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A Method for Handling Uncertainty in Evolutionary

Optimization with an Application to Feedback

Control of Combustion
Nikolaus Hansen, André S.P. Niederberger, Lino Guzzella, and Petros Koumoutsakos

Abstract— We present a novel method for handling uncertainty
in evolutionary optimization. The method entails quantification
and treatment of uncertainty and relies on the rank based
selection operator of evolutionary algorithms. The proposed
uncertainty handling is implemented in the context of the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) and
verified on test functions. The present method is independent of
the uncertainty distribution, prevents premature convergence of
the evolution strategy and is well suited for online optimization as
it requires only a small number of additional function evaluations.
The algorithm is applied in an experimental set-up to the
online optimization of feedback controllers of thermoacoustic
instabilities of gas turbine combustors. In order to mitigate these
instabilities, gain-delay or model-based H∞ controllers sense the
pressure and command secondary fuel injectors. The parameters
of these controllers are usually specified via a trial and error
procedure. We demonstrate that their online optimization with
the proposed methodology enhances, in an automated fashion, the
online performance of the controllers, even under highly unsteady
operating conditions, and it also compensates for uncertainties
in the model-building and design process.

I. INTRODUCTION

Environmental considerations impose stringent emission

regulations for modern gas turbines. These requirements dic-

tate the development of lean premixed combustion systems

operating with excess air to lower the combustion temperature

and decrease the NOx emission levels [37]. In turn, the

operation of the combustor in the lean regime makes it prone

to thermoacoustic instabilities that may cause mechanical dam-

age, energy losses by heat transfer to walls and increased noise

and pollutant emissions. Thermoacoustic instabilities arise due

to a feedback loop between pressure fluctuations, flow velocity

and heat release. Active control is a prevalent method to reduce

thermoacoustic instabilities [38], [21]. In active control of gas

turbine combustors a feedback controller receives input from

pressure sensors and commands a secondary fuel injection.

The adjustment of the controller parameters into a feasible

working regime can be formulated as an optimization prob-

lem distinguished by two important factors: The stochastic

nature of the combustion process introduces uncertainty in the

computation of the objective function value while the unsteady

operating conditions require the online tuning of the controller

parameters.

A.S.P. Niederberger and L. Guzzella are with the Measurement and Control
Laboratory

N. Hansen and P. Koumoutsakos are with the Institute of Computational
Science

Evolutionary Algorithms (EAs) are intrinsically robust to

uncertainties present in the evaluation of the objective function

due to the implementation of a population [5], [11]. In order to

improve their robustness to uncertainty two common methods

are available. First, the implementation of larger population

size most often increases the robustness to uncertainty [6],

[32]. Second, multiple objective function evaluations can be

conducted for each population member and the objective

function is usually represented by the mean value. Both ap-

proaches however increase the number of function evaluations

per generation typically by a factor between three and 100.

Hence the large number of required function evaluations makes

the methods prohibitively expensive for applications requiring

an online optimization.

In this paper we propose an alternative approach to enhance

the capabilities of EAs for online optimization under uncer-

tainties. We develop a novel uncertainty handling algorithm

and, motivated by the combustion problem, we demonstrate

its effectiveness in the online optimization of a Gain-Delay

and an H∞ controller of an experimental combustor test-rig

using the CMA evolution strategy. The uncertainty handling

method distinguishes uncertainty measurement and uncertainty

treatment. The uncertainty is measured by rank changes among

members of a population. This quantification of uncertainty is

well suited for any ranking-based search algorithm. It requires

only a few additional function evaluations per generation, and

does not rely on an underlying uncertainty distribution. The

uncertainty measurement is combined with two treatments for

high uncertainty levels to prevent the failure of the algorithm.

The uncertainty treatments aim to ensure that the signal-to-

noise ratio remains large enough to maintain the effectiveness

of the evolutionary optimization algorithm.

The paper is organized as follows: In Section II the test rig,

built at ETH Zurich, is presented. We cast the optimization

of the controller parameters as an optimization problem under

uncertainties and we discuss previous work. We address the

problem of thermoacoustic instabilities for gas combustors and

introduce their handling by active control strategies. Section III

addresses evolutionary optimization under uncertainties. In

Section IV the uncertainty handling method is introduced and

combined with the CMA evolution strategy. Section V presents

the verification of the algorithm on test functions. Section VI

reports experiments on the test rig with the different controller

structures for two operating conditions. The paper concludes

with a Summary and Outlook in Section VII.
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II. ACTIVE CONTROL OF COMBUSTION INSTABILITIES IN

AN EXPERIMENTAL TEST RIG

In the following we describe the ETHZ combustor test

rig where online optimization of controller parameters is

performed and review the common controller techniques.

A. Experimental set-up of the ETHZ combustor test rig

A schematic illustration of the test rig built at ETH Zurich

is shown in Fig. 1. Preheated air premixed with natural gas

flows through mixers and flow straighteners into an upstream

plenum chamber duct. A downscaled, lab scale model for

the ALSTOM environmental (EV) swirl burner stabilizes the

flame in recirculation regions near the burner outlet plane, the

combustion gases are guided through a downstream duct and

they are subsequently discharged. A MOOG magnetostrictive

fuel injector installed close to the flame is used as control

actuator. The pressure signal is detected by water-cooled

microphones distributed along the ducts. Microphone 2, placed

123mm downstream of the burner, is used to deliver the sensor

signal for the controller.

The operating conditions of the combustor are characterized

by the mass flow, the preheat temperature, and the ratio of the

actual to the stoichiometric air/fuel ratio λ. For the present

study, a mass flow of 36 g/s, a preheat temperature of 700 K,

and λ values of 2.1 and 1.875 are considered. The resulting

pressure spectra are shown in Figures 17 and 14. The case

of λ = 2.1 exhibits a single large pressure peak at 220 Hz,

whereas λ = 1.875 is characterized by one peak around 250
Hz and two smaller ones in the 330 Hz range.

B. Actuators

Loudspeakers, often used as actuators in a laboratory

settings, are not feasible for industrial applications due to

limited actuation power. In contrast, secondary fuel injection

of about 10% of the total methane flow of 1 g/s yields

roughly 6000 W, versus 30 W for a loudspeaker. The tradeoff

between injection time delays and increased NOx emissions

due to diffusion flames has to be carefully negotiated and a

suitable position for the injector must be found.

C. Controllers

The simplest controller is known as phase-shift or Gain-

Delay, where the measured pressure signal is amplified and

delayed by a certain amount and then fed to the actuator

[46]. This simple strategy has found widespread use, but it

often generates secondary peaks as the gain and phase are

tuned to the dominant frequency and they are not optimal in

other frequency bands. The model-based robust H∞ controller

design lets the engineer specify regions where the disturbance

should be reduced, and theH∞-optimization routine calculates

the corresponding controller [56].

Gain-Delay control is convenient as there are only two

parameters to adjust. This is often done by trial-and-error with

satisfactory results if the spectrum of the instability features

only one dominant peak. Model-based H∞ controllers on
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Fig. 1. An illustration of the ETH combustor. Preheated air premixed with
methane enters the upstream duct, the flame is stabilized by the EV burner.
All dimensions in mm.

the other hand offer larger design freedom and are generally

associated with better performance. They involve however 10
to 20 parameters thus exacerbating their online optimization.

In addition, thermal transients during start-up change the

location and height of the pressure peaks, and the (steady-

state) model of the process is not always accurate.

A combination of a model-based controller and an online

optimization using EAs has been used to address these difficul-

ties. More specifically, an H∞ controller [44], [56] is shifted

in the frequency domain while the gain and (optionally) an

additional delay are adjusted, resulting in two (three) param-

eters to be optimized. Note that in a Gain-Delay controller

only the gain and the delay are optimized by the algorithm.

The cost function to be minimized is selected as the equivalent

continuous level of the sound pressure

Leq = 10 log10

(p2
s)av

p2
ref

(1)

where (p2
s)av is the mean squared pressure and pref = 20µPa

the reference pressure.

