHB	shown)	and	European	(GBR	shown)	

populations	separate	more	recently,	with	a	clear	and	much	more	sudden	separation	visible	at	around	30,000	

YBP	(Figure	3c).	We	are	also	able	to	detect,	and	date,	very	recent	separations	<10,000	YBP,	such	as	between	

CHB-JPT	 (JPT:	 Japanese	 in	Tokyo)	or	FIN-GBR	 (FIN:	Finnish	 in	Finland)	 (Figure	3	d,e).	We	 find	a	 second	

bottleneck	 in	 Finnish	 samples,	 occurring	 around	 3000	 to	 9,000	 YBP	 and	 after	 separation	 from	 GBR30,31,	

alongside	 other	 very	 recent	 population-specific	 events	 including	 in	 Peruvians	 and	 Gujarati	 individuals	

(Supplementary	Figure	6).	The	Finnish	bottleneck	is	thought	to	have	caused	enrichment	of	certain	disease-

causing	 gene	 variants,	 commonly	 classified	 as	 Finnish	 heritage	 diseases30,31.	 The	 absence	 of	 a	 strong	

bottleneck	in	African	populations	(LWK:	Luhya	in	Webuye,	Kenya	and	YRI	shown)	following	the	departure	of	

European	and	Asian	populations	can	be	seen	 in	Figure	3f.	All	populations	show	a	remarkable	 increase	 in	

inferred	population	size,	often	to	>1,000,000,	in	the	recent	past	(Supplementary	Figure	6).		

It	 is	 straightforward	 to	 explore	 the	 relative	mutation	 rate	of	particular	 classes	of	mutations	 through	 time	

(Figure	 4a),	 and	 as	 reported	 previously25,	 this	 confirms	 a	 strong	 elevation	 in	 the	 rate	 of	mutation	 types	

including	TCC->TTC	trinucleotide	changes	in	West	Eurasian	groups,	which	we	date	to	5,000-30,000	YBP,	but	

infer	to	be	weak	or	absent	 in	the	present	day.	This	approach	might	usefully	be	applied	in	a	range	of	other	

species	in	future.	Overall,	these	results	support	accuracy	of	our	inferred	historical	relationships,	including	the	

timing	of	a	range	of	different	historical	events,	identified	within	a	single	analysis	framework.	

Embedded signals of Neanderthal and Denisovan introgression, and unexplained events, 

within the trees 

Tree-based	 approaches	 should,	 in	 principle,	 provide	 information	 regarding	 ancient	 admixture	 and	

introgression	events.	Introgression	from	distantly	related	groups	in	the	past	is	expected	to	introduce	lineages	

which	forward	in	time	can	then	expand	in	the	tree,	and	backward	in	time	remain	distinct	from	other	lineages,	

resulting	 in	 long	 branches	 with	 unusual	 numbers	 of	 descendants	 associated	 with	 particular	 times.	 We	

therefore	 identified	such	branches	(>1	million	years	(MY)	 in	age	and	with	varying	 lower	end),	 in	different	

human	groups	 (Figure	4b,c).	 It	 is	established	 that	all	non-African	human	groups	possess	similar	 levels	of	
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Neanderthal	 introgression,	 and	 specific	 Asian	 and	 Austrolasian	 groups	 possess	 admixture	 from	 a	 group	

related	to	Denisovans22,32.	We	therefore	annotate	long	branches	possessing	at	least	two	mutations	as	being	

shared	 with	 these	 groups	 if	 they	 possess	 at	 least	 one	 mutation	 shared	 with	 them,	 leveraging	 genome	

sequences	of	the	Vindija22	and	Altai33	Neanderthals,	and	a	Denisovan32	(Figure	4b	shows	one	example	of	likely	

introgression	from	Neanderthals	 into	European	GBR,	but	not	African	YRI	 individuals).	After	classifying	old	

branches	based	on	 their	 lower-end	 times	 –	which	provide	 a	 lower	bound	on	 the	 introgression	 time	–	 for	

branches	originating	within	the	last	10,000YBP,	85-90%	are	shared	with	Neanderthal	or	Denisovan	for	most	

European	 and	 Asian	 groups	 (Methods).	 An	 exception	 is	 IBS,	which	 has	more	 long	 branches	 shared	with	

African	populations	(Supplementary	Figure	6b).	In	East	and	South	Asian	groups,	Neanderthal	sharing	remains	

high	for	branches	ending	up	to	~30,000YBP,	then	slowly	declines,	while	the	data	instead	suggest	a	very	recent	

arrival	of	Denisovan	DNA	(mainly	<15,000YBP).	This	substantial	sharing	of	long	branches	with	Denisovans	is	

restricted	 to	 East	 Asian	 and	 South	 Asian	 groups.	 This	 suggests	 that	 aside	 from	 groups	 closely	 related	 to	

Neanderthals	and	Denisovans,	no	strongly	diverged	hominid	group	has	 left	a	major,	recent	 impact	 in	non-

African	populations	studied	here.	The	coalescent-based	arrival	date	of	Neanderthal	DNA	agrees	with	previous	

estimates	based	on	LD34,	and	direct	evidence	of	hybrids34,35	around	40,000YBP.	Moreover,	elevation	in	the	

sharing	 of	 quite	 deep	 haplotypes	 with	 Neanderthals	 steadily	 increases	 from	 ~100,000	 YBP,	 which	 is	

suggestive	of	introgression	beginning	from	this	time	in	non-African	individuals,	although	it	is	important	to	

note	that	our	date	estimates	for	individual	events	might	be	over-	or	under-estimates	in	some	cases.	

In	 contrast	 to	 non-African	 groups,	 sharing	 with	 Neanderthal/Denisovans	 is	 very	 low	 (<20%)	 in	 African	

populations,	and	declines	towards	the	present,	suggesting	minimal	recent	interactions22,32.	This	is	despite	the	

fact	that	the	largest	number	of	long	branches	observed	come	from	African	populations	(on	average,	there	are	

42,434	mutations	on	branches	with	a	lower	coalescent	age	<	30,000	YBP	and	upper	coalescent	age	>	1M	YBP	

in	 African	 populations,	 compared	 to	 7012	 such	 mutations	 in	 non-African	 populations).	 In	 fact,	 98%	 of	

mutations	on	long	branches	are	unique	to	populations	in	Africa,	indicative	of	separate	events	occurring	in	non-

African	and	African	populations	(Supplementary	Figure	6b).	We	observe	a	strong	enrichment	of	mutations	

with	an	upper	end	>1M	YBP	and	lower	end	<40,000	YBP	in	YRI,	GBR,	BEB,	and	CHB,	where	this	enrichment	

can	be	almost	entirely	explained	by	Neanderthals/Denisovans	in	the	non-African	populations,	but	not	in	YRI	

(Figure	4d).	In	panmictic	simulations	with	matched	population	size	histories,	we	observe	no	such	enrichment	
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(Supplementary	Figure	6c).	This	may	be	consistent	with	ancient	but	uncharacterised	population	structure	

within	Africa,	for	which	there	is	increasing	evidence36,37.	Figure	4b	shows	one	example	consistent	with	an	

introgression	event	in	YRI	with	a	hominid	not	closely	related	to	Neanderthals.		

Powerful tree-based approaches to study natural selection 

By	directly	modelling	how	mutations	arise	and	spread,	genealogical	trees	offer	the	potential	 to	powerfully	

investigate	different	modes	of	natural	selection,	using	novel	approaches	(e.g.,	Ref.	[38]).	For	example,	a	recent	

method,	SDS,	tests	for	the	presence	of	positive	selection	acting	on	a	focal	SNP	by	testing	for	differences	in	tip	

branch	lengths	between	carriers	and	non-carriers	using	the	density	of	singletons	around	this	SNP39.	A	tree-

based	analogue	of	SDS	(trSDS)	directly	compares	tip	branch	lengths40.	Here,	we	propose	a	class	of	approaches	

(Relate	Selection	Tests)	based	on	estimating	the	speed	of	spread	of	a	particular	lineage	(carrying	a	particular	

mutation),	relative	to	other	“competing”	lineages,	over	some	chosen	time	range.	Rapidly-spreading	lineages	

may	 carry	 positively	 selected	 mutations.	 To	 test	 for	 selection	 over	 the	 entire	 lifetime	 of	 a	 mutation,	 we	

condition	on	 the	number	of	 lineages	present	when	 it	 first	arises,	and	use	as	a	 test	 statistic	 the	number	of	

present-day	 carriers.	 Assuming	 no	 population	 stratification	 within	 a	 group,	 the	 null	 distribution	 of	 this	

statistic	can	be	calculated	analytically	and	is	robust	in	principle	to	changes	in	population	size	through	time	

(Methods).	

