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SUMMARY

A rigorous method for interpolating a set of parameterized linear structural dynamics reduced-order
models (ROMs) is presented. By design, this method does not operate on the underlying set of
parameterized full-order models. Hence, it is amenable to an on-line real-time implementation. It is
based on mapping appropriately the ROM data onto a tangent space to the manifold of symmetric
positive definite matrices, interpolating the mapped data in this space and mapping back the result
to the aforementioned manifold. Algorithms for computing the forward and backward mappings are
offered for the case where the ROMs are derived from a general Galerkin projection method and
the case where they are constructed from modal reduction. The proposed interpolation method
is illustrated with applications ranging from the fast dynamic characterization of a parameterized
structural model to the fast evaluation of its response to a given input. In all cases, good accuracy is
demonstrated at real-time processing speeds. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of model reduction is old in structural dynamics. It has — and is still — been
used for many purposes ranging from the design of a test-analysis model to provide a basis for
comparing computational and experimental results, to the alleviation of the computational
burden associated with large-scale finite element models. Among the many linear model
reduction techniques that have been or remain popular in industry, one can mention Guyan’s
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reduction method [1] and the related superelement dynamic reduction approaches, the IRS
dynamic reduction method [2], and of course, the ubiquitous modal reduction method. More
recently, the Proper Orthogonal Decomposition (POD) [3] method, which can be used to
generate a reduced-order model (ROM) capable of accurately reproducing the dynamics of
the underlying full-order model for a given set of input forces, has gained status in the linear
structural dynamics community [4, 5, 6]. All of these methods can be described as Galerkin
projection techniques onto carefuly chosen reduced-order bases. They are back in vogue
for incorporating computational models in design operations [7], designing effective control
systems for large-scale flexible structures [8], generating surrogate models for accelerating
the speed of optimization procedures [9] and developing realistic uncertainty quantification
analysis methods [10]. In all of these applications, structural dynamics ROMs are sought after
because of their potential for operating in real-time.

Unfortunately in all of the above and many other applications, structural dynamics models
are usually parameterized, their reduced-order counterparts tend to lack robustness[12, 11]
with respect to parameter changes, and the reconstruction of these small-size counterparts
for each new set of parameters can be computationally prohibitive. Hence, there is a pressing
need for a fast ROM adaptation procedure which can operate on-line and in real-time. Here,
on-line characterizes a procedure which does not operate on the full-order model at the origin
of a ROM and therefore which avoids the manipulation of a large-scale complex simulation
software and the associated implementation burden. The real-time requirement is to preserve
the reason why ROMs are desired in the first place for the target applications — that is,
computational speed.

To develop a structural dynamics ROM adaptation procedure that meets the aforementioned
requirements, a database of reduced-order information can be precomputed for selected values
of the parameter set and interpolation can be invoked for generating ROMs for other values
of this parameter set. However, it turns out that interpolating reduced-order data is not an
easy task. For example, reduced-order bases are often orthogonal and the straightforward
interpolation of sets of orthogonal vectors does not necessarily generate a new set of orthogonal
vectors. Similarly, the straightforward interpolation of ROMs does not necessarily yield a ROM.
This is because neither reduced-order bases nor ROMs live in vector spaces.

Most recently, a numerical method based on interpolation in a tangent space to the
Grassmann manifold was developed for adapting CFD (computational fluid dynamics)-based
reduced-order POD bases to parameter changes in real-time [11, 13]. However, the application
of such a method to the interpolation of projection-based ROMs can neither be performed on-
line nor in real-time, because it requires first evaluating the underlying full-order model at the
new value of the parameter set, then projecting this model onto the interpolated reduced-order
basis. In this work, the symmetric positive definite nature of linear structural dynamics models
is exploited to develop an interpolation method which directly operates on linear structural
dynamics ROMs rather than on their associated reduced-order bases and therefore can be
implemented on-line and perform in real-time. To this effect, the remainder of this paper is
organized as follows.