The sound pressure level Leq is acquired from a measure-

ment of a few seconds for a given parameter setting. The

measurements are subject to a considerable uncertainty and

a tradeoff between uncertainty and speed in data acquisition

can be identified. The accuracy of Leq is improved with longer

evaluation times. At the same time longer evaluation times

decrease the number of feasible completed measurements in a

given time span, and slow down the adaptation of the controller

parameters. This problem will be resolved by an adaptive

evaluation time for the acquisition of Leq.
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D. Adaptive Controllers

Unsteady combustion introduces pressure waves in the

combustor. Their reflection from the boundaries modifies in

turn the combustion process resulting in a potentially unstable

feedback cycle. Rayleigh [50] first noted that if the heat release

is in phase with the pressure fluctuations, the instability grows,

while combustion is stable if they are out of phase. In a study

of a swirl-stabilized premix burner [47], it was found that large

coherent structures are associated with this instability. The

interaction between flow instabilities and acoustic resonant

modes excites unstable modes, leading to periodic combustion

in large-scale structures. Fuel feedline dynamics are another

mechanism causing equivalence ratio fluctuations [3].

pmu

-

noise

controller plant

-

pc

pn

Fig. 2. A schematic diagram of the control set-up

The adaptive reduction of the pressure oscillations can be

achieved by measuring the pressure with microphones, and

employing a controller to command an actuating device, such

as a loudspeaker or a fuel injector. Fig. 2 shows the control

set-up used for this study. The uncertainty input block models

the uncontrolled combustor generating the pressure signal pn.

The plant P is the block that relates the control signal input u
to the pressure pc generated by altered combustion in case of

fuel injection. The sum of these two is the measured pressure

signal pm that needs to be minimized. This signal is used by

the controller C to generate the control signal u for the fuel

injector.

Controllers can be built based on a model of the controlled

process. A so-called Self-Tuning Regulator (STR) [24], [22],

[53], [52], [23] requires knowledge only of the total time delay

between actuation and sensing. STRs have shown some ro-

bustness to changing operating conditions but for a combustor

which is already stable, the STR does not offer any advantages

over a model-based controller and may encounter numerical

problems.

Adaptive controllers [8], [35] encounter problems in noisy

environments and a number of open questions remain regard-

ing algorithmic instabilities. A simple Rijke tube with very

distinct pressure peaks and low uncertainty level is considered

in [13]. Loudspeakers are used as actuators for a neural

network controller, which requires an identification procedure

beforehand. In [48] a multiobjective modified strength Pareto

evolutionary algorithm has been used to optimize the fuel flow

through different injection locations in an EV burner.

A range of lead/lag controllers [45] are optimized with a

(1+1)-ES in [49], [55]. The influence of uncertainty and the

problem with long evaluation times are identified, and a two-

step evaluation procedure is proposed. The potential problems

with noisy evaluations arising from elitism and the problem of

premature convergence have been neglected and the method

employs a pre-specified maximum number of iterations.

E. Evolutionary Algorithms for Control

An in-depth overview of evolutionary algorithms applied to

controller optimization is given in [25]. One can distinguish

between online and offline optimization. Online applications

are rare and due to safety and time-constraints only very few

online applications have been conducted in a real system [1],

[43].

In order to evolve the controller either the controller param-

eters are directly optimized [19], [1], or the design parameters

of control algorithms such as Linear Quadratic Gaussian

(LQG) or H∞ are manipulated [20], and the controller is

calculated automatically. In order to improve the feasibility

of the online application of evolutionary algorithms, tuning of

an existing controller can be performed [39], [40]. Our method

is based on this latter approach.

III. OPTIMIZATION UNDER UNCERTAINTIES

The identification of effective parameters for adaptive con-

trollers can be formulated as an optimization problem, where a

combustor performance related objective function, for example

the time integral of the sound pressure in the combustor, is to

be minimized. A general formulation of such a time dependent

stochastic objective function L (also loss or cost function)

reads

L : S × R+ → R, (x, t) 7→ f(x, t) + Nf (x, t) , (2)

where x ∈ S ⊂ R
n is a (solution) vector of controller

parameters and t is time. The objective function is defined

by a deterministic part f and a stochastic part Nf ∈ R.

The objective is to find an (approximate) minimizer of the

“true” function value f . The distribution of Nf is unknown

and depends on the function f , as well as on x and t. The

time dependency is relevant, for example, in online control

of a combustor as the operating condition may be modified

manually or may change during the heating up of the rig. In

general however the changes in time are often negligible when

compared to the variations in Nf for each point in time. We

assume that E
[
L(x, t)

]
= f(x, t), i.e. E

[
Nf (x, t)

]
= 0 for

all x ∈ R
n and all t ≥ 0, without loss of generality. If the

expectation value does not exist, we assume the median of

L(x, t) equals to f(x, t), for all x, t. This assumption makes

the definitions of f and Nf consistent with the objective to

find a minimizer of f . Furthermore, if, instead of the median,

we postulate a larger quantile (for example the 95%-tile) of L
equals to f , this would imply trying to find a more “robust”

solution as the minimizer of f .

Equation (2) describes a generic uncertainty model. The

equation includes uncertainties that may appear at any stage of

obtaining the measurement L. Examples of such uncertainties

include the adjustment of the variable vector x where the

dependency between Nf and f becomes evident, sometimes

called actuator noise [11].

From Equation (2) we can immediately imply that in a

ranking-based algorithm uncertainties are problematic if and
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only if, for two candidate solutions x1 and x2, the variation

due to Nf (x1) and Nf (x2) exceeds the difference |f(x1) −
f(x2)| such that their ordering reverses. If the uncertainties

tend to exceed the difference |f(x1) − f(x2)| we cannot

anymore conclude from two single measurements, L(x1) and

L(x2), whether f(x1) > f(x2) or f(x1) < f(x2) holds with

a small enough error probability (in a ranking-based search

algorithm this is the only decision based on the L-values). In

other words, referring to |f(x1)− f(x2)| as signal and to the

variations from Nf as noise, the uncertainty is problematic

if and only if the signal-to-noise ratio is too small. This

observation readily implies that there can only be two ways to

cope with uncertainties for a ranking-based search algorithm.

1) Increasing the signal, or

2) reducing the uncertainty.

Efficient optimization techniques for problems with uncer-

tainties must address successfully at least one of these two

issues. A broad literature overview of uncertainties addressed

in evolutionary optimization is given in [33].

The most common technique to approach uncertainties in

the objective function value is resampling, that is the repeated

evaluation of L(x) for a given solution x [2], [15], [18], [58].

A statistics L̂(x) of the repeated samples of L(x) replaces

the single measurement. Usually the mean value is taken as

statistics L̂ and the question whether it is an appropriate statis-

tics for uncertainty reduction is ignored. If the second moment

E
[
N2

f

]
exists, the variance of the mean statistics equals to the

variance of L divided by the number of independent samples

and hence the mean leads to a reduction of uncertainty. Taking

the median as statistics reduces the uncertainty under much

milder assumptions than the mean. If E
[
Nα

f

]
exists for some

α > 0 then E
[
L̂2
]

exists for any sufficiently large sample size

(note that E
[
N0

f

]
= 1). If in addition, Nf has a continuous

positive density in some neighborhood of the true median,

then L̂ is asymptotically normally distributed with variance

inversely proportional to the sample size [36].

The main drawback of repeated evaluations is the increased

cost of the algorithm (in our case the evaluation of L is by

far the most time consuming part of the optimization). Given

the sphere function f(x) = ‖x‖2 and Nf normally distributed

with standard deviation σε an evolution strategy can reach

a final distance to the optimum of R∞ ∝ √σε [9] [10].

Consequently, to reduce the final distance to the optimum R∞

by a factor of α < 1 the number of necessary L-samples grows

with α−2.

Usually the number of necessary samples varies in time

and cannot be predicted in advance. In particular in the early

stages of optimization the signal-to-noise ratio is expected to

be large for two reasons. First, the distance between population

members is large producing more likely a large difference in

objective function values. Second, the difference between L-

values of “bad” solutions is usually larger than for “good”

solutions. In order to reduce the associated cost, adaptive

reevaluation methods have been proposed [2], [15] [18]. The

number of reevaluations is determined by the outcome of a

statistical test, for example the t-test [18], [58]. The choice of

the solutions to be reevaluated can depend on their ranking in

the population [2], [58] or on the empirical variances of the

measurements [18]. The number of reevaluations is limited by

an upper bound to avoid divergence and to maintain adaptivity

in online applications. Despite these efforts, methods that re-

duce the uncertainty based on reevaluations typically increase

the number of function evaluations per generation by a factor

between three and a 100.