Simulated	 data	 (Figure	 5a)	 show	 a	 close	 match	 in	 null	 no-selection	 scenarios	 of	 our	 p-values	𝑝- 	to	 the	

expected	 uniform	 distribution,	 in	 scenarios	 (1000	 haplotypes)	 incorporating	 human-like	 recombination	

hotspots	and	variation	in	population	size	through	time.	In	simulations	across	a	range	of	selective	advantages	

and	SNP	frequencies	(Figure	5b,	Supplementary	Figure	4),	our	approach	increases	power	relative	to	SDS	

and	trSDS	in	all	settings,	as	well	as	relative	to	iHS	for	weaker	selection	in	particular.	trSDS	is	more	powerful	

than	SDS,	while	applying	the	Relate	Selection	Test	to	the	true	genealogical	trees	yields	a	test	that	is	uniformly	

more	powerful	than	other	approaches	(Figure	5b),	indicating	the	strength	of	using	tree-based	approaches.	In	

practice,	 there	 is	 therefore	some	decrease	 in	power	 from	the	need	to	 infer	 trees	via	Relate.	The	 increased	

power	 of	 our	 statistic	 for	 detecting	 weak	 selection	 might	 be	 particularly	 beneficial	 when	 investigating	
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selection	on	complex,	polygenic	traits,	where	small	effect	sizes	mean	the	selection	coefficients	on	single	loci	

are	expected	to	be	small41.		

Calculating	𝑝- 	for	 each	 bi-allelic	 SNP	 across	 20	 populations	within	 the	 1000	Genomes	 dataset	 (Methods)	

identified	 35	 regions	 containing	 genome-wide	 significant	 signals	 ( 𝑝- < 5	 × 1034 ),	 using	 the	 stringent	

criterion	that	this	threshold	is	reached	separately	in	each	of	three	or	more	groups	(Supplementary	Table	3).	

Of	 these,	11	have	been	previously	reported,	 including	the	LCT	region	associated	with	Lactose	tolerance	 in	

Europeans,	and	a	mutation	in	the	EDAR	gene	in	East	Asian	populations42,43.	In	both	cases,	the	causal	variant	is	

in	high	linkage	disequilibrium	(LD)	to	the	mutation	with	lowest	𝑝-	(𝑟& ≥ 0.8).	We	also	observe	a	previously-

detected	strong	signal	of	positive	selection	in	the	MHC	region	in	GBR44	(Figure	5c).	Among	unreported	regions,	

we	identify	the	EDARADD	gene	–	which	interacts	with	the	EDAR	gene45	in	the	formation	of	hair	follicles,	sweat	

glands,	and	teeth43	–	as	exhibiting	selection	evidence	in	all	South	Asian	populations,	as	well	as	the	Finnish	

population	 and	 reaching	𝑝- < 1037 	in	 all	 European	 populations.	 In	 16	 of	 35	 regions,	 we	 identify	 GWAS	

catalogue	hits	(OR=6.44;	p=0.01),	non-synonymous	mutations	(OR=2.49;	p=0.16),	or	eQTLs	(OR=1.74;	p=0.1),	

in	LD	with	the	mutation	with	strongest	selection	evidence	(𝑟& ≥ 0.8,	Methods),	suggesting	functional	effects,	

reaching	statistical	significance	for	the	case	of	GWAS	hits	despite	the	small	number	of	cases	tested.	Only	8	of	

the	35	regions	are	attributed	to	European	populations,	and	18	regions	are	found	only	for	African	populations.	

Overall,	SNPs	in	functional	parts	of	the	genome	are	significantly	enriched	among	targets	of	positive	selection	

(Figure	 5d,	 see	 Supplementary	Note:	 1000	 Genomes	 Project	 for	 details).	 In	 particular,	we	 find	 strongest	

enrichment	 for	 GWAS	 hits,	 across	 all	 considered	 populations,	 encouragingly	 supporting	 a	 link	 between	

evidence	 of	 selection	 and	 SNPs	with	 detectable	 influences	 on	 phenotypes	 at	 the	 organism	 level.	Multiple	

previous	studies46–49	have	attempted	to	test	individual	polygenic	traits	for	evidence	of	directional	polygenic	

selection,	 but	 confounding	 due	 to	 population	 stratification50,51	 is	 potentially	 problematic	 in	 practice.	 To	

leverage	 potential	 power	 gains	 of	 the	 Relate	 Selection	 Test	 for	 this	 purpose,	 we	 tested	 whether	 derived	

mutations	 that	 increase	 (or	 decrease)	 a	 trait	 show	 increased	 evidence	 of	 directional	 selection	 relative	 to	

randomly	sampled	control	mutations	of	the	same	frequency	(Wilcoxon	test;	Methods).	For	each	tested	trait	

we	thin	GWAS	hits	to	account	for	LD	(Methods)	and	examined	only	SNPs	showing	“genome-wide	significant”	

associations	 (𝑝 < 	5 × 1034 ),	 because	 confounding	 due	 to	 population	 stratification	 is	 thought	 to	 operate	
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through	relatively	small	-	but	systematic	-	biases	in	effect	size	estimates50,51,	but	is	not	known	to	produce	false-

positives	that	are	genome-wide	significant.	At	each	such	SNP	retained,	we	use	only	the	association	direction,	

rather	than	its	strength,	to	offer	additional	robustness	to	potential	confounding.		

If	positive	selection	occurs	so	as	to	advantage	SNPs	influencing	a	trait	in	a	certain	direction,	e.g.	trait-increasing,	

we	would	expect	positive	selection	on	trait-increasing	mutations,	and	negative	selection	on	trait-decreasing	

mutations.	In	general,	we	expect	our	test	to	be	sensitive	mainly	to	the	former,	because	selection	will	increase	

frequencies	 of	 such	 SNPs,	 and	 the	 Relate	 Selection	 Test	 has	 reduced	 power	 to	 identify	 selection	 at	 rarer	

markers	 (Figure	 5b),	 particularly	 if	 selection	 has	 varied	 through	 time	 so	 as	 to	 impact	 mainly	 standing	

variation.	However,	as	described	further	in	the	Discussion,	for	traits	with	a	large	number	of	hits,	and	strong	

selection,	 it	 is	 theoretically	 possible	 for	 our	 approach	 to	 observe	 some	 selection	 evidence	 in	 both	

directions52,53,	 because	 to	 avoid	 ascertainment	 effects	 we	 condition	 on	 SNP	 allele	 frequencies	 at	 trait-

influencing	sites.	Therefore,	we	additionally	test	for	differences	in	present-day	DAFs	between	trait-increasing	

and	 trait-decreasing	 mutations,	 which	 can	 provide	 orthogonal	 evidence	 of	 polygenic	 adaptation,	 aiding	

interpretation	 of	 results	 we	 observe	 (Methods).	 We	 also	 note	 that	 caution	 should	 be	 exerted	 when	

interpreting	polygenic	adaptation54.	For	instance,	a	selection	signal	associated	to	a	particular	trait	may	not	

necessarily	imply	a	phenotypic	change	in	the	same	effect	direction,	because,	for	example,	selection	could	have	

occurred	 to	 counter-act	 a	 large	 change	 in	 phenotype	 caused	 by	 another	 mutation.	 Additional	 issues	 are	

considered	in	the	Discussion.	

As	a	positive	control,	we	applied	our	test	to	GWAS	for	hair	colour	conducted	for	the	UK	Biobank55	(Figure	6a).	

As	in	previous	studies49,56,57,	we	find	a	signal	for	SNPs	associated	with	blonder	hair	colour	among	European	

populations,	which	is	absent	in	South	Asian	populations49,56.	Moreover,	we	observe	strong	selection	signals	

for	 a	decrease	 in	black	hair	 colour,	 as	well	 as	 an	 increase	 in	 light	brown	hair	 colour	 among	all	 European	

populations,	and	weaker	signals	in	South	Asian	populations,	while	East	Asian	and	African	populations	show	

no	 evidence	 of	 selection.	 Testing	 based	 on	 iHS	 scores	 identifies	 only	 some	 of	 these	 signals,	 and	 with	

significance	decreasing	around	4	orders	of	magnitude	(Figure	6a).	Next,	we	applied	the	same	to	84	traits:	6	

from	the	UK	Biobank,	and	78	with	at	least	10	genome-wide	significant	GWAS	catalogue	association	signals	in	

each	 effect	 direction.	We	 tested	 all	 populations	 except	 recently	 admixed	 groups;	 61	 of	 these	 84	 showed	
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nominal	 evidence	 for	 selection	 (p<0.05)	 in	 at	 least	 one	 population	 (Figure	 6b),	 with	 strong	 geographic	

clustering,	and	the	most	significant	signal	(𝑝 = 6 × 10389)	for	SNPs	associated	with	decreased	BMI	in	CEU.	