In Section 2, the representation of a linear structural dynamic ROM is abstracted and
the ROM adaptation problem is formulated. In Section 3.2, a method based on mapping
appropriately the ROM data onto a tangent space to the manifold of symmetric positive
definite matrices of size n, SPD(n), interpolating the mapped data in this space and mapping
back the result to the aforementioned manifold is presented. Algorithms for computing the
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forward and backward mappings are offered in Section 3.3.1 for the special case where the
ROMs are constructed by modal reduction and in Section 3.3.2 for the case where they are
constructed by a general Galerkin projection method. The proposed interpolation method is
illustrated in Section 4 with simple applications which nevertheless highlight its ability to
deliver good accuracy at real-time processing speeds.

2. PROBLEM FORMULATION

In this work, a parameterized linear structural dynamics (full-order) model of size N is
abstracted as a triplet of the form(

M(s), C(s), K(s)
)
∈

(
RN×N , RN×N , RN×N

)
, (1)

where M , C and K are symmetric positive definite mass, damping and stiffness matrices,
respectively, and s = (s0, s1, . . . , sNp−1) denotes a set of Np model parameters. These
parameters can be physical, non-physical, or a combination of both.

Similarly, a corresponding ROM of size n << N is abstracted here as

• A1: a triplet of reduced mass, damping and stiffness matrices that are assumed here to
be symmetric positive definite

R(s) =
(
M?(s), C?(s), K?(s)

)
∈

(
Rn×n, Rn×n, Rn×n

)
, (2)

or

• A2: a quintuplet of the form

R(s) =
(
M?(s), C?(s), K?(s), X(s), Z(s)

)
∈

(
Rn×n, Rn×n, Rn×n, RN×n, RN×n

)
,

(3)
where

M?(s) = XT (s)M(s)X(s), C?(s) = XT (s)C(s)X(s),

K?(s) = XT (s)K(s)X(s), Z(s) = A(s)X(s),
(4)

A ∈ RN×N is a real symmetric positive definite matrix, X(s) denotes a projection matrix
relating the full- and reduced-order displacement vectors u ∈ RN and q ∈ Rn via

u(t, s) = X(s)q(t, s) (5)

and satisfying the orthogonality condition

XT (s)Z(s) = In, (6)

t denotes time, In ∈ Rn×n is the identity matrix of size n and the superscript T designates
the transpose operation.

Indeed, the governing equations associated with a linear structural dynamics ROM can be
written in general as

M?(s)q̈(t, s) + C?(s)q̇(t, s) + K?(s)q(t, s) = F ?(t, s), (7)

where a dot designates a time derivative. Hence, definition A1 is appropriate when the loading
on the structure is not of any particular interest and therefore F ?(t, s) = 0 — for example, when
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the main interest is in determining a set of natural frequencies of the full-order parameterized
structural model. In this case, M?, C? and K? do not necessarily result from a projection
technique but are assumed here to be symmetric positive definite. Definition A2 is appropriate
as soon as F ?(t, s) 6= 0 or the mapping between u(t, s) and q(t, s) is required. It covers most
linear ROMs constructed by popular projection techniques where X(s) ∈ RN×n is a real
rectangular matrix whose columns form a reduced-order basis and A(s) is associated with a
metric. In this case, F ?(t, s) = XT (s)F (t) and X(s) satisfies an orthogonality constraint. For
example, when X(s) is generated by the POD method, this matrix satisfies XT (s)X(s) = In

and therefore A(s) = IN . Alternatively, X(s) can be a set of eigenvectors of the pencil(
M(s), K(s)

)
, in which case A(s) = M(s) and therefore the ROM is essentially a truncated

modal representation of the structure. In all cases, M?, C? and K? are symmetric positive
definite and therefore belong to the manifold SPD(n).