A slightly different approach to reduce the uncertainty uses

the already evaluated solutions. Instead of resampling L and

taking statistics of the samples a surrogate function (or meta-

model) is built from the already evaluated solutions [54],

[14], [17]. In case of ”benign” uncertainty distributions the

surrogate smooths the noisy landscape. For the CMA evolution

strategy a local quadratic surrogate model could speed-up the

convergence on a noisy sphere function by a factor of two

in small dimensions [34]. In general, the surrogate approach

will be less effective with increasing search space dimension

or when a large population spread is already realized by the

underlying search algorithm.

A third approach addresses uncertainties in the objective

function by using a large population, also referred to as

implicit averaging [33]. The effect of a large population size

in an evolution strategy (ES) is twofold. First, the population

spread can be larger. For example, on the sphere function the

optimal step-size of the (µ/µI , λ)-ES is proportional to the

parent number µ, given intermediate multi-recombination and

µ ∝ λ 6≫ n [51, p.148]. Second, recombination smooths

the effect of erroneous selection in search space. Conse-

quently increasing only λ is inferior to resampling [9], [26],

but increasing µ and λ is preferable to resampling [5]. A

prerequisite for this advantage is that step-sizes are adapted

properly, because the population spread is decisive. Otherwise

increasing the population size can even be counterproductive

[26].

Modifications of the selection scheme have been proposed

to compensate for uncertainties. In a (1 + 1)-ES a non-zero

threshold for accepting the offspring is advantageous [42]. In

the (µ/µI , λ)-ES the optimal ratio between µ and λ is 0.5
[10] corresponding to a maximal step-size for a given λ. The

stochastic tournament selection can be modified to make up

for the stochastics introduced by the uncertain selection [16],

while in evolution strategies the selection scheme is already

deterministic.

Overall, the handling of uncertainties in the objective func-

tion has been mainly addressed by uncertainty reduction rather

than signal improvement. In this paper we will use both

approaches. First, a resampling approach is taken and adopted

to the specific application to reduce the uncertainty. Second,

and more importantly, the signal is improved explicitly by in-

creasing the population spread. Both approaches are controlled

by a uncertainty measurement and hence implemented in an

adaptive way.

IV. AN UNCERTAINTY-RESISTANT EVOLUTIONARY

ALGORITHM

In this section we describe an evolutionary algorithm that

serves to minimize an objective function as defined in Equation



PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

(2). The algorithm consists of two parts: A ranking-based

evolutionary algorithm, the CMA-ES, and the uncertainty

handling method. We first describe the CMA-ES and then

introduce the proposed novel uncertainty handling technique.

A. The CMA Evolution Strategy

We employ the evolution strategy (ES) with Covariance

Matrix Adaptation (CMA) [30], [31], [29], [28]. This choice

is motivated by several reasons:

• CMA-ES is a non-elitist continuous domain evolutionary

algorithm. Non-elitism avoids systematic fitness overval-

uation on noisy objective functions [5], because even

solutions with (erroneously) exceptionally good fitness

values survive only one generation.

• The selection in CMA-ES is solely based on the ranking

of solutions. This provides additional robustness in a

noisy environment. Ranking-based selection is in par-

ticular invariant to strictly monotonic (order-preserving)

transformations of the value L.

• The CMA-ES provides an effective adaptation of the

search distribution to the landscape of the objective

function.

• The CMA-ES can be reliably used with small population

sizes allowing for a fast adaptation in an online applica-

tion.

The CMA-ES adapts the covariance matrix of a normal search

distribution to the given objective function topography. On

convex-quadratic objective functions, nearly optimal covari-

ance matrices are thus achieved. The adaptation procedure

operates efficiently and independently of the given population

size, which is small by default. Particularly on non-separable,

badly scaled problems often a speed-up by several orders of

magnitude can be achieved in terms of number of function

evaluations to reach a given function value and in terms of

CPU-time. The CMA-ES was evaluated on a variety of test

functions [31], [29], [28], [7] and was successfully applied to

a variety of real-world problems.1

The CMA-ES follows two fundamental design principles

employed in the development of the algorithm. The first design

principle is invariance. We distinguish between invariance

to transformations R → R of the function value L, as

considered in the beginning of this section, and invariance

to transformations S → S of the solution vector x in (2).

The CMA-ES reveals invariance to rigid (angle-preserving)

transformations of the solution vector, like translation, rotation

and reflection, given that the initial solution is transformed

respectively. The CMA-ES reveals invariance to overall scaling

of the search space, given that the initial scale σ is chosen

accordingly. Finally, The CMA-ES reveals even invariance

to any full rank linear transformation, given that the initial

covariance matrix is chosen respectively. Invariance properties

induce equivalence classes of objective functions and therefore

allow for generalization of empirical results.

Second, the variation of object and strategy parameters

is unbiased [12], [31]. Given random selection, that is an

1See http://www.inf.ethz.ch/personal/hansenn/cec2005.html and
http://www.inf.ethz.ch/personal/hansenn/cmaapplications.pdf

objective function L(x) = rand that is independent of x,

the first moment of the object parameters x is unbiased.

The expectation of newly generated solutions is equal to

the weighted mean of the previously selected solutions. The

second moment is described by covariance matrix and step-

size. The covariance matrix in the CMA-ES is unbiased,

because under random selection the updated covariance matrix

is equal to the previous covariance matrix in expectation.

Analogously, the step-size σ is unbiased on the log scale. For

the second moment, the population variance, a bias towards

increase or decrease will entail the danger of divergence or

premature convergence, respectively, whenever the selection

pressure is low. Next we describe the algorithm in detail.

Given an initial mean value m ∈ R
n, the initial covariance

matrix C = I and the initial step-size σ ∈ R+, the λ candidate

solutions xk of one generation step obey

xk = m + σyk, k = 1, . . . , λ, (3)

where yk ∼ N (0,C) denotes a realization of a normally

distributed random vector with zero mean and covariance

matrix C. Equation (3) implements mutation in the EA by

adding a random vector. The solutions xk are evaluated on

L and ranked such that xi:λ becomes the i-th best solution

vector and yi:λ the corresponding random vector realization.

In the remainder we describe the updates of m, σ, and C

for the next generation step. For µ < λ let

〈y〉 =

µ∑

i=1

wiyi:λ, w1 ≥ · · · ≥ wµ > 0,

µ∑

i=1

wi = 1 (4)

be the weighted mean of the µ best ranked yk vectors. The

recombination weights sum to one. The so-called variance

effective selection mass

µeff =
1∑µ

i=1 w2
i

≥ 1 (5)

will be used in the following. Given µeff , the particular setting

of the recombination weights is, in our experience, secondary.

From the definitions follows 1 ≤ µeff ≤ µ and µeff = µ for

equal recombination weights. The role of µeff is analogous to

the role of the parent number µ with equal recombination

weights and usually µeff ≈ λ/4 is appropriate. Weighted

recombination is discussed in more detail in [4].

The mean of the new distribution becomes

m←m + σ〈y〉 =

µ∑

i=1

wixi:λ. (6)

Equation (6) determines the center of the next population. The

equation implements selection by using µ < λ. Using different

recombination weights must also be interpreted as selection

mechanism. The equation implements recombination by taking

a (weighted) mean of parental solutions.

For step-size control the “conjugate” evolution path pσ ∈
R

n is introduced. The evolution path cumulates an exponen-

tially fading pathway of the population mean in the generation

sequence. Assuming that the optimal step-size leads to conju-

gate steps, the length of the conjugate evolution path can be

used as adaptation criterion for σ. If the evolution path is long,
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σ must be increased, whereas if the evolution path is short, σ
must be decreased. Initialized with pσ = 0 the update of pσ

(so-called cumulation) and σ reads :

pσ ← (1− cσ) pσ +
√

cσ(2− cσ)µeff C− 1

2 〈y〉 (7)

σ ← σ × exp

(
cσ

dσ

(‖pσ‖
χ̂n

− 1

))
(8)

where 1/cσ > 1 determines the backward time horizon of

the evolution path pσ , damping dσ ≈ 1 controls the change

magnitude of σ, and χ̂n is the expected length of a random

variable distributed according to N (0, I). The evolution path

is appropriately normalized. We have C− 1

2
def
= BD−1BT,

where C = BD2BT is an eigendecomposition of the sym-

metric, positive definite covariance matrix C.2 The transfor-

mation C− 1

2 rescales 〈y〉 into an isotropic reference system.