The	 largest	 number	 of	 selection	 signals	 are	 observed	 for	 Europeans,	 possibly	 because	many	 GWAS	were	

conducted	in	these	groups.	Interestingly,	East	Asians	have	the	fewest	selection	signals	and	no	enrichment	of	

low	p-values	(Supplementary	Figure	7)	which	may	partly	be	explained	by	their	stronger	population	bottleneck,	

which	would	theoretically	be	expected	to	weaken	selection	signals.	

Height,	Body	Mass	Index	(BMI),	and	Schizophrenia	have	been	studied	previously	and	show	a	large	number	of	

association	 signals58.	While	 several	 studies	 have	 reported	 genetic	 differentiation	between	populations	 for	

these	traits59–61,	evidence	for	selection	remains	controversial40,47–51,59,60,62.	It	was	recently	reported	that	recent	

selection	on	increased	height	in	Europeans	has	been	overestimated	and	that	estimates	have	been	confounded	

by	subtle	population	stratification40,50,51.	Our	 test	 finds	an	enrichment	of	selection	evidence	 for	both	effect	

directions	for	height,	across	most	populations	except	East	Asians,	using	the	large	collection	of	UK	Biobank	

associations.	DAFs	tend	to	be	larger	towards	the	height-decreasing	direction.	This	complex	picture	may	be	a	

consequence	of	both	negative	and	positive	selection	acting	on	height,	as	well	as	pleiotropy;	SNPs	impacting	

other	traits	might	also	impact	height.	We	also	identify	strong	evidence	of	selection	towards	decreased	BMI	

across	all	populations,	with	agreement	of	DAF	shifts,	 indicative	of	directional	selection.	For	both	traits,	we	

detect	 little	 evidence	 of	 selection	 using	 associations	 in	 the	 smaller	 GWAS	 catalogue	 collection.	 For	

Schizophrenia,	we	find	evidence	of	selection	towards	decreased	risk	in	Europeans,	and	some	South	and	East	

Asian	populations,	while	African	populations	show	selection	evidence	towards	a	risk	increase.		

Overall,	although	we	find	selection	evidence	for	a	range	of	traits,	we	observe	little	overlap	with	traits	identified	

in	Ref.	[49],	which	focuses	on	very	recent	selection	specific	to	the	British	population.	Among	other	phenotypes,	

we	see	selection	evidence	for	a	variety	of	blood-related	phenotypes,	with	congruent	DAF	signals.	In	Europeans	

and	 some	South	Asian	groups,	we	detect	 a	 strong	 signal	 towards	 increases	 in	diastolic	 and	 systolic	blood	

pressures,	contrary	to	previous	studies	showing	selection	for	decreased	blood	pressure	in	these	groups56,63.	

We	moreover	 find	 evidence	 for	 selection	 towards	 decreased	hemoglobin	 concentration	 and	 other	 related	

traits,	while	platelet-related	traits	appear	to	be	selected	to	increase	across	many	populations.		
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Interestingly,	we	observe	differences	between	the	frequency	conditioned	selection	signal	and	shift	in	DAF	for	

some	 traits	 related	 to	white	 blood	 cells	 (Figure	 6b).	 For	 instance,	 we	 detect	 a	 signal	 towards	 increased	

granulocyte	 counts	 in	 African	 populations,	 but	 decreasing	 counts	 in	 some	 European	 and	 South	 Asian	

populations.	While	DAFs	are	strongly	different	(𝑝 < 0.003;	Wilcoxon	test)	and	in	agreement	with	the	effect	

direction	for	the	African	groups,	DAFs	remain	slightly	lower	for	SNPs	associated	with	decreasing	granulocyte	

counts	even	in	Europe	and	South	Asia.	(𝑝 < 0.09	for	EUR,	𝑝 < 0.12	for	SAS;	one-sided	Wilcoxon	test).	However,	

these	DAFs	for	granulocyte-decreasing	variants	are	increased	relative	to	those	in	African	groups	(𝑝 < 0.0013;	

one-sided	 paired	 Wilcoxon	 test),	 while	 DAFs	 for	 granulocyte-increasing	 variants	 were	 not	 significantly	

different	(𝑝 > 0.4;	two-sided	paired	Wilcoxon	test),	so	a	possible	resolution	is	that	this	trait	(or	a	related	trait)	

was	selected	to	increase	in	the	past,	and	has	more	recently	been	selected	to	decrease	in	some	non-African	

groups.		

Discussion 

We	have	developed	a	scalable	method,	Relate,	for	estimating	genealogies	genome-wide	and	demonstrated	its	

accuracy,	as	well	as	utility,	on	a	diverse	set	of	applications,	building	histories	 for	thousands	of	samples.	 In	

many	of	these	applications,	we	have	improved	in	accuracy	or	resolution	on	existing	state-of-the-art	methods,	

each	of	which	have	previously	required	separate	analyses.	Although	we	have	focused	here	on	data	for	humans,	

Relate	should	work	equally	well	 in	other	recombining	species.	A	strength	of	approaches	based	on	building	

such	genealogies	is	that	results	are	automatically	self-consistent:	all	our	inferences	are	derived	from	the	same	

genealogy,	making	results	across	different	applications	easier	to	compare.	We	note	that	this	approach	is	highly	

modular,	 in	 the	 sense	 that	 the	 methods	 developed	 for	 genealogy-based	 inference	 should	 be	 applicable	

regardless	of	the	specific	algorithm	used	for	estimating	marginal	trees.	

In	our	analysis	of	1000	Genomes	data,	we	provide	several	examples	whereby	Relate-based	trees	are	able	to	

capture	evolutionary	processes	that	are	themselves	evolving	through	time:	“evolution	of	evolution”.	Changes	

through	time	in	mutation	rates,	population	size,	migration,	and	archaic	admixture,	are	simultaneously	inferred,	

as	are	population-specific	signals	of	natural	selection.	Genealogies	thus	provide	a	powerful	way	to	study	these	
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complex,	 interacting	 phenomena,	 and	we	 believe	 studies	 of	 other	 evolutionarily	 and	 temporally	 dynamic	

processes	–	for	example	of	evolution	of	recombination	rates	through	time64,65	-	will	yield	new	insights.		

Interpretation	 of	 our	 findings	 regarding	 natural	 selection	 requires	 some	 care.	 A	 strength	 of	 our	 Relate	

Selection	Test	to	identifying	candidates	of	ongoing	selection	is	that	it	provides	p-values,	which	are	naturally	

calibrated,	even	if	population	sizes	vary	through	time.	In	common	with	previous	studies,	we	find	a	relatively	

small	 (<40)	 number	 of	 clear	 signals	 of	 strong,	 ongoing	 selection	 across	 multiple	 human	 populations.	 In	

contrast,	we	find	a	much	larger	collection	of	phenotypes	where	–	based	on	published	GWAS	data	–	there	is	

evidence	that	mutations	 influencing	a	phenotype	 in	one	direction	or	another	show	evidence	of	directional	

selection.	These	traits	include	BMI,	blood	pressure,	and	white	and	red	blood	cell	counts,	and	more	generally	

we	see	an	enrichment	of	selection	evidence	at	loci	shown	to	associate	with	human	phenotypes	in	GWAS	studies.	

While	these	findings	appear	highly	consistent	with	the	polygenic	nature	of	most	human	phenotypes	-	which	

are	expected	to	impose	very	weak	selection,	but	on	a	large	collection	of	loci41	-	it	remains	challenging	to	assign	

selection	signals	to	specific	phenotypes.	For	example,	a	directional	signal	might	be	partly	driven	by	selection	

on	other	phenotypes	correlated	to	those	studied.	Moreover,	even	if	mutations	e.g.	increasing	WBC	counts	have	

been	generally	favoured	in	a	group,	this	does	not	imply	that	WBC	count	itself	has	increased	evolutionarily;	if	

for	example	a	selective	sweep	has	fixed	a	single	SNP	of	major	effect	on	this	phenotype	(such	as	Duffy	negativity	

in	Africa,	associated	both	with	malaria	resistance	and	decreased	WBC	count66),	then	selection	might	be	acting	

on	other	SNPs	to	compensate	this	change.	Environmental	influences	might	have	similar	impacts.	Differences	

between	populations	must	also	be	 interpreted	carefully:	aside	 from	 impacts	of	demographic	history,	most	

human	GWAS’s	 to	date	have	been	conducted	 in	European	populations,	 so	 that	 recently	arisen	phenotype-

influencing	mutations	in	other	groups	might	not	have	been	observed,	reducing	power	in	those	populations.	