Using the above nomenclature, the focus of this paper is on solving the following problem.
Problem. Let s(i) =

(
s
(i)
0 , s

(i)
1 , . . . , s

(i)
Np−1

)
denote a specific configuration of the set of Np

parameters s. In the remainder of this paper, s(i) is referred to as the (i + 1)-th point of a set
of operating points

S =
(
s(0), s(1), . . . , s(NR−1)

)
. (8)

Let also {Ri}NR−1
i=0 =

{
R

(
s(i)

)}NR−1

i=0
denote a set of NR linear structural dynamics ROMs of

the same dimension n constructed at the operating points
{
s(i)

}NR−1

i=0
. Given a new operating

point s(NR) /∈ S, compute on-line and in real-time RNR
= R

(
s(NR)

)
.

The remainder of this paper proposes a solution to the above problem based on a suitable
interpolation method.

3. ROM ADAPTATION METHODS

Three different but related ROM adaptation methods are presented here: one for the case
where the ROMs {Ri}NR−1

i=0 are of type A1 and two for the case where they are of type A2.
All three methods share the concept of interpolation in a tangent space to a manifold. Unlike
any straightforward interpolation scheme, this concept enables all three methods to produce
for any new operating point s(NR) a result R

(
s(NR)

)
that is a genuine ROM — that is, a result

RNR
whose matrices M?

(
s(NR)

)
, C?

(
s(NR)

)
and K?

(
s(NR)

)
are symmetric positive definite

and whose matrix X
(
s(NR)

)
in the case of type A2 satisfies the constraints

(
6
)
. All of these

methods are based on the approach presented in Section 3.1 which can be summarized as
follows: first, the data to be interpolated is mapped appropriately onto a tangent space to
the appropriate manifold, then the mapped data is interpolated in this space and finally the
interpolation result is mapped back to the same manifold (see Figure 1).

For a background on interpolation in a tangent space to a manifold, the reader can consult
references [11, 13], among others.

3.1. Interpolation in a Tangent Space to a Manifold

Let
{
Yi = Y

(
s(i)

)}NR−1

i=0
denote a set of elements of a manifold M associated with a set

of different operating points {s(i)}NR−1
i=0 . Each element Yi is represented here by a matrix
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Yi ∈ Rm×p that belongs to some matrix manifold M′ and verifies one or more specific
properties that characterize M′. (The m-dimensional sphere, Sm, the group of orthogonal
matrices of size m, O(m), and the set of symmetric positive matrices of size m SPD(m) are
examples of simple matrix manifolds.) The following four-step method is proposed to construct
a new element YNR

∈ M associated with a new operating point s(NR) and its representative
matrix YNR

— that is, an element YNR
∈ M and its representative matrix YNR

∈ M′ which
have the same properties as each element Yi and its representative matrix Yi, i = 0, ..., NR−1,
respectively.

• Step 0. Choose an element Yi0 in the data set {Yi}NR−1
i=0 as a reference element of the

manifold M.
• Step 1. Consider a few elements of the set {Yi}NR−1

i=0 that lie in a neighborhood of
Yi0 . Map each of them onto the tangent space to M at Yi0 denoted here by TYi0

M.
More specifically, map each element Yi that is sufficiently close to Yi0 to an element
χi ∈ TYi0

M represented by a matrix Γi, using the logarithm map LogYi0
which provides

an appropriate continuous mapping to the tangent space of the manifold at Yi0 . This
can be written as:

χi = LogYi0
(Yi). (9)

• Step 2. Compute each entry of an m×p matrix ΓNR
associated with the target operating

point s(NR) by interpolating the corresponding entries of the m × p matrices {Γi}
associated with the operating points {s(i)} using any preferred multi-variate interpolation
algorithm.

• Step 3. Map the element χNR
∈ TYi0

M represented by the matrix ΓNR
to an element

YNR
∈ M represented by a matrix YNR

∈ M′ using the exponential map ExpYi0
. This

can be written as
YNR

= ExpYi0
(χNR

). (10)

In the remainder of this paper, the above method is referred to as the “generalized” (because
it involves more than) interpolation of a set of elements {Yi} in a tangent space to a matrix
manifold M. The specific algorithms for computing the logarithm and exponential mappings
depend of the manifold M and are discussed next.