Given yi:λ distributed according to N (0,C), as under random

selection, we can derive that
√

µeff C− 1

2 〈y〉 is distributed

according to N (0, I). Therefore, if pσ ∼ N (0, I) holds

before applying (7), the same holds after applying (7). The

transformations make the expected length of pσ independent

of its orientation and allow the comparison of the length

of pσ with its expected length χ̂n in (8). Step-size σ is

increased if and only if ‖pσ‖ > χ̂n, and decreased if and

only if ‖pσ‖ < χ̂n. In practice we use the approximation

χ̂n =
√

2 Γ(n+1
2 )/Γ(n

2 ) ≈ √n
(
1− 1

4n
+ 1

21n2

)
.

Similar to (7) an evolution path pc is constructed to update

the covariance matrix. The covariance matrix admits a rank-

one and a rank-µ update.

pc ← (1− cc) pc + hσ

√
cc(2− cc)µeff 〈y〉 (9)

C ← (1− ccov)C +
ccov

µcov
pcp

T
c︸ ︷︷ ︸

rank-one update

+ ccov

(
1− 1

µcov

) µ∑

i=1

wiyi:λyT
i:λ

︸ ︷︷ ︸
rank-µ update

(10)

where ccov ≤ 1 is a learning rate, µcov ≥ 1 determines the

portion between rank-one and rank-µ updates, and hσ = 0

if ‖pσ‖ >
(
1.5 + 1

n−0.5

)
χ̂n

√
1− (1− cσ)2(g+1), and 1

otherwise, where g is the generation counter. Consequently,

the update of pc is stalled whenever pσ is considerably longer

than expected. This mechanism is decisive after a change in

the environment which demands a significant increase of the

step-size whereas fast changes of the distribution shape are

postponed until after the step-size is increased to a reasonable

value.

For the covariance matrix update the cumulation in (9)

serves to capture dependencies between consecutive steps.

Dependency information would be lost for cc = 1, as a

change in sign of pc or yi:λ does not matter in (10). The

rank-one update is particularly efficient with small offspring

2Columns of B are an orthonormal basis of eigenvectors, BTB =
BBT = I. Diagonal elements of the diagonal matrix D are square roots
of the corresponding positive eigenvalues. The matrix D can be inverted
by inverting its diagonal elements. From these definitions it follows that
yk ∼ σBDN (0, I) which allows the generation of the random vector
realizations on the computer.

population sizes λ. Given cc ∝ 1/n the rank-one update can

reduce the number of function evaluations needed to adapt

to a straight ridge topography roughly from O(n2) to O(n)
[29]. The rank-µ update exploits the information prevalent

in a large population. Given a sufficiently large population,

say λ ≈ n + 3, it reduces the number of generations needed

to adapt a complex but globally constant topography roughly

from O(n2) to O(n) [29].

The default parameter values for all parameters, namely

offspring population size λ, parent number µ, recombination

weights wi, cumulation parameter cσ , step-size damping dσ ,

cumulation parameter cc, mixing number µcov, and learning

rate ccov are [28] :

Selection and recombination:

λ = 4 + ⌊3 lnn⌋, µ = ⌊λ/2⌋,

wi =
ln(µ + 1)− ln i

µ ln(µ + 1)−∑µ
j=1 ln j

for i = 1, . . . , µ,

Step-size control:

cσ =
µeff + 2

n + µeff + 3
,

dσ = 1 + 2×max

(
0,

√
µeff − 1

n + 1
− 1

)
+ cσ

Covariance Matrix Adaptation:

cc =
4

n + 4
, µcov = µeff

ccov =
1

µcov

2

(n +
√

2)2

+

(
1− 1

µcov

)
min

(
1,

2µeff − 1

(n + 2)2 + µeff

)

A detailed discussion of the strategy parameters can be found

in [31]. The identification procedure for ccov with rank-µ
update is described in [29]. Parameters for step-size adap-

tation, cσ and dσ , were accommodated for use with a large

population size in [28]. With increasing µeff the backward time

horizon and the change rate are reduced, such that the impact

of step-size control diminishes in particular for µeff ≫ n.

All experiments in this paper are conducted with the default

parameter settings.

Finally, we note that the structure of CMA-ES bears sim-

ilarities with other stochastic optimization procedures, see

e.g. [57], as well as with recursive estimation procedures,

in particular of the “Gauss-Newton” type [41, pp. 366, 371,

375]. The analysis of these similarities and differences of these

algorithms are far beyond the scope of this paper.

B. Box Constraint Handling

In the present algorithm parameter constraints are accounted

by introducing a penalty term in the cost function. This penalty

term quantifies the distance of the parameters from the feasible

parameter space. The feasible space is a hypercube defined

by lower and upper boundary values for each parameter. We

implement a box boundary handling algorithm such that each
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evaluated solution is guaranteed to lie within the feasible

space. This algorithm affects solely the evaluation of the

solutions and entails the following steps.

• The cost of a solution x is obtained by evaluating the

function L at xfeas, where xfeas is the feasible solution

closest to x (with minimal ‖xfeas−x‖). Hence, a feasible

solution is evaluated itself and an infeasible solution is

evaluated on the boundary of the feasible space. The new

feasible solution xfeas is used for the evaluation on L
and for computing a penalty term, and it is discarded

afterwards.

• A penalty term is added to the function value L penalizing

infeasible solutions. The penalty depends on the distance

to the feasible space and is weighted and scaled in each

coordinate. The weights are set depending on observed

function value differences in L and are increased if

necessary, depending on the distance of the distribution

mean m to the feasible space. The scaling is based on

the covariance matrix diagonal elements.

The complete boundary procedure, applied after the candidate

solutions of one generation are generated, reads as follows.

0) Initialization: the boundary weights γi are initialized

once in the first generation step as γi = 0, for i =
1, . . . , n.

1) Set weights: if the distribution mean m is out-of-bounds

and either the weights were not set yet or the second

generation step is conducted, set for all i = 1, . . . , n,

γi =
2 δfit

σ2 × 1
n

∑n
j=1 Cjj

(11)

where δfit is the median from the last 20 + 3n/λ
generations of the interquartile range of the unpenalized

objective function values and Cjj is the j-th diagonal

element of covariance matrix C. The setting in Equation

(11) is explained in conjunction with Equation (12)

below.

2) Increase weights: for each component i, if the distribu-

tion mean mi is out-of-bounds and the distance of mi to

the bound is larger than 3×σ
√

Cii×max
(
1,

√
n

µeff

)
(the

typical distance to the optimum on the sphere function is

coordinate wise proportional to σ
√

n/µeff ), the weight

γi is increased according to

γi ← γi × 1.1max(1,
µeff

10n ) .

This adjustment prevents the mean value of the distribu-

tion from moving too far away from the feasible domain

(where far is naturally defined in terms of the given

search distribution).

3) Compute the penalized function value for each candidate

solution x as

L(x)
def
= L(xfeas) +

1

n

n∑

i=1

γi

(xfeas
i − xi)

2

ξi

(12)

where xfeas is the feasible solution closest to x with out-

of-bounds components set to the respective boundary

values. Only xfeas is actually evaluated on L. Finally

ξi = exp
(
0.9
(
log(Cii)− 1

n

∑n
j=1 log(Cjj)

))
scales

the distance coordinate wise with respect to the covari-

ance matrix of the distribution, disregarding its overall

size. The number 0.9 serves as regularizer to an isotropic

shape (choosing zero would make all ξi isotropically

equal to one).

Given that xfeas
i − xi = σ

√
Cii is as large as typically

sampled by the given search distribution (i.e. a one-σ
sample) then the i-th summand in Equation (12) equals

γi × σ2Cii/ξi ≈ γi × σ2. With Equation (11) we have

γi × σ2 ≈ 2 δfit which is a desired contribution. In par-

ticular the contribution of each component (summand)

becomes identical and therefore the perturbation from

the penalization on the covariance matrix adaptation

procedure is minimized.

The additive penalization in Equation (12) is a quadratic

function with its minimum located on the boundary [27, p.76].

Equation (12) has two important properties. First, it guarantees

that the minimum of the resulting function L cannot be outside

the feasible domain. Second, the construction results in a

comparatively unproblematic function topography, because the

partial derivative ∂L(x)/∂xi approaches zero if the distance

xfeas
i − xi approaches zero from the infeasible domain. For

∂L(x)/∂xi 6→ 0 a sharp ridge along the boundary can result

which is quite undesirable.

C. A Method for Handling Uncertainty

We introduce a novel uncertainty-handling (UH) method,

suitable for evolutionary optimization algorithms that employ

rank based selection operators. The rank based selection

operation allows for a robust quantification and handling of

uncertainties in the cost function as shown in the following

sections. We emphasize that the development of the proposed

uncertainty-handling method is independent of the other op-

erators employed in the evolutionary optimization algorithm.