Finally,	we	note	that	we	only	utilise	the	direction	of	association	signals	in	testing	for	selection	evidence,	and	

test	derived	mutations,	in	order	to	increase	robustness	to	residual	population	stratification	still	present	in	a	

GWAS,	even	after	attempts	to	correct	for	such	stratification.	We	believe	that	this	is	likely	to	resolve	the	most	

serious	known	 issues,	except	 in	a	setting	where	residual	 stratification	 (which	can	correlate	with	selection	

evidence67)	improves	power	to	observe	effects	that	are	genome-wide	significant	in	one	direction	vs.	another.	

Implicit	in	our	approach	is	the	idea	that	stratification	issues	are	relatively	far	weaker	for	potentially	genome-
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wide	significant	SNPs	(of	relatively	large	effect	size)	compared	to	directly	using	effect	size	estimates	-	which	

may	be	comparable	to	the	strength	of	bias	–	across	many	or	all	SNPs	genome-wide.	

The	 fact	 that	Relate	 is	able	 to	provide	age	estimates	 for	mutations	and	other	events	 in	 the	 tree	 is	 central,	

because	these	estimates	enable	us	to	construct	initial	statistics	to	understand	ancient	migration	and	admixture	

events,	as	well	as	evidence	for	natural	selection	either	on	individual	mutations	or	collections	of	mutations.	We	

note	that	it	is	important	to	account	for	variation	in	past	population	sizes	(Supplementary	Figure	3)	for	accurate	

age	estimation.	We	regard	the	selection	statistics	applied	here	as	initial	approaches	along	a	path	towards	a	

richer	 inference	 framework;	 it	 should	 be	 straightforward	 to	 develop	 related	 approaches	 to	 target	 e.g.	

background	 selection,	 full	 selective	 sweeps,	 or	 balancing	 selection.	 Because	 trees	 allow	 the	 spread	 of	

individual	mutations	to	be	inferred	through	time,	more	sophisticated	approaches	(e.g.,	Ref.	[40])	should	be	

able	 to	 examine	 temporally	 fluctuating	 selection,	 for	 example	by	using	 statistics	 similar	 to	 those	we	have	

introduced,	but	only	testing	for	more	rapid	spread	of	particular	mutations	from	some	chosen	time	onwards.	

Another	important	direction	for	future	work	will	be	the	development	of	techniques	to	understand	migration	

events	and	ancient	admixture.	As	one	example,	our	 results	 suggest	a	 large	 impact	of	ancient	 substructure	

and/or	 archaic	 admixture	 specific	 to	 African	 populations,	 as	 has	 been	 previously	 hypothesized36,37.	 More	

generally,	we	believe	that	by	following	particular	lineages,	it	should	be	possible	to	gain	additional	information	

(beyond	e.g.	 cross-coalescence	rates	 that	we	presented	here)	on	 the	direction	of	past	migration	events.	 In	

principle,	these	analyses	and	those	of	selection	could	be	done	using	the	trees	already	constructed:	we	hope	

that	methods	will	be	developed	providing	 tools	 to	perform	statistical	analyses	on	a	set	of	 trees	generated	

either	by	Relate,	 or	other	 approaches.	Other	 analyses	might	use	 estimated	mutational	 ages	obtained	here	

directly,	for	example	in	understanding	the	properties	of	mutations	influencing	human	disease58.	

There	are	several	natural	extensions	to	the	tree-building	algorithm	itself.	A	particularly	useful	extension	might	

be	allowing	for	increasing	sample	sizes.	We	note	that	a	different	approach	to	ours,	tsinfer,	has	recently	been	

developed68.	This	method	has	impressive	scaling	with	sample	size,	and	might	readily	extend	to	even	millions	

of	samples,	while	Relate	can	currently	only	handle	at	most	a	few	tens	of	thousands	of	samples	genome-wide.	

While	tsinfer	currently	only	infers	tree	topologies	(as	part	of	a	full	ancestral	recombination	graph	structure),	

and	so	cannot	infer	tree	times	or	model	varying	population	sizes	through	time,	it	would	be	possible	to	use	
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tsinfer-based	tree	topologies	in	our	framework,	allowing	full	tree-based	inference	for	huge	sample	sizes,	and	

this	–	or	another	approach	to	achieve	a	similar	scale-up	-	represents	an	important	direction	for	future	work.	

Additionally,	it	should	be	possible	to	extend	Relate	to	incorporate	ancient	DNA	sequences,	in	order	to	leverage	

direct	observation	of	ancient	haplotypes.	One	complexity	here	is	that	such	samples	may	have	substantially	

higher	error	rates	or	more	missing	data	than	modern-day	individuals,	and	an	approach	to	handle	this	might	

involve	 “threading”	 of	 additional	 (ancient)	 sequences	 through	 genealogies	 initially	 built	 using	 sequenced	

individuals2.	 Such	 an	 approach	might	 also	 be	 useful	 for	 efficient	 statistical	 phasing	 and/or	 imputation	 of	

individuals	only	typed	at	a	subset	of	markers.	

Acknowledgements 

We	thank	Nick	Barton,	Molly	Przeworski,	Guy	Sella,	Jonathan	Terhorst,	Pier	Palamara,	Gerton	Lunter,	Jonathan	

Marchini,	 Sile	 Hu,	 Christopher	 B.	 Cole,	 Thaddeus	 Aid,	 Clare	 E.	 West	 for	 helpful	 comments,	 ideas,	 and	

suggestions.	L.S.	acknowledges	the	support	provided	through	the	Engineering	and	Physical	Sciences	Research	

Council	 (EPSRC)	 [grant	 number	 EP/G03706X/1].	 M.F.	 acknowledges	 the	 support	 provided	 through	

the	Natural	Sciences	 and	 Engineering	 Research	 Council	of	 Canada	 (NSERC,	PGS	D)	 and	 the	 Clarendon	

Scholarship.	 S.R.M.	 acknowledges	 the	 support	 provided	by	 the	Wellcome	Trust	 Investigator	Award	 [grant	

number	 098387/Z/12/Z	 and	 212284/Z/18/Z].	 This	 work	 was	 funded	 by	 the	 Wellcome	 Trust	

(WT090532/Z/09/Z).	

	

Author contributions 

S.R.M. designed the study. L.S. and S.R.M. developed Relate with contributions by M.F. in the development of the 

algorithm for estimating coalescence rates. L.S. and S.R.M. performed the analysis, S.S. provided supplementary 

data and L.S. and S.R.M. wrote the manuscript. 

 

Competing Interests 

S.R.M.	is	a	director	of	GENSCI	limited.	The	remaining	authors	declare	no	competing	financial	interests.	

	

	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/550558doi: bioRxiv preprint 

https://doi.org/10.1101/550558
http://creativecommons.org/licenses/by/4.0/


	 16	

Data and software availability 

The	software	Relate	can	be	downloaded	from	https://myersgroup.github.io/relate	under	an	Academic	Use	

Licence.	