3.2. Case A1

Here, M = M′ = SPD(n) as the triplets of interest

Ri =
(
M?(s(i)), C?(s(i)), K?(s(i))

)
∈

(
Rn×n, Rn×n, Rn×n

)
, i = 0, ..., NR − 1 (11)

are constituted of symmetric positive definite matrices. In this case, the matrix logarithm and
exponential mappings are given by[14]

LogYi0
(Yi) = logm

(
Y
−1/2
i0

YiY
−1/2
i0

)
(12)

and
ExpYi0

(Γ) = Y
1/2
i0

expm(Γ)Y 1/2
i0

, (13)

where logm and expm denote the matrix logarithm and exponential, respectively.
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Figure 1. Graphical description of the generalized interpolation of the matrices {Yi}3i=0 in a tangent
space to a matrix manifold M.

REMARK. In the particular case where the interpolation data of the form given in (2)
is based on the classical modal decomposition and truncation method, M?

(
s(i)

)
= In and

K?
(
s(i)

)
= Ω2

n

(
s(i)

)
, where Ω2

n is a diagonal matrix of squares of n natural circular frequencies.
In this case, the generalized interpolation method described above preserves the structure of the
interpolation triplets

(
In, C?

(
s(i)

)
, Ω2

n

(
s(i)

))
as it generates a pair of reduced-order matrices

M?
(
s(NR)

)
and K?

(
s(NR)

)
that satisfy M?

(
s(NR)

)
= In and K?

(
s(NR)

)
= Ω2

n

(
s(NR)

)
, where

Ω2
n is a diagonal matrix with n positive entries. This important property of the proposed

generalized interpolation method in a tangent space to a matrix manifold is proven in the
Appendix in Section 6 of this paper.

3.3. Case A2

Here, the quintuplets of interest

Ri =
(
M?(s(i)), C?(s(i)), K?(s(i)), X(s(i)), Z(s(i))

)
∈

(
Rn×n, Rn×n, Rn×n, RN×n, RN×n

)
,

(14)
for i = 0, ..., NR − 1, are constituted of three symmetric positive definite matrices and two
rectangular matrices representing two reduced-order bases and satisfying the constraint (6).
The three square matrices belong to the manifold SPD(n) as in the previous case. The two
subspaces spanned by the columns of X(s(i)) and Z(s(i)) belong to the Grassmann manifold
G(n, N), which is defined as the set of subspaces of dimension n in RN .

Hence, in this case, the matrix logarithm and exponential mappings to be used for
interpolating the matrices {M?(s(i))}, the matrices

{
C?

(
s(i)

)}
and the matrices

{
K?

(
s(i)

)}
are the same as in Case A1.
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The computation of the two matrices X
(
s(NR)

)
and Z

(
s(NR)

)
requires the generalized

interpolation of two different sets of matrices
{
X

(
s(i)

)}
and

{
Z

(
s(i)

)}
that are however

connected by the orthogonality condition (6). Hence, this computation cannot be performed
using the generalized interpolation method presented in Section 3.1 as is. Instead, it is proposed
to simultaneously interpolate the set of matrices X

(
s(i)

)
and set of matrices Z

(
s(i)

)
column-

block per column-block while enforcing the orthogonality constraint (6). For this purpose,
two sub-cases are distinguished: the sub-case where X

(
s(NR)

)
is associated with the classical

modal decomposition and truncation method and that where X
(
s(NR)

)
is associated with an

arbitrary Galerkin projection method.