In the present work the UH is discussed, without loss of

generality, in its implementation within the CMA-ES and the

overall algorithm is referred as UH-CMA-ES. The proposed

uncertainty handling preserves all invariance properties of the

CMA-ES mentioned above. The method however biases the

population variance when too large an uncertainty level is

detected.

The uncertainty handling consists of two separate compo-

nents.

• Quantification of the uncertainty effect on the ranking of

the members of the population

• Treatment of the uncertainty, if necessary, to prevent the

search algorithm from premature convergence

a) Uncertainty Quantification: We propose a reevalua-

tion technique that provides a quantification of the uncertainty

for any ranking-based search algorithm. The uncertainty in the

objective function can affect a ranking-based search algorithm

only if changes of the ordering of solutions occur. Hence, the

uncertainty quantification is based on rank changes induced by

reevaluations of solutions. A small perturbation can be applied,

before the reevaluation is done, to cover “frozen noise”, i.e.

when the objective function is not a random variable itself
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but a single realization of a noisy function L. The uncertainty

quantification algorithm reevaluates each solution at most once

but an extension to more reevaluations is straightforward.

First the solutions to be reevaluated are selected at ran-

dom. Alternatively the best solutions might be selected for

reevaluation, while our preliminary tests did not indicate

major differences. More importantly, we conjecture that more

scenarios exist where selecting the best solutions fails. One

such scenario is the case of (seldom found) good outliers.

Using the best solution then invariably selects the outlier and

therefore the uncertainty treatment might be applied too often.

In order to circumvent this difficulty solutions are chosen

randomly.

Second, after reevaluation, the number of rank changes, ∆i,

that occur with the reevaluation of solution i, is computed.

Third, the measured rank changes are compared to a threshold,

or, in a sense, normalized leading to the uncertainty measure-

ment s. The algorithm reads

1) Set Lnew
i = Lold

i = L(xi), for i = 1, . . . , λ, and let

L = {Lold
k , Lnew

k |k = 1, . . . , λ}.
2) Compute λreev, the number of solutions to be reeval-

uated using parameter rλ ≤ 1; λreev = fpr (rλ × λ)
where the function fpr : R → Z, x 7→{
⌊x⌋+ 1 with probability x− ⌊x⌋
⌊x⌋ otherwise

. To avoid too long

sequences without reevaluation set λreev = 1 if λreev =
0 for more than 2/(rλ × λ) generations.

3) Reevalute solutions. For each solution i = 1, . . . , λreev

(because the solutions of the population are i.i.d., we

can, w.l.o.g., choose the first λreev solutions for reeval-

uation)

a) Apply a small perturbation: xnew
i = mutate(xi, ε)

where xnew
i 6= xi ⇐⇒ ε 6= 0. According to

(3) for the CMA-ES we apply mutate(xi, ε) =
xi + εσN (0,C).

b) Reevaluate the solution: Lnew
i = L(xnew

i )

4) Compute the rank change ∆i. For each chosen solu-

tion i = 1, . . . , λreev the rank change value, |∆i| ∈
{0, 1, . . . , 2λ − 2}, counts the number of values from

the set L\{Lold
i , Lnew

i } that lie between Lnew
i and Lold

i .

Formally we have

∆i = rank(Lnew
i )− rank(Lold

i )

− sign
(
rank(Lnew

i )− rank(Lold
i )
)

where rank(L·
i) is the rank of the respective function

value in the set L = {Lold
k , Lnew

k |k = 1, . . . , λ}.
5) Compute the uncertainty level, s. The rank change value,

∆i, is compared with a given limit ∆lim
θ . The limit

is based on the distribution of the rank changes on a

random function L and the parameter θ. Formally we

have

s =
1

λreev

λreev∑

i=1

(
2 |∆i|

−∆lim
θ

(
rank(Lnew

i )− 11Lnew

i >Lold

i

)

−∆lim
θ

(
rank(Lold

i )− 11Lold

i >Lnew

i

))
, (13)

where ∆lim
θ (R) equals the θ × 50%ile of the set

{|1−R| , |2−R| , . . . , |2λ− 1−R|}, that is, for a

given rank R, the set of absolute values of all equally

probable rank changes on a random function L (where

f and Nf are independent of x). The summation for

s in Equation (13) computes two values for ∆lim
θ and

therefore respects the symmetry between Lold
i and Lnew

i .

6) Re-rank the solutions according to their rank sum, i.e.

rank(Lold
i ) + rank(Lnew

i ). Ties are resolved first using

the absolute rank change |∆i|, where the mean ∆i =
1

λreev

∑λreev

j=1 |∆j | is used for solutions i > λreev not

being reevaluated, and second using the (mean) function

value.

The parameters are set to rλ = max(0.1, 2
λ
), ε = 10−7, and

θ = 0.2. A Matlab implementation for the computation of the

uncertainty measurement s from the set of function values L
(steps 4 and 5) is given in the appendix.

In Equation (13) differences between the rank change ∆i

and the limit rank change ∆lim
θ are summed. Alternatively,

only the sign of the difference could be used thus placing less

emphasis on single large deviations that are typically observed

in the presence of outliers. When only the sign is used it will

also be appropriate to average s in the generation sequence by

choosing cs > 0 below.

b) Treatment of Uncertainty: The quantification of un-

certainty as described above is independent of algorithms

developed for the treatment of this uncertainty. In this paper

we propose two methods for the treatment of uncertainty.

1) Increase of the evaluation (measuring) time of the

controller’s performance. Increasing the evaluation time

aims to reduce the uncertainty in the evaluation. In

particular for the feedback controller of the combustion

set-up increasing the evaluation time is more natural than

taking the mean value from multiple evaluations, as it

avoids repeated ramping up and down of the controller.

Otherwise, doubling the evaluation time is equivalent to

taking the mean of two evaluations.

2) Increase of the population variance. This treatment can

have three beneficial effects.

• The signal-to-noise ratio is most likely improved,

because the solutions in the population become

more diverse.

• The population escapes search-space regions with

too low a signal-to-noise ratio, because in these

regions the movement of the population is amplified.

• Premature convergence is prevented.

The following uncertainty treatment algorithm is applied

after each generation step employing uncertainty measurement

s.
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s← (1− cs) s + css
if s > 0 % apply uncertainty treatment

if teval < tmax

teval ← min(αtteval, tmax)
else

σ ← ασσ
else if s < 0 % decrease evaluation time

teval ← max(teval/αt, tmin)

Initialization is teval = tmin and s = 0 and the parameters

are chosen to cs = 1, ασ = 1 + 2/(n + 10), αt = 1.5,

tmin = 1s, tmax = 10s. If the uncertainty measurement value s
exceeds zero, the evaluation time teval is increased. If teval has

already reached its upper bound tmax, step-size σ is increased.

Otherwise, if s is below zero, time teval is decreased. An

adaptive evaluation time teval proves to be particularly useful

in the early stages of an optimization run or when the operating

condition is changed. In the later stages, the evaluation time

will usually reach the upper bound and the adaptation will

become ineffective.

c) Role of Parameters: We discuss the role of the pa-

rameters of the uncertainty measurement and the uncertainty

treatment algorithm.

• rλ ∈]0, 1], typically < 0.5, determines the fraction of

solutions to be reevaluated. For rλ = 0.3 a fraction of

30% of the solutions in the population is reevaluated.

For rλ = 1 each solution is evaluated twice. To establish

a sufficiently reliable uncertainty measurement rλ has to

be chosen large enough. To minimize the additional costs

(in terms of number of function evaluations), rλ should

be chosen as small as possible.

• ε ≥ 0 and ε≪ 1: Mutation strength for the reevaluation,

given relative to the recent mutation strength. To be able

to treat “frozen” noise similar as stochastic noise, ε must

be set greater than zero, such that a slightly different

solution is used for the reevaluation. For the CMA-ES,

according to Equation (3), we replace σ by εσ and m

by xi for generating a new solution to re-evaluate xi.

Note that for too small ε the mutation can most likely be

influenced by numerical precision.

• θ ∈ [0, 1]: Control parameter for the acceptance threshold

for the measured rank-change value. The threshold θ = 1
corresponds to the median rank change that occurs under

purely random selection. This is clearly an upper bound

for a reasonable setting of θ.