	

Datasets	used	in	the	current	study	were	obtained	from	the	following	URLs:	
1000	Genomes	Project	phased	dataset,	https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html	(13	Jan	

2017);	Genomic	mask,	

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/	(20	

Jul	2017);	Human	ancestral	genome,	

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ancestral_alignments/	(20	

Jul	2017);	GWAS	catalogue,	https://www.ebi.ac.uk/gwas/api/search/downloads/full	(9	Nov	2017);	PGC	

GWAS	study,	https://www.med.unc.edu/pgc/results-and-downloads	(23	Nov	2018);	HaploReg,	

http://archive.broadinstitute.org/mammals/haploreg/data/haploreg_v4.0_20151021.vcf.gz	(21	Oct	2017);	

GTEx	eQTL	

https://storage.googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz	(13	

Jan	2019);	UK	Biobank	GWAS	summary	statistics,	http://www.nealelab.is/uk-biobank	(4	Oct	2018);	

PopHumanScan,	https://pophumanscan.uab.cat	(13	Jan	2019)	

	

External	software	used	in	the	current	study	were	downloaded	from	the	following	URLs:	
ARGweaver,	https://github.com/mdrasmus/argweaver	(24	Jan	2017);RENT+,	

https://github.com/SajadMirzaei/RentPlus	(2	Oct	2017);	msprime,	https://github.com/tskit-dev/msprime	

(22	Jul	2017);	msmc,	https://github.com/stschiff/msmc2	(14	Oct	2017);	SMC++,	

https://github.com/popgenmethods/smcpp	(14	Oct	2017);	simuPOP,	http://simupop.sourceforge.net/	(27	

Jun	2018);	mbs,	http://www.sendou.soken.ac.jp/esb/innan/InnanLab/	(27	Jun	2018);	SDS,	

https://github.com/yairf/SDS	(27	Jun	2018),	selscan,	https://github.com/szpiech/selscan	(31	Jul	2018);	

hapbin,	https://github.com/evotools/hapbin	(11	Dec	2018)	  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/550558doi: bioRxiv preprint 

https://doi.org/10.1101/550558
http://creativecommons.org/licenses/by/4.0/


	 17	

Methods 

Relate overview 

We	estimate	genealogies	as	a	sequence	of	rooted	binary	trees,	where	each	tree	captures	the	genealogy	for	a	

subregion	of	 the	 genome.	This	 representation	 serves	 as	 an	 approximation	of	 an	Ancestral	Recombination	

Graph	(ARG)4.	We	estimate	local	ancestry	without	global	constraints	on	tree	topology,	thereby	transforming	

genealogy	reconstruction	into	a	feasible	and	highly	parallelisable	problem.		

Our	 approach	 can	 be	 divided	 roughly	 into	 three	 steps,	 which	 we	 detail	 below	 (also	 see	 Figure	 1,	

Supplementary	Figure	1,	and	Supplementary	Note:	Method	details).	

Calculating position specific distance matrices 

While	trees	vary	along	the	genome,	our	method	heavily	utilizes	ancestry	information	from	nearby	SNPs	to	

reconstruct	the	tree	at	a	specific	position.	We	achieve	this	by	using	a	HMM	similar	to	that	first	proposed	by	Li	

and	 Stephens27	 (see	 Supplementary	Figure	2	 for	parameter	 choices).	 Intuitively,	 this	HMM	reconstructs	 a	

haplotype	as	a	mosaic	of	other	sample	haplotypes	along	the	genome	(Supplementary	Figure	1),	allowing	for	

mismatching	 in	 the	 copying	 process,	 and	 viewing	 changes	 in	 haplotype	 as	 recombination	 events.	 After	

applying	the	HMM,	at	a	focal	SNP	ℓ	each	of	the	other	haplotypes	𝑗	therefore	has	some	probability	𝑝?@ℓ	of	being	

copied	 from,	 to	 generate	 haplotype	𝑖 .	 After	 rescaling	𝑝?@ℓ 	appropriately	 (see	 Supplementary	Note:	Method	

details),	 we	 obtain	 a	 position-specific	 distance	 matrix	𝑑	whose	 entry	 (𝑖, 𝑗) 	converges	 to	 the	 number	 of	

mutations	derived	in	𝑖	and	ancestral	in	𝑗	in	the	limit	of	no	recombinations.	In	the	presence	of	recombination,	

this	𝑑	can	be	interpreted	to	store	a	local	number	of	derived	mutations,	where	more	closely	related	haplotypes	

tend	to	have	fewer	mismatches	over	longer	stretches,	therefore	receiving	a	smaller	distance	in	this	matrix.	

We	 modified	 the	 Li-and-Stephens	 HMM	 to	 account	 for	 ancestral	 and	 derived	 states,	 a	 modification	 that	

guarantees	our	approach	will	construct	the	correct	tree	topology	under	the	infinite-sites	assumption	with	no	

recombination,	while	simultaneously	speeding	up	the	calculation	of	posterior	copying	probabilities.		

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 14, 2019. ; https://doi.org/10.1101/550558doi: bioRxiv preprint 

https://doi.org/10.1101/550558
http://creativecommons.org/licenses/by/4.0/


	 18	

Tree builder 

The	distance	matrix	is	turned	into	a	binary	tree	using	a	hierarchical	clustering	algorithm.	This	hierarchical	

clustering	algorithm	is	motivated	by	the	observation	that	each	row	of	the	distance	matrix	should	indicate	the	

order	 in	 which	 this	 haplotype	 coalesced	 with	 other	 haplotypes	 of	 the	 dataset.	 This	 can	 be	 shown	

mathematically	 in	 some	 limit	 conditions,	 such	 as	 the	 case	 with	 no	 recombination	 (Supplementary	 Note:	

Method	details).	

Our	 algorithm	 iteratively	merges	 clades	 of	 haplotypes,	 corresponding	 to	past	 coalescences.	After	merging	

clades,	we	update	the	distance	matrix	by	combining	the	corresponding	rows	and	columns	using	a	weighted	

sum,	with	weights	determined	by	the	size	of	clades.	In	each	step	of	the	algorithm,	we	merge	the	pair	of	clades	

that	coalesce	with	each	other	before	coalescing	with	any	other	clade,	as	determined	using	rows	of	the	distance	

matrix.	If	multiple	pairs	of	clades	satisfy	this	condition,	we	choose	the	pair	with	minimum	symmetrised	score	

in	the	distance	matrix.	If	the	data	are	consistent	with	a	binary	tree	under	the	infinite-sites	model,	such	a	pair	

always	exists.	In	practise,	errors	in	the	data,	complex	recombination	histories,	or	violations	of	assumptions	

made	by	our	model,	may	result	in	a	distance	matrix	that	is	inconsistent	with	a	binary	tree.	To	be	robust	to	such	

cases,	we	relax	the	conditions	for	identifying	pairs	of	clades	to	coalesce.	

Mapping mutations to branches and estimating branch lengths 

Once	tree	topology	is	estimated	as	above,	where	possible	we	map	mutations	to	the	(unique)	branch	that	has	

the	 identical	 descendants	 as	 the	 carriers	 of	 the	 derived	 allele	 in	 the	 data.	 To	 be	 robust	 to	 errors,	where	

necessary	we	use	an	approximate	rule	for	such	mapping;	however	some	mutations,	e.g.	repeat	mutations	or	

error-prone	loci,	may	still	not	map	to	a	unique	branch.	For	these	loci,	we	determine	the	smallest	collection	of	

branches,	such	that	the	data	can	be	fully	recovered.	If	a	mutation	maps	to	the	tree	only	after	reinterpreting	the	

derived	allele	as	the	ancestral	allele	(and	vice	versa),	we	“flip”	ancestral	and	derived	alleles	at	this	locus.	For	

computation	efficiency,	to	avoid	having	to	construct	a	new	tree	at	every	locus	we	construct	trees	starting	at	

the	5'	end	of	a	region	or	chromosome,	and	move	along	the	region	constructing	a	new	tree	only	when	a	SNP	is	

flipped	or	cannot	be	mapped	to	a	unique	branch.	Finally,	we	apply	a	Metropolis-Hastings	type	Markov	Chain	
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Monte	 Carlo	 (MCMC)	 algorithm	 to	 estimate	 branch	 lengths.	 The	 MCMC	 algorithm	 has	 a	 coalescent	 prior	

assuming	a	single	panmictic	population3.	

Estimating coalescence rates through time 

We	estimate	 the	 effective	 population	 size,	 defined	 as	 the	 inverse	 of	 the	 coalescence	 rate,	 by	 applying	 the	

following	iterative	algorithm.	We	initially	estimate	branch	lengths	using	a	constant	effective	population	size.	

We	then	calculate	a	maximum-likelihood	estimate	of	the	coalescence	rates	between	pairs	of	haplotypes	given	

the	branch	lengths	(Supplementary	Note:	Method	details).	By	averaging	coalescence	rates	over	all	pairs	of	

haplotypes	and	taking	the	inverse,	we	obtain	a	population-wide	estimate	of	the	effective	population	size.	We	

then	use	this	population	size	estimate	to	re-estimate	branch	lengths,	which	requires	only	the	final	MCMC	step	

of	the	branch-length	estimation.	By	repeating	these	two	steps	until	convergence	(in	practice,	we	use	only	5	

iterations	as	 this	provides	good	performance),	we	obtain	a	 self-contained	algorithm	 for	 jointly	 estimating	

branch	lengths	and	the	effective	population	size.	We	can	average	pairwise	coalescence	rates	in	different	ways	

to	obtain	rates	for	sub-populations	and	cross-coalescence	rates	between	populations.	