3.3.1. Modal Truncation The modal truncation approach differs from the general Galerkin
projection approach in that each individual column of a matrix X(s(i)) has a specific meaning
and importance that must be preserved during the interpolation process. More specifically, if
the columns of the matrices

{
X

(
s(i)

)}
to be interpolated are ordered so that the j-th column

of each of them refers to the same eigenmode, then the j-th column of the interpolated matrix
X

(
s(NR)

)
must refer to the same eigenmode. This is not true however for a set of matrices{

X
(
s(i)

)}
associated with an arbitrary Galerkin projection method. Therefore, the generalized

interpolation method proposed here loops on the eigensubspaces
{
SX

ij

}
and subspaces

{
SZ

ij

}(
where i refers to s(i)

)
of the parameterized system underlying all matrices

{
X

(
s(i)

)}
and{

Z
(
s(i)

)}
and interpolates each of such set of matrices while enforcing the orthogonality

constraint (6) as described below. For clarity, the proposed generalized interpolation method
is first described in the simple case where each eigensubspace is of dimension 1. In this case,
SX

ij ∈ G(1, N) and SZ
ij ∈ G(1, N).

For j = 1, . . . , n

• Step 0. Interpolate the eigensubspaces
{
SX

ij ∈ G(1, N)
}

using the generalized
interpolation algorithm described in Section 3.1 with M = G(1, N) and M′ the non
compact Stiefel manifold of non zero vectors of size N . The matrix logarithm and
exponential mappings associated with G(1, N) are given by(

IN −Xi0j

(
XT

i0jXi0j

)−1
XT

i0j

)
Xij

(
XT

i0jXij

)−1 (
XT

i0jXi0j

) 1
2 = UΣV T (Thin SVD)

(15)

LogSi0j
(Sij) = span

(
U tan−1(Σ)V T

)
(16)

and

Γ = UΣV T (Thin SVD) (17)

ExpSi0j
(χ) = span

(
Xi0j

(
XT

i0jXi0j

)− 1
2 V cos(Σ) + U sin(Σ)

)
, (18)

where Xij denotes the j-th column of X
(
s(i)

)
.

• Step 1. Perform a Gram-Schmidt procedure on XNRj to enforce the orthogonality
conditions XT

NRjZNRl = 0, l = 1, . . . , j − 1, where Zij denotes the j-th column of
Z

(
s(i)

)
.
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• Step 2. Interpolate the subspaces
{
SZ

ij ∈ G(1, N)
}

using the generalized interpolation
algorithm described in Section 3.1 with M = G(1, N) and M′ the non compact Stiefel
manifold of non zero vectors of size N .

• Step 4. Perform a Gram-Schmidt procedure on ZNRj to enforce the orthogonality
conditions XT

NRlZNRj = 0, l = 1, . . . , j − 1 and XT
NRjZNRj = 1.

• Step 5. Scale XNRj and ZNRj so that their two-norms are comparable to the two-norms
of {Xij} and {Zij}, respectively.

The extension of the above generalized interpolation algorithm to the case where each
eigensubspace {SX

ij } is of the same dimension kj > 1 is straightforward. The extension to
the case where kj is variable requires book keeping.

3.3.2. Arbitrary Galerkin Projection In this case, the proposed generalized interpolation
method is identical to that described in the previous section for kj = 1.

4. APPLICATIONS

Here, the proposed interpolation method is illustrated with two simple applications that
highlight its potential for adapting on-line a structural dynamics ROM to a new operating
point.

4.1. Case A1: a Mass-Damper-Spring System

The dynamic equations of equilibrium governing the mass-damper-spring system shown in
Figure 2 (and previously studied by Kim [15]) can be reduced by Galerkin projection and
written in state-space form as follows

ż(t, s) = H(s)z(t, s) + b(s), (19)

where

z(t, s) =
[
q̇(t, s)
q(t, s)

]
, H(s) =

[
−M?(s)−1

C?(s) −M?(s)−1
K?(s)

In 0n

]
, b(s) =

[
M?(s)−1

F ?(s)
0

]
(20)

and 0n denotes the zero matrix of size n, where n denotes the size of the reduced-order basis.
Each operating point of this mechanical system consists of 3p parameters corresponding to

the 3p values of the masses {mj}p
j=1, dampers {cj}p

j=1 and springs {kj}p
j=1. However for the

sake of simplicity, it is assumed here that: ∀j = 1, . . . , p, mj = m, cj = c, and kj = k, so
that each operating point is uniquely defined by the three parameters (m, c, k), only.