• cs: Learning rate for averaging the uncertainty mea-

surement s in the generation sequence. Decreasing cs

will decrease the variance in the measurement s. Using

cs = 0.5 instead of cs = 1.0 will have a similar effect to

increasing rλ by a factor of two. Note that decreasing cs

is inexpensive when compared to increasing rλ. On the

other hand decreasing cs introduces a time delay.

• ασ > 1: Factor for increasing the population spread (step-

size) when the measured uncertainty value is above the

threshold. Values larger than 2 are rarely reasonable. To

make divergence most unlikely, ασ should be as small

as possible. This is particularly relevant when increasing

the population spread has no significant influence on the

uncertainty level, as it is the case with outliers.

• αt: Factor for increasing the evaluation time when the

measured uncertainty value is above the threshold. To

achieve fast enough changes, αt should be chosen large

enough, typically not smaller than 1.2.

• tmin, tmax are chosen based on pressure measurement

data and requirements of the technical facilities of the

test rig.

The final parameter settings, given above, were specified

based on simulations of the uncertainty handling with the

CMA-ES on the sphere function. Different parameter settings

may be necessary when combining the uncertainty handling

with different evolutionary algorithms.

d) Applications of Uncertainty Handling for Feedback

Controllers: The two techniques, presented above, provide

different treatments of uncertainty during the optimization

of the combustion feedback controllers. The increase of the

evaluation time is the most straightforward way to implement

resampling during the operation of the controllers (and can be

replaced by resampling in another application using ⌈teval⌉ as

the number of samples). Different evaluation times were suc-

cessfully applied to combustion control in [49], [55]. Longer

evaluation times reduce the amount of uncertainty and the

controller parameters can get closer to their desired values. For

an unbounded evaluation time, UH-CMA-ES has the capability

to approach the optimum with arbitrary accuracy. In order to

retain however adaptability the evaluation time needs to have

an upper bound.

The increase of σ ensures that the evolution strategy remains

in a working regime where sufficient selection information is

available. This is important, as changing operating conditions

can affect the desired controller parameters and the algorithm

has to track these changes even in a late stage of the optimiza-

tion. The increase of σ can only be useful if the introduced

increase in the population spread leads to an improved signal-

to-noise ratio. Our empirical observations show that this truly

holds for our application. In particular we never observed

divergence of step-size σ.

The upper bound for the evaluation time limits the possible

accuracy of the control parameters. The optimum cannot be

approximated with arbitrary accuracy if in its vicinity the

signal-to-noise ratio is too low. This failure is a property of the

evolution strategy in general and is actually not caused by the

uncertainty handling. The uncertainty handling only prevents

the step-size to become arbitrarily small. We believe that in

a noisy online application, where the optimum can change

in time, in the end a trade-off exists between the objectives

to retain adaptability versus getting arbitrarily close to the

optimum.

V. RESULTS ON TEST FUNCTIONS

The effect of increasing the evaluation time on the perfor-

mance of the algorithm is predictable. If the increment is fast

enough the algorithm will remain operating reliably and con-

verge to the optimum while the time per function evaluation

will increase unboundedly. Hence, we are mainly interested in

the effect of the step-size increment. On certain multi-modal
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functions the increase of the step-size might occasionally help

to locate the domain of a better local optimum, but we believe

that this effect is of minor relevance. Overall, we do not expect

that the uncertainty-handling would impair the performance

of the algorithm on multi-modal functions. Hence we do not

include experiments in multi-modal functions and we present

experiments on several unimodal functions with uncertainty.

These functions can also be interpreted as rugged, highly

multi-modal (non-noisy) functions, because any single solution

is (virtually) never evaluated twice. The “re-evaluations” are

conducted with a slightly mutated solution (compare point

3 in the uncertainty measurement algorithm). Therefore no

difference between “stochastic” and “frozen noise” can be

observed.

The test functions obey

L(x) = f(x) + Nf (x) =
n∑

i=1

ai(xi − b)2 + N/tβeval, (14)

where ai, b ∈ R are chosen function-dependent and the

uncertainty term is independent of x but scaled with tβeval, and

β > 0. While this test function is additively decomposable and

hence unrealistic simple, all our simulation results also hold

for non-decomposable (rotated) versions. Three functions are

derived, where β = 0.5.

LC
spherethe isotropic sphere function, where ai = 1, for

i = 1, . . . , n, b = 0, and N is standard Cauchy

distributed.

Lelli the ellipsoid function, where ai = 106× i−1

n−1 , b = 0,

and N is standard normally distributed. The condi-

tion number is 106. The principal axis lengths are

equidistant on the log scale.

LC
elli the ellipsoid function Lelli, where b = 5, and N is

standard Cauchy distributed.

Figure 3 shows five independent runs on Lelli in 10D. Pre-

mature convergence is observed without uncertainty handling

(CMA-ES, left). The smallest standard deviation σ
√

λmin,

where λmin is the smallest eigenvalue of C, exhibits a drift

with all values clearly below 10−4. With uncertainty handling

(UH-CMA-ES, right) we choose tmin = tmax = 1 here for

simplicity, implying constant teval = 1. Therefore only σ is

changed by the uncertainty treatment. The smallest standard

deviation σ
√

λmin reaches a stationary value and does not

drop below 10−4. If teval is chosen much larger such that

no rank changes occur (non-noisy case), about 20% fewer

function evaluations are required to reach a function value

of 1 (not shown). Note that even though the smallest standard

deviation is larger than in cases without uncertainty handling,

the function values are clearly better and give first evidence

that the uncertainty handling works effectively.

Figure 4 shows a single run of UH-CMA-ES on Lelli in

8D. The course of σ (upper left) reveals that the uncertainty

treatment enters after about 2000 function evaluations. After

about 5000 function evaluations the adaptation of the covari-

ance matrix is completed. The eigenvalues of the covariance

matrix correspond to the inverse coefficients a−1
i of Lelli

and indicate an almost perfect adaptation to the function

topography, despite the noisy environment. In view of the fact

that only σ is changed to treat the noisy environment, this

is a remarkable result. The mean vector fluctuates around the

optimum zero (upper right), while the size of the fluctuations

differs for different variables (coordinates), according to their

sensitivities ai.

Figure 5 shows a single run of UH-CMA-ES, switching

from LC
sphere to LC

elli after 3000 function evaluations, and back

again after 6000 function evaluations. Here, tmin = 1, tmax =
10 and teval is shown in the upper left. The initial σ is chosen

far too small. Consequently σ increases from 10−2 to 2 in the

beginning. During convergence on LC
sphere σ drops to 2×10−1,

while teval increases to the upper bound tmax = 10. When the

objective function is switched teval drops to the lower bound,

because the uncertainty becomes negligible when compared

to the differences in the function values f . In addition σ
increases fast, because the optimum has been displaced. At

about 4000 function evaluations teval starts to increase again,

because the uncertainty term becomes significant. As expected,

the covariance matrix adapts to the new topography and the

x-variables move to the new optimum, arranged according

to their relevance. Switching back to LC
sphere reveals a sim-

ilar picture. The step-size increases, teval decreases, and the

isotropic topography has to be re-learned. Because there is no

distinct coordinate system the re-learning takes as much time

as learning the elliptic topography starting from a spherical

distribution. This procedure can be naturally accelerated by

reseting the covariance matrix. Further experiments, conducted

with larger dimensions, on non-quadratic objective functions,

and with x-dependent uncertainty terms, give similar results

(not shown).

VI. EXPERIMENTAL RESULTS

A. Implementation of the Algorithm on the Test Rig

The UH-CMA-ES delivers a set of controller parameters

to be evaluated together with a requested function evaluation

time. The controller parameters undergo an affine transfor-

mation from the interval [0, 1] onto respective intervals spec-

ified below, and the initial values are set to the middle of

the interval. The controller is assembled and written to the

real-time board. In order to avoid any risks stemming from

inappropriate parameter settings delivered by the algorithm,

the gain of the new controller is ramped up over the course

of two seconds, such that the human operator can intervene

in case of a developing harmful situation. After the data

acquisition has been completed, the controller gain is ramped

down, and an intermediate controller keeps the combustor in

a stable regime. Meanwhile, pressure data is logged, a new

controller is developed and transferred to the real-time board.