Pre-processing of the 1000 Genomes Project data set 

The	1000	Genomes	Project	data	set	comprises	2504	individuals,	from	26	populations.	We	obtained	a	phased	

version	 of	 the	 data	 set	 (URLs).	We	 next	 excluded	multi-allelic	 SNPs,	 and	we	 exclude	 one	 individual	 (two	

haplotypes)	 from	 each	 population	 for	 future	 applications,	 and	 analysed	 the	 remaining	 2478	 individuals	

(Supplementary	Table	2).	We	use	a	genomic	mask	provided	with	the	1000	Genomes	Project	dataset	(URLs)	to	

exclude	 regions	 in	 the	 marked	 as	 ``not	 passing''	 in	 the	 pilot	 mask,	 to	 remove	 loci	 with	 low	 certainty	 of	

genotypes.	We	also	exclude	any	base	for	which	the	fraction	of	``not	passing''	bases	within	1000	bases	to	either	

side	exceeds	0.9.	To	account	for	this	filtering,	we	readjust	the	number	of	bases	between	SNPs	at	which	we	

could	have	potentially	observed	a	SNP.	We	use	an	estimate	of	the	human	ancestral	genome	(URLs)	to	identify	

the	most	likely	ancestral	allele	for	each	SNP.	
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Identifying branches indicative of Neanderthal and Denisovan introgression 

We	 use	 genome	 sequences	 of	 the	 Vindija22	 and	 Altai33	 Neanderthals	 (NEA),	 and	 a	 Denisovan	 (DEN)32	 to	

identify	branches	 indicative	of	Neanderthal	 and	Denisovan	 introgression	 into	non-African	populations.	To	

identify	branches	that	remain	segregated	from	other	human	lineages	for	a	long	time,	we	use	the	world-wide	

genealogy	of	2487	samples.	To	identify	whether	a	branch	is	shared	with	NEA	or	DEN,	at	least	one	mutation	

needs	to	be	mapped	to	that	branch.	We	therefore	exclude	any	mutation	that	has	not	been	genotyped	(or	does	

not	pass	the	genomic	masks)	in	these	ancient	genomes.	We	further	restrict	our	analysis	to	branches	with	at	

least	two	mutations	mapped	to	them,	as	well	as	having	an	upper	end	that	is	older	than	1M	YBP.	Of	any	SNPs	

that	map	to	such	branches,	we	calculate	the	fraction	of	SNPs	that	map	to	a	branch	with	at	least	one	NEA	or	

DEN	mutation.	In	Figure	4c,	we	plot	these	fractions	as	functions	of	the	lower	coalescent	age	of	the	branch	onto	

which	the	SNP	is	mapped.	Because	the	same	branch	may	persist	over	multiple	trees,	we	identify	equivalent	

branches	 (Supplementary	 Note:	Method	 details)	 and	 average	 ages	 of	 lower	 and	 upper	 ends	 across	 these	

equivalent	branches.	We	assign	a	SNP	to	a	population	if	at	least	one	haplotype	of	that	population	carries	the	

derived	allele.	

In	Figure	4d,	we	observe	an	enrichment	of	branches	indicative	of	introgression.	This	enrichment	is	identified	

by	comparing	the	observed	number	of	mutations	in	bins	divided	by	upper	and	lower	coalescent	age	to	that	

expected	in	a	panmictic	history.	To	calculate	the	expected	number	of	mutations	in	each	bin,	we	fix	the	ages	of	

coalescence	events	in	each	tree	but	randomise	the	topology	assuming	a	panmictic	population.	The	probability	

of	 upper	 and	 lower	 coalescent	 ages	 falling	 into	 bins	𝑠 	and	𝑟 ,	 conditional	 on	 the	mutation	 arising	while	𝑘	

lineages	 remain,	 is	 given	by	𝑃(𝑟, 𝑠|𝑘) = ∑ 𝐼Lℓ∈N	ℓOP,QRP 𝐼LS∈T
&Q

ℓ(ℓ38) 	
8
P ,	where	𝐼 	denotes	 the	 indicator	 function.	

Assuming	 neutrality,	 a	mutation	 is	 equally	 likely	 to	 have	 arisen	 anywhere	 on	 the	 branch	 it	maps	 to.	We	

therefore	calculate	the	weighted	average	∑ 𝑤P𝑃(𝑟, 𝑠|𝑘)V
PW& ,	with	weights	𝑤P	defined	as	the	proportions	of	a	

branch	while	𝑘	lineages	remain.	Summing	this	over	all	SNPs	yields	the	expected	number	of	mutations	with	

upper	and	lower	coalescent	age	falling,	respectively,	into	bins	𝑠	and	𝑟.	In	Figure	4d,	age	bins	are	defined	by	

X−∞, 4.25Z, [4.25,4.75), [4.75,5.25), [5.25,5.75), [5.75,∞).		
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Tree-based statistic for detecting positive selection  

Positive	 selection	 is	 expected	 to	 result	 in	 favourable	 mutations	 spreading	 rapidly	 in	 a	 population.	 One	

approach	to	capture	this	is	via	the	number	of	lineages	ultimately	descending	from	the	potentially	favourable	

mutation(s):	although	we	note	that	this	is	not	the	maximum	likelihood	approach,	it	has	the	benefit	of	making	

calculations	 straightforward.	Under	 a	null	model	 of	 the	 standard	 coalescent	model	without	 selection,	 it	 is	

known	that	while	𝑘	lineages	remain,	the	joint	distribution	of	the	number	of	descendants	of	these	𝑘	lineages	is	

uniform	in	the	partitions	of	𝑁	haplotypes	to	𝑘	lineages	(see	e.g.,	Ref.	[69]).	Using	this	property,	we	analytically	

calculate	 the	marginal	 distribution	 that	 two	of	𝑘 	lineages	 have	more	 than	𝑓V 	descendants,	where	𝑓V 	is	 the	

present-day	 DAF	 of	 the	 mutation.	 Here,	 we	 choose	𝑘 	to	 be	 the	 number	 of	 lineages	 remaining	 when	 the	

mutation	 of	 interest	 increased	 from	 frequency	 1	 to	 2	 (see	 Supplementary	 Note:	 Method	 details	 for	 the	

mathematical	details).	

To	remove	false-positive	selection	hits	due	to	poorly	inferred	genealogies,	our	analysis	for	the	1000	Genomes	

Project	data	set	is	based	on	a	subset	of	all	SNPs	mapping	to	trees,	and	present	in	3	or	more	copies	in	the	dataset.	

Specifically	we	remove	SNPs	failing	any	of	the	following	filters:	(i)	the	number	of	mutations	mapping	to	that	

SNP’s	tree	is	in	the	bottom	5th	percentile,	or	(ii)	the	fraction	of	tree	branches	having	at	least	one	SNP	is	in	the	

bottom	5th	percentile.	This	excludes	approximately	7%	of	SNPs.	

Simulation of positive selection 

To	 simulate	 positive	 natural	 selection,	 we	 adopt	 the	 pipeline	 outlined	 in	 Ref.	 [49].	We	 first	 simulate	 the	

trajectory	of	the	DAF	using	simuPOP70.	We	vary	the	selection	coefficient	between	𝑠 = 0.001	and	𝑠 = 0.05	and	

assume	that	 the	selected	allele	 is	beneficial	 throughout	 its	history.	We	fix	 the	present-day	DAF	to	0.7	(see	

Supplementary	Figure	4	for	other	present-day	DAFs).	We	then	use	mbs271	(mutation	rate	𝜇 = 1.25	 × 1034,	

constant	recombination	rate	𝜌 = 5	 × 103`)	 to	simulate	a	region	of	20Mb,	given	the	DAF	trajectory	 for	 the	

central	selected	SNP.	For	each	non-zero	selection	coefficient,	we	perform	200	simulations,	and	we	perform	

500	simulations	for	the	neutral	case.	We	assume	a	population	size	history	as	for	our	estimates	for	YRI	and	

GBR,	in	separate	simulations.	
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We	compare	to	iHS,	SDS,	and	a	tree-based	variant	of	SDS	(trSDS)	proposed	in	Ref.	[40].	For	iHS,	SDS,	and	trSDS,	

we	standardise	scores	using	the	mean	and	standard	deviation	in	the	neutral	case,	which	is	an	idealised	setting	

that	should	favour	the	power	estimates	of	these	methods.	We	then	determine	a	critical	standardised	score	that	

corresponds	to	a	given	type	I	error	rate	in	the	neutral	case	to	estimate	the	statistical	power.	For	Relate,	we	use	

frequency-conditioned	p-values,	by	calculating	a	critical	p-value	that	yields	the	desired	false-positive	rate	in	

the	neutral	case	(for	the	statistical	power	using	raw	p-values,	see	Supplementary	Figure	4).	