The system is here constituted of p = 24 mass-damper-spring units. Using the POD
method as described by Kim [15], four different reduced-order bases {Φi}3i=0 of dimension
n = 10 each are generated for the four different operating points {s(i)}3i=0 defined in
Table I. These bases are then used to precompute four different sets of reduced-order matrices{
M?

(
s(i)

)
, C?

(
s(i)

)
,K?

(
s(i)

)}3

i=0
. Table I also specifies a fifth operating point s(4) for which

no reduced-order data is precomputed.
Hence, the reduced-order matrices M?

(
s(4)

)
, C?

(
s(4)

)
and K?

(
s(4)

)
are next computed via

two different approaches: (a) using the generalized matrix interpolation method proposed in

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–16
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Figure 2. Mass-damper-spring system.

Table I. Five operating points of a mass-damper-spring system.

m c k

s(0) 0.3 0.6 0.7

s(1) 0.7 0.6 1.3

s(2) 0.9 0.6 1.0

s(3) 1.1 0.6 0.4

s(4) 0.8 0.6 1.1

this paper and (b) by generating first a new POD basis Φ4 for the operating point s(4) and
then projecting the full-order matrices M

(
s(4)

)
, C

(
s(4)

)
and K

(
s(4)

)
onto this basis. In both

cases, the matrix H(s(4)) is next constructed and its eigenvalues are computed. These are
graphically reported in Figure 3 which reveals that the eigenvalues of the interpolated ROM
matrix H(s(4)) are in good agreement with those of its directly constructed counterpart.

4.2. Case A2: the AGARD Wing 445.6

The AGARD Wing 445.6[16] is considered here and represented by an undamped (C = 0) finite
element (FE) model composed of 800 shell elements that generate 2646 degrees of freedom.
The geometry of the wing is parameterized by four shape parameters as shown in Figure 4:

the root chord croot, the tip chord ctip, the half span length
s̄

2
and the quarter-chord sweep

angle Λc/4.
A database of linear structural dynamics ROMs is constructed for this wing by precomputing

a set of 17 quintuplets
{
R

(
s(i)

)
=

(
M?(s(i)), C?(s(i)), K?(s(i)), X(s(i)), Z(s(i))

)}16

i=0
for 17

different design points {s(i)}16i=0 that can be viewed as the vertices and center of a hypercube
in a design space — that is, a subset of R4 — defined by

croot×ctip×
s̄

2
×Λc/4 ∈

[
c
(min)
root , c

(max)
root

]
×

[
c
(min)
tip , c

(max)
tip

]
×

[
s̄(min)

2
,
s̄(max)

2

]
×

[
Λ(min)

c/4 ,Λ(max)
c/4

]
,

(21)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–16
Prepared using nmeauth.cls



10 D. AMSALLEM, J. CORTIAL, K. CARLBERG AND C. FARHAT

Figure 3. Comparison of the eigenvalues of the reduced-order matrix H(s(4)) constructed using the
generalized interpolation method and those of its counterpart assembled from directly constructed

ROMs.

Table II. AGARD Wing 445.6: bounds of the parametric domain of interest.

c
(min)
root c

(max)
root c

(min)
tip c

(max)
tip s̄(min)/2 s̄(max)/2 Λ

(min)

c/4 Λ
(max)

c/4

17.568 in 26.352 in 11.6 in 17.4 in 24 in 36 in 38.66◦ 50.16◦

where the values of the upper and lower bounds are defined in Table II.
For each of these 17 sample design points, a ROM is constructed by the method of modal

decomposition and truncation based on the first five natural modes of this design. Hence, in
this case, {

R
(
s(i)

)
=

(
I5, 05, Ω2

5(s
(i)), X(s(i)), Z(s(i))