The total cycle time thus consists of ramping the controller

gain up and down (about 2 s each), pressure data acquisition

(determined by the algorithm, 1-10 s), data logging (1 s) and

UH-CMA-ES computation time (negligible). The maximum

time that pressure can be logged is currently limited to 10 s,

due to real-time board memory constraints. The controller is

sampled at 10 kHz, the frequency content of the pressure signal

warrants no aliasing effects during sampling. For the following

experiments, the preheat temperature and the mass flow are
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Fig. 3. Five runs on Lelli, where n = 10, and tmin = tmax = 1. Left: CMA-ES without uncertainty handling; right: UH-CMA-ES (with uncertainty
handling); above: function value of the population mean, f(m); below: standard deviation in the smallest principal axis. The uncertainty handling keeps the
smallest standard deviation above 10−4 and prevents premature convergence.

kept constant at 700 K and 36 g/s, respectively. Two values

for the air/fuel ratio λ are investigated, namely λ = 2.1 and

λ = 1.875.

B. Experiment: Gain-Delay Controller, Cold Start, λ = 2.1
and Switch to λ = 1.875.

The combustor is fired up from ambient temperature, an

operating condition is set with a mass flow of 36 g/s, a preheat

temperature of 700 K, and an air/fuel ratio of λ = 2.1, and the

Gain-Delay controller is turned on. As the system heats up,

the sound pressure level Leq from (1) rises. Previous studies

have shown that the maximum absolute value of the gain for

a Gain-Delay controller decreases as the combustor heats up

for this operating condition. This is attributed to the fact that

the low-frequency content of the pressure signal rises, and the

resulting low frequency components of the fuel injection tend

to alter the flame stabilization. The flame then flaps back and

forth and increases the uncertainty levels.

The heat-up phase is also evident in the pressure spectra of

the controlled combustor taken at 1000 s and 4700 s, shown

in Fig. 6. The plant is uncontrolled and Gain-Delay controlled

(gain −1.8×10−4, delay 0.3 ms), the resulting Leq are 159.87
dB, 146.90 dB, and 147.48 dB, respectively.

The UH-CMA-ES optimizes the gain and the delay of

the Gain-Delay controller. The evolution of the parameters is

shown in Fig. 7, where the gain interval [−3 × 10−4, 0] and
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L
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; λ=2.1
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Fig. 6. A comparison of the uncontrolled and controlled spectra of the
pressure signal at 1000 s and 4700 s for the same Gain-Delay controller and
λ = 2.1.

the delays from {0.1, 0.2, . . . , 1.5} ms are mapped onto [0, 1].
Previous experiments with manual tuning have shown that

actuator saturation and flame stabilization problems occur if

the gain is chosen lower than −3×10−4, or the delay is higher

than 1.5 ms. The initial gain and delay passed to the UH-
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Fig. 4. A single run of the UH-CMA-ES (with uncertainty handling) on Lelli, where n = 8, and tmin = tmax = 1. Upper left: function value of the
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Cii, where Cii is the i-th diagonal element of C.
Lower right: square root of eigenvalues of C

CMA-ES algorithm are −1 × 10−7 and 1.5 ms, respectively.

During the first 4800 seconds Leq rises as the combustor

heats up, and the optimal value of the gain increases from

about −2.5 × 10−4 at 1000 s to −1.8 × 10−4 at 4800 s. The

rise of Leq is related to the persistent change of the system

conditions during heat-up and seems to have no adverse effect

on the optimization. During the first 1000 s the evaluation time

increases and reaches 10 s, the maximum allowed. That means

uncertainty is becoming an issue. The standard deviations

decrease during the first 4000 seconds and rise again as

the operating condition is changed. At 4800 s, the operating

condition is changed from λ = 2.1 to λ = 1.875, and the

evaluation time is manually set to 1 s.

Four cost function landscapes for different time intervals are

shown in Fig. 8. They are obtained by Delauney triangulation

of a second-order polynomial fit to the Leq results for the

individual delay slices. Pentagrams show the best parameter

set for each generation; the larger they are, the later they have

been acquired for each plot. A black circle marks the last of

the pentagrams. The topmost plot shows the Leq for the first

150 function evaluations (up to 1300 s). The plot shows that

the gain can be chosen quite negative; the overall landscape

features low Leq values. For the function evaluations from 150
to 250 (1300-2700 s), the evaluation time increases and yields

results with less uncertainty. A trend to less negative values for

the gain becomes apparent (the pentagrams indicating the best

of the generations are moving to the right), and the general
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Fig. 7. Parameter evolution for the UH-CMA-ES optimization of a Gain-
Delay-controller. At 4800 s, the operating condition is changed from λ = 2.1
to λ = 1.875.

background uncertainty level rises (indicated by areas getting

darker).

The black polygon is the convex hull of all controller

parameter values tried in the given time range. The function

evaluations 250-325 (2700-3800s), shown in the third plot,

indicate that the optimal value for the gain lies around −1.8×
10−4 and a delay of 0.4-0.5 ms. The parameters evaluated
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sphere
and LC

elli
at 3000 and 6000 function evaluations, where n = 5, β = 0.5 (see Equation

(14)), initial σ = 10−2, initial teval = 1. The graphs remain identical for any β > 0 given αt = 1.5
0.5
β . Upper left: function value of the distribution mean
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Cii, where Cii is the

i-th diagonal element of C. Lower right: square root of eigenvalues of C

are now narrowed down to the smaller black polygon. If this

result is compared to the last plot showing function evaluations

325-390 (3800-4800 s), the optimal values for the gain and

the delay are confirmed, but the cost function evaluated Leq

rises. This is in accord with the observation that the combustor

exhibits slowly rising sound pressure levels for λ = 2.1.

At run 395 (4800 s), the lambda value is changed to

λ = 1.875. This operating conditions exhibits less thermal

drift than the previous one. According to Fig. 9 the changing

operating conditions can clearly be discerned in the cost

function Leq. The algorithm finds a new minimum, where the

gain can be more negative for this case.

The evaluation time increases immediately again, indicating

no big improvement of the signal-to-noise ratio, even though

the controller is less close to its optimal regime. This suggests

that σ should be increased together with teval. The course of

σ supports this conjecture. It increases by a factor of three

and shows the adaptive capability of the algorithm. It takes

8 generations until the increase of σ appears, and we do not

know whether this reflects a sensible adaptation or whether σ
should have increased beforehand. Finally, the UH-CMA-ES

successfully adjusts the controller parameters to new improved

values, as shown in Fig. 7.

C. Experiment: H∞ Controller, Two Parameters Optimized,

λ = 1.875.

An H∞ controller has been designed for the operating con-

dition with λ = 1.875, where the goal was to simultaneously

decrease the three peaks at 250 Hz and around 330 Hz. In

order to keep the number of parameters small and to speed

up convergence, only the gain and the frequency shift are

optimized.

In the top plot of Fig. 10 the intervals for frequency shift,

[0.95, 1.05], and gains [0.4, 1.1], are mapped onto [0, 1]. The

comparatively good values for Leq in the beginning are related

to the short evaluation time. The shorter the evaluation time

is, the larger is its variation due to the uncertainty. Therefore

better values occur more often. The bottom plot shows the cost

function landscape. It is obtained by DACE, a Matlab toolbox

for working with kriging approximations, which has been

kindly provided by Hans Bruun Nielsen from the Technical

University of Denmark3. A second-order polynomial has been

used as regression model and a Gaussian correlation. For this

experiment with an H∞ controller, the cost function is flatter

than with the Gain-Delay controller, because the controller is

model-based, and thus already performs well. However, the

optimization shows that in order to decrease Leq, the gain has

3http://www2.imm.dtu.dk/∼hbn/dace/
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to be reduced from the design value of 1 to about 0.7. This

is explained by the fact that the H∞-design process has been

laid out primarily to decrease the three peaks in the spectrum,

without special concern given to the reduction of Leq.

D. Experiment: H∞ Controller, Three Parameters Optimized,

λ = 1.875.

For the following experiment, three parameters are opti-

mized by the UH-CMA-ES, namely gain, frequency shift and

time delay of the H∞ controller.

The evolution of the parameters is shown in Fig. 11

(frequency shift interval [0.95, 1.05], gains [0.4, 1.1], delays

[1, 10]). Since the cost function takes three arguments, only

four cost function landscapes with fixed delays of 0.1 ms to

0.4 ms are shown in Fig. 12. The topmost plot corresponds to

the bottom plot of Fig. 10, where only frequency shift and gain

are adjusted, but the delay is kept at 0.1 ms for all experiments.

Gain and frequency shift have similar values but exhibit a

larger variation. The minimum Leq is lower for a delay of

0.2 ms, and even lower for a delay of 0.3 ms, while it increases

again for 0.4 ms (bottom plot).