Enrichment of SNPs with functional annotation among targets of positive selection 

We	merge	selection	evidence	for	SNPs	by	region	(AFR:	Africans,	EAS:	East	Asians,	EUR:	Europeans,	SAS:	South	

Asians)	 by	 first	 calculating	 Z-scores	 of	 the	 logarithm	 of	 selection	 p-values	 within	 populations,	 and	 then	

averaging	these	Z-scores	across	populations.	We	exclude	groups	expected	to	be	highly	admixed72	(ACB,	ASW,	

CLM,	MXL,	PEL,	PUR	(Supplementary	Table	2)),	because	recent	admixture	may	confound	selection	signals.	We	

further	exclude	SNPs	with	a	DAF	<5%	in	the	region	of	interest.	

To	assess	statistical	significance	for	the	observed	enrichment	of	GWAS	hits	and	functional	mutations	in	groups	

of	SNPs	showing	evidence	of	selection,	we	used	a	block	bootstrap	with	a	block	size	of	1Mb.	This	will	account	

for	LD	at	scales	below	this	threshold.	In	each	bootstrap	iteration,	we	resample	blocks	containing	SNPs	with	a	

selection	Z-score	within	the	range	of	interest,	with	replacement,	and	calculate	the	ratio	of	the	number	of	SNPs	

with	functional	annotation	obtained	using	the	HaploReg	database73	(URLs)	and	the	GWAS	catalogue	to	the	

expected	number	of	such	SNPs,	conditional	on	DAF.	We	condition	on	frequency,	to	account	for	the	possibility	

that	skewed	frequency	spectra	in	functional	SNPs	could	be	driving	the	signal.	

Pre-processing of GWAS 

We	use	SNP-trait	associations	documented	in	the	GWAS	catalogue74	(URLs)	to	study	polygenic	adaptation.	We	

use	only	association	signals	whose	GWAS	p-value	is	smaller	than	5	 × 1034.	For	each	trait,	we	also	remove	any	

duplicate	SNPs.	
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For	 every	 combination	 of	 population,	 trait,	 and	 effect	 direction,	 we	 compile	 a	 set	 of	 approximately	

independent	GWAS	signals	as	follows.	

For	each	pair	of	population	and	trait,	we	remove	associations	that	are	in	close	physical	proximity	and	may	

therefore	be	 in	 linkage	disequilibrium	(LD).	For	 this,	we	 first	group	SNPs	 into	approximately	 independent	

blocks,	 such	 that	any	 two	GWAS	hits	 in	 separate	blocks	are	 separated	by	at	 least	100kb	and	 there	are	no	

intervals	larger	than	100kb	with	no	GWAS	hit	inside	a	block.	We	then	choose	one	GWAS	hit	from	each	block	

uniformly	at	random.	We	remove	any	SNP	with	a	DAF	<5%.	To	determine	the	effect	direction	of	a	SNP,	we	use	

the	annotation	in	column	“95%	CI	(TEXT)”	combined	with	the	indicated	risk	allele.	We	then	realign	the	effect	

direction	to	the	derived	allele.	We	only	consider	SNPs	for	which	an	effect	direction	can	be	determined	with	

this	procedure.	As	described	in	the	main	text,	we	only	analyse	traits	with	at	least	10	independent	hits	in	both	

effect	directions	in	all	populations.	This	results	in	76	traits	and	a	total	of	7302	GWAS	hits	(before	filtering	for	

SNPs	in	close	proximity	in	each	population).		

For	Schizophrenia,	we	are	unable	to	obtain	an	effect	direction	using	the	procedure	described	above.	Instead,	

we	 downloaded	 results	 for	 a	 large-scale	 GWAS	 conducted	 by	 the	 Psychiatric	 Genomics	 Consortium75.	We	

considered	SNPs	reaching	a	GWAS	p-value	of	5	 × 1034	of	which	there	were	9138.	We	intersected	this	set	of	

SNPs	with	SNPs	segregating	in	each	of	the	considered	populations.	As	for	the	GWAS	catalogue,	we	identified	

approximately	independent	blocks.	We	then	chose	the	SNP	with	lowest	GWAS	p-value	in	each	block,	resulting	

in	81	to	89	hits	per	population.	

In	addition,	we	use	GWAS	conducted	as	part	of	the	UK	Biobank55,	focussing	on	highly	polygenic	physical	traits.	

Our	 pre-processing	 protocol	 is	 analogous	 to	 that	 for	 schizophrenia	 detailed	 above.	 The	 number	 of	

approximately	independent	hits	per	population	range	from	272	hits	for	waist	circumference	to	989	hits	for	

standing	height.	

Trait selection test 

For	every	combination	of	population,	trait,	and	effect	direction,	we	test	whether	p-values	are	smaller	than	

expected.	For	this	test,	we	first	sample	SNPs	that	we	use	for	comparison.	For	each	SNP	associated	with	the	
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population,	 trait,	 and	 effect	 direction	 tuple	 of	 interest,	 we	 sample	 20	 SNPs	 uniformly	 at	 random	 with	

replacement	from	SNPs,	with	the	same	present-day	DAF	in	the	population	of	interest.	We	then	use	a	one-sided	

Wilcoxon	 rank-sum	 test	 to	 test	whether	 the	p-values	of	 SNPs	 associated	with	 tuple	of	 interest	 tend	 to	be	

smaller	than	those	for	the	frequency-matched	set	of	SNPs.	We	repeat	this	test	20	times	and	report	the	mean	

p-value	of	the	Wilcoxon	rank-sum	test.	

Our	primary	test	identifies	selection	evidence	conditional	on	DAF.	However	shifts	in	DAF	can	themselves	serve	

as	orthogonal	evidence	of	polygenic	adaptation,	complementing	our	inferences.	Therefore,	we	conducted	a	

one-sided	Wilcoxon	 rank-sum	 test	 to	 test	whether	DAFs	of	 SNPs	associated	with	 the	effect	direction	with	

selection	evidence	tend	to	exceed	those	associated	with	the	opposing	effect	direction,	and	compared	to	our	

results	conditional	on	SNP	frequency.	We	note	that	we	expect	to	lack	power	to	reliably	detect	selection	with	

this	test,	given	that	there	are	typically	only	tens	of	SNPs	independently	associating	with	each	trait	In	addition,	

the	relationship	between	selection	and	SNP	frequencies	can	be	complex	if	selection	strength	varies	through	

time	and/or	geographic	locations.	
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Figure	 1	 Relate	 Method	 overview:	 Our	 method	 applies	 a	 version	 of	 the	 Li-and-Stephens	 algorithm15,	

modified	to	take	ancestral	and	derived	states	into	account,	to	calculate	at	a	focal	SNP	(dotted	vertical	line)	a	

position-specific	distance	matrix	(bottom	left)	containing	log-likelihoods	of	copying	from	each	other	sample,	

Our	tree	builder	uses	the	resulting	inferred	distance	matrix	to	coalesce	haplotypes	(right-hand	side).	After	

mapping	mutations	to	their	corresponding	branches,	we	estimate	branch	lengths	using	an	MCMC	algorithm	

that	employs	a	coalescent	prior	model.	
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Figure	2	Simulated	Data:	a,	Runtimes	of	Relate,	RENT+	and	ARGweaver	in	CPU	minutes	as	a	function	of	the	

number	 of	 bases	 simulated	with	𝑁 = 200,	𝜇 = 1.25 × 1034 ,	2𝑁a = 30,000,	 and	 recombination	 rates	 taken	

from	human	chromosome	1.	We	also	show	the	runtime	of	Relate	excluding	the	estimation	of	branch	lengths.	

b,	Runtime	of	Relate	in	minutes	as	a	function	of	sample	size	𝑁,	where	we	simulate	2.5Mb	for	each	data	point.	