The Bode plots of the designed and optimized H∞ con-

trollers are shown in Fig. 13. The superior performance of

the H∞ controller goes hand in hand with a more complex

shape. The optimized controller has nearly the same phase as

the designed one, but the gain is lower. Since the delay is

adjusted additionally, it is possible to move the controller in

the frequency domain keeping the same phase.

As a result for the operating condition characterized by λ =
1.875, the spectra achieved with the optimized Gain-Delay and

H∞ controllers are compared to the uncontrolled plant in Fig.

14. The Leq of the uncontrolled plant is 148.72 dB, the Gain-

Delay controller reduces it to 146.67 dB, and finally the H∞

controller reaches 146.16 dB, which is about 15% lower again.

Moreover, the H∞ controller is able to simultaneously push

down all three peaks and to attain the flattest spectrum. This is

achieved thanks to the model-based approach, conferring the

most design freedom to the engineer.
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E. Experiment: H∞ Controller, Two Parameters Optimized,

λ = 2.1.

Finally, the UH-CMA-ES is used to improve an H∞ con-

troller designed for λ = 2.1. The parameter evolution is shown

in Fig. 15 at the top (frequency shift interval [0.95, 1.05],
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gain interval [0.4, 1.1]), and the cost function landscape at

the bottom. A lower gain decreases Leq compared with the

designed controller with gain one, but the frequency shift

does not have a decisive effect. The final standard deviations

for gain and frequency shift differ by a factor of about

three (lower left of the top plot of Fig. 15) reflecting the

different sensitivities of the parameters. The Bode plots of the

designed and the optimized controllers are shown in Fig. 16.

The controller phase is quite flat and therefore tolerant against

frequency shifts. The combustor pressure spectrum exhibits

only one very distinct peak, and it suffices to provide the right

amount of gain and phase at this frequency.

To compare the UH-CMA-ES optimized Gain-Delay and

H∞ controllers with the uncontrolled plant, their spectra are

plotted in Fig. 17, the values of Leq are 159.87 dB, 147.48
dB and 147.35 dB, respectively. They are shown for the plant

which has been running for several hours and is thus heated up.

In this case, the H∞ controller performs only slightly better

than the Gain-Delay controller, but the control signal contains

about 10% less energy.

VII. SUMMARY AND OUTLOOK

We have presented a novel evolutionary optimization al-

gorithm (UH-CMA-ES) for problems with uncertainties. The

optimization algorithm consists of the well-known CMA-ES

enhanced by a novel uncertainty handling algorithm. The

evolutionary algorithm is applied to the online optimization of

feedback controllers in a combustor test rig. The uncertainties

are associated with the stochastic nature of the cost function

and, in the present application, with the online optimization

of the controller parameters.

0 100 200 300 400 500
105

110

115

120

125

130

Frequency [Hz]

L
p

s
 [
d
B

]

L
ps

; λ=1.875

uncontrolled

Gain−Delay
H

∞

Fig. 14. Comparison of the pressure spectra when the plant is uncontrolled,
Gain-Delay and H∞ controlled. Both controllers are UH-CMA-ES optimized,
λ = 1.875.

0 1000 2000 3000 4000

147

147.2

147.4

147.6

147.8

L
eq

 and t
eval

 

time [s]

L
eq

 [dB]

0

5

10

t
eval

 [s]

L
eq

    t
eval

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

controller parameters (2D)

time [s]

Freq. Shift

Gain

0 1000 2000 3000 4000

10
−1

std in coordinates

time [s]

Freq. Shift

Gain

0 1000 2000 3000 4000

10
0

principal axes lengths of C

time [s]

axis 1

axis 2

0.4 0.6 0.8 1
0.95

1

1.05

L
eq

; λ=2.1

Gain

H
∞
 f
re

q
u
e
n
c
y
 s

h
if
t

L
eq

 [dB]

147.4

147.6

147.8

148

148.2

148.4

148.6

148.8

Fig. 15. Parameter evolution for the UH-CMA-ES optimization of an H∞

controller for λ = 2.1 (top) and resulting cost function landscape (bottom).
Pentagrams show the best parameter set for each generation.



PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

0 100 200 300 400 500
−90

−80

−70


C

(j
ω

)
d
B

H
∞
 and CMA−ES

0 100 200 300 400 500
−π

0

π

Frequency [Hz]

∠
C

(j
ω

)

H
∞
 designed

H
∞
 CMA−ES

Fig. 16. The designed and the UH-CMA-ES-optimized H∞ controller for
λ = 2.1.
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controlled plant for λ = 2.1. Both controllers are optimized by UH-CMA-
ES.

The novel uncertainty-handling algorithm needs few addi-

tional cost function evaluations per generation and is therefore

well suited for online applications. The algorithm distinguishes

between uncertainty measurement and uncertainty treatment.

The uncertainty measurement is based on rank changes in-

duced by reevaluations of solutions. Two adaptive uncertainty

treatments are proposed: increasing the time for evaluating the

controller up to a prescribed bound, and increasing the pop-

ulation diversity. Both treatments improve the signal-to-noise

ratio. The former reduces the uncertainty variance comparable

to resampling of solutions, while the latter improves the signal

term without additional function evaluations and with only

minor computational effort.

The algorithm has been validated on test functions and it

has been applied to the optimization of feedback controllers

of thermoacoustic instabilities, using secondary fuel injection

in a combustor test rig. The controllers employ Gain-Delay

and H∞ control and their parameters have been optimized

online with the introduced UH-CMA-ES. The experiments

show that the algorithm can optimize different controller types

and can cope with changing operating conditions and high

levels of uncertainty. Our results indicate that model-based

H∞ controllers perform best, and that they can be further

improved through the use of the UH-CMA-ES. The optimized

solutions deviate significantly from the originally designed

solutions and can make up for uncertainties in the model-

building and design process, as well as for time-varying plant

characteristics.

Future work will include the acceleration of the self-tuning

process for the combustion control. First, algorithm internal

parameter settings can be improved and be specifically ad-

justed to the small dimensionality of the problem. Second, the

implementation on a test rig can be improved to shorten the

ramping times which are by far the most time consuming part

in the initial phase of the controller tuning process. Further-

more in the context of the UH-CMA-ES a more informed way

of selecting the appropriate uncertainty treatment can shorten

the adaptation time considerably, in particular if the evaluation

time can be reduced for a longer time interval.
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APPENDIX

A. Matlab Implementation of the Uncertainty Measurement

function [s ranks rankDelta] = uncertaintymeasurement(arf1, arf2, lamreev, theta)

%

% Input:

% arf1, arf2 : two 1xlambda arrays of function values, two values for

% each individual of the population. The first lamreev values in

% arf2 are new (re-)evaluations of the respective individual.

% lamreev: number of reevaluated individuals in arf2

% theta : parameter theta for the rank change limit

%

% Using: prctile function from statistics toolbox.

%

% Output:

% s : uncertainty measurement, s>0 means the uncertainty measure is above the

% acceptance threshold

% ranks : 2xlambda array of ranks of arf1 and arf2 in the set

% [arf1 arf2], values are in [1:2*lambda]

% rankDelta: 1xlambda array of rank movements of arf2 compared to

% arf1. rankDelta(i) agrees with the number of values from

% [arf1 arf2] that lie between arf1(i) and arf2(i).

%%% verify input argument sizes

if size(arf1,1) ˜= size(arf2,1)

error(’arf1 and arf2 must agree in size 1’);

elseif size(arf1,2) ˜= size(arf2,2)

error(’arf1 and arf2 must agree in size 2’);

elseif size(arf1,1) ˜= 1

error(’arf1 and arf2 must be an 1xlambda array’);

end

lam = size(arf1,2);

%%% compute rank changes into rankDelta

% compute ranks

[ignore idx] = sort([arf1 arf2]);

[ignore ranks] = sort(idx);

ranks = reshape(ranks, lam, 2)’;

rankDelta = ranks(1,:) - ranks(2,:) - sign(ranks(1,:) - ranks(2,:));

%%% compute rank change limits using both ranks(1,...) and ranks(2,...)

for i = 1:lamreev

sumlim(i) = ...

prctile(abs((1:2*lam-1) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))), ...

theta*50) ...

+ prctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))), ...

theta*50);

end

%%% compute measurement

s = mean(2*abs(rankDelta(1:lamreev)) - sumlim);