Other	parameters	are	the	same	as	in	a;	y-axis	is	on	a	quadratic	scale.	c,	True	TMRCAs	for	pairs	of	haplotypes	

(x-axis)	 versus	 those	 estimated	 by	 Relate	 (y-axis).	 d,	 As	 c,	 except	 showing	 results	 for	 ARGweaver.	 e,	

Comparison	of	population	size	estimates	across	methods,	for	simulation	with	an	oscillating	population	size15	

Inset	shows	the	mutation	rate	over	time	estimated	by	Relate.	f,	g,	Population-specific	estimates	of	population	

size	and	cross-population	coalescence	rates	for	a	simulation	with	a	discrete	bottleneck	for	two	populations	

that	separated	80,000	YBP	(f;	vertical	dashed	line),	or	10,000YBP	(g).	
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Figure	 3	 Population	 sizes	 and	 split	 times	 in	 1000	 GP:	 Relate-based	 population-specific	 estimates	 of	

population	size	and	cross-population	coalescence	rates	using	genome-wide	genealogies	for	CHB	and	YRI	(a),	

GBR	and	YRI	(b),	CHB	and	GBR	(c),	CHB	and	JPT	(d),	FIN	and	GBR	(e),	and	LWK	and	YRI	(f).	Insets	show	the	

matrices	of	coalescence	rates	between	pairs	of	haplotypes	at	the	indicated	time.	Rows	and	columns	are	sorted	

by	population	labels	of	haplotypes,	as	indicated	by	the	colour	on	the	left	of	each	matrix.	
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Figure	4	Evolution	of	human	mutation	rates	and	evidence	for	introgression:	a,	Evolution	of	mutation	

rates	for	three	triplet	mutations	ACC	to	ATC,	TCC	to	TTC,	and	TCT	to	TTT.	We	eliminate	temporal	trends	shared	

across	different	mutation	categories	by	dividing	by	the	mean	mutation	rate	across	mutation	categories	in	each	

epoch.	For	each	population,	we	then	normalise	the	mutation	rates	such	that	the	average	rate	over	time	equals	

1.	b,	Marginal	trees	for	a	subregion	on	chromosome	14	(left)	and	chromosome	11	(right).	The	tree	on	the	left	

contains	a	long	branch	with	descendants	only	in	GBR	(red)	consistent	with	Neanderthal	introgression	into	

GBR.	 The	 tree	 on	 the	 right	 contains	 a	 long	 branch	 with	 descendants	 only	 in	 YRI	 (red)	 consistent	 with	

introgression	in	YRI	involving	a	hominid	not	closely	related	to	Neanderthals.	c,	Fraction	of	SNPs	on	branches	

with	 an	 upper	 coalescent	 age	 >1M	 YBP	 that	 are	 shared	 with	 Neanderthals	 (left),	 Denisovans	 and	 not	

Neanderthals	 (center),	 or	 Neanderthals	 or	 Denisovans	 (right)	 (Methods).	 In	 a	 and	 c,	 colours	 encode	

geographic	regions	(AFR:	Africa,	EAS:	East	Asia,	EUR:	Europe,	SAS:	South	Asia,	AMR:	Americas).	d,	Number	of	

mutations	binned	by	age	of	upper	and	lower	coalescent	event,	relative	to	the	expected	number	of	mutations	

when	 randomising	 topology	 while	 fixing	 ages	 of	 coalescence	 events	 (Methods).	 Right	 column	 shows	

mutations	not	present	in	Neanderthal	or	Denisovan	samples.		
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Figure	5	Natural	selection:	a,	QQ-plot	of	p-values	for	selection	evidence	of	SNPs.	We	simulated	250Mb	for	

𝑁 = 1000 	haplotypes	 using	 the	 recombination	 map	 of	 chromosome	 1	 and	 a	 bottleneck	 population	 size	

resembling	 that	 of	 non-African	 populations.	 b,	 Power	 simulations	 using	𝑁 = 1000 	haplotypes.	 We	 use	

historical	population	sizes	estimated	by	Relate	for	YRI	(left)	and	GBR	(right).	c,	Manhattan	plot	showing	p-

values	 for	 selection	evidence	of	SNPs,	 for	GBR	and	CHB.	We	highlight	 regions	containing	a	SNP	with	𝑝- <

5	 × 1034	in	at	least	three	populations	(see	Supplementary	Table	3	for	a	full	list),	as	well	as	the	MHC	region	in	

GBR.	d,	Enrichment	of	functional	annotation	among	targets	of	selection,	conditional	on	allele	frequency.	Error	

bars	 show	 95%	 confidence	 intervals	 estimated	 from	 1000	 iterations	 of	 a	 block	 bootstrap	 resampling	

(Methods).	We	group	SNPs	by	mean	regional	Z-score	corresponding	to	the	log	p-value	for	selection	evidence,	

where	 a	 smaller	 Z-score	 indicates	 stronger	 selection	 evidence.	 SNPs	 are	 binned	 by	 partially	 overlapping	

functional	annotations:	intronic	mutations	(INT),	synonymous	mutations	(SYN),	mutations	at	the	5’	end	and	

3’	end	of	a	gene	(U5,	U3),	non-synonymous	mutations	(NSM),	and	GWAS	hits	(GWAS).	
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Figure	6	Evidence	of	selection	on	traits:	a,	,	P-values	for	evidence	of	directional	selection	of	black,	blond,	

and	light	brown	hair	colour	(see	Methods	for	calculation	of	p-values).	Insets	show	p-values	for	the	same	test	

but	using	iHS	scores	instead,	where	iHS	scores	are	calculated	for	each	population	separately	for	any	variant	

with	a	minor	allele	frequency	>5%	in	that	population.	b,	Evidence	for	directional	or	bidirectional	selection	on	

multi-allelic	 traits.	 Each	 trait	 is	 associated	 with	 at	 least	 10	 SNPs	 in	 both	 effect	 directions	 in	 each	 of	 the	

considered	 populations.	We	 show	 evidence	 for	 a	 trait	 increasing	 over	 time	 (left)	 and	 evidence	 for	 a	 trait	

decreasing	over	time	(right)	 if	𝑝 ≤ 0.05.	Black	boundaries	indicate	consistency	with	an	additional	test	that	

tests	for	shifts	in	the	DAFs	(solid:	𝑝 ≤ 0.05,	dashed:	𝑝 ≤ 0.5,	Methods).	
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Skin colour (UKB)                                                              
Waist circumference (UKB)                                                      
Hip circumference (UKB)                                                        
BMI (UKB)                                                                      
Standing height (UKB)                                                          
Sitting height (UKB)                                                           

Waist−hip ratio                                              
Waist−to−hip ratio adj. for BMI                              
Waist circumference adj. for BMI (adj. for smoking behaviour)
Waist circumference adj. for BMI in active individuals       
Waist circumference                                          
Hip circumference adj. for BMI                               
Hip circumference                                            
BMI (adj. for smoking behaviour)                             
BMI                                                          
Height                                                       

Resting heart rate                                                                 
Pulse pressure                                                                     
Systolic blood pressure                                                            
Diastolic blood pressure                                                           
Blood pressure                                                                     

Platelet count                                                                     
Platelet distribution width                                                        
Mean platelet volume                                                               
Plateletcrit                                                                       

High light scatter reticulocyte percentage of red cells            
High light scatter reticulocyte count                              
Immature fraction of reticulocytes                                 
Reticulocyte count                                                 
Reticulocyte fraction of red cells                                 
Mean corpuscular volume                                            
Mean corpuscular hemoglobin concentration                          
Mean corpuscular hemoglobin                                        
Hemoglobin concentration                                           
Hematocrit                                                         
Red blood cell count                                               

      Sum basophil neutrophil counts                                     
      Sum eosinophil basophil counts                                     
      Sum neutrophil eosinophil counts                                   
      Neutrophil percentage of granulocytes                              
      Neutrophil percentage of white cells                               
      Neutrophil count                                                   
      Eosinophil percentage of granulocytes                              
      Eosinophil percentage of white cells                               
      Eosinophil count                                                   
      Basophil counts                                                    
   Granulocyte count                                                     
   Monocyte percentage of white cells                                    
   Monocyte count                                                        
Myeloid white cell count                                                 
Lymphocyte count                                                         
Lymphocyte percentage of white cells                                     
White blood cell count                                                   

Cholesterol, total                                                                       

Schizophrenia (PGC)                                                    
Educational attainment (years of education)                            
Gut microbiota (bacterial taxa)                                        
Glomerular filtration rate in non diabetics (creatinine)               
Glomerular filtration rate (creatinine)                                
Blood protein levels                                                   
Blood metabolite levels                                                
Blood metabolite ratios                                                
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