)}16

i=0
, (22)

where Ω2
5(s) denotes the diagonal matrix storing the squares of the first five natural circular

frequencies of the structural model of the wing for the design point s.
Here, the accuracy of the generalized interpolation method proposed in this paper is

assessed for three arbitrary design points (or configurations), s(a), s(b) and s(c). These design
configurations are shown in Figure 5, specified in Table III and referred to in the remainder
of this section as “test” design points for the proposed generalized interpolation method. In
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Figure 4. Geometrical parameterization of the AGARD Wing 445.6.

particular, these test design points are sufficiently “far” from the other design points for which
reduced-order data is precomputed and stored in the database. Indeed, Table III reports for
each parameter of each test design configuration the distance δµ

(
s(m)

)
, m = a, b, c, to the

precomputed design points defined as

δµ

(
s(m)

)
= min

0≤i≤16

∣∣µ(
s(m)

)
− µ

(
s(i)

)∣∣∣∣∣∣ max
0≤i≤16

µ
(
s(i)

)
− min

0≤i≤16
µ
(
s(i)

)∣∣∣∣ . (23)

More specifically, the 17 precomputed quintuplets of reduced-order matrices and mode shape
vectors (22) associated with the 17 precomputed design points are interpolated to generate
three similar quintuplets of reduced-order matrices and mode shape vectors associated with the
three design points s(a), s(b) and s(c), respectively. To this effect, the reader is reminded that
the proposed generalized interpolation method preserves the structure of a diagonal matrix
(see the Appendix in Section 6). Hence, it is guaranteed to deliver quintuplets of the form
given in (22) when applied to precomputed quintuplets of the same form and as such is a
viable alternative approach to the straightforward interpolation of scalar natural frequencies.

The accuracy of the interpolation is first assessed by comparing the natural frequencies and
mode shapes of each interpolated linear structural dynamics ROM with those of its directly
computed counterpart. For the mode shape vectors, the comparison is performed using the
Modal Assurance Criterion [17]. To this effect, the results reported in Table IV and Table V
reveal that the eigen characteristics of the interpolated ROMs are in good agreement with those
of the directly computed ROMs, thereby illustrating the accuracy of the proposed generalized
interpolation method.

Next, the accuracy of the proposed generalized interpolation method is assessed by
computing the dynamic response of each test design point of the wing to a sudden and
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12 D. AMSALLEM, J. CORTIAL, K. CARLBERG AND C. FARHAT

Figure 5. “Test” design points: shaded geometry corresponds to the wing configuration for the values
of the shape parameters at the center of the hypercube and geometry shown in wireframe corresponds

to the “test” wing configuration.

Table III. “Test” design points.

croot ctip s̄/2 Λc/4

s(a) 25.484 in 15.715 in 32.852 in 42.21◦

δcroot

`
s(a)

´
= 0.099 δctip

`
s(a)

´
= 0.21 δs̄/2

`
s(a)

´
= 0.24 δΛc/4

`
s(a)

´
= 0.19

s(b) 23.414 in 13.549 in 24.200 in 47.76◦

δcroot

`
s(b)

´
= 0.17 δctip

`
s(b)

´
= 0.16 δs̄/2

`
s(b)

´
= 0.02 δΛc/4

`
s(b)

´
= 0.21

s(c) 22.056 in 17.398 in 26.915 in 42.31◦

δcroot

`
s(c)

´
= 0.01 δctip

`
s(c)

´
= 3× 10−4 δs̄/2

`
s(c)

´
= 0.24 δΛc/4

`
s(c)

´
= 0.18

Table IV. Comparison of the first five natural frequencies (in Hz) of the three “test” design points
delivered by the generalized interpolation method with their counterparts obtained from direct ROM

constructions.

Test design point (a) Test design point (b) Test design point (c)

Mode Direct Interp. Relative Direct Interp. Relative Direct Interp. Relative
ROM ROM discrepancy ROM ROM discrepancy ROM ROM discrepancy

1 9.11 9.00 1.2 % 14.5 14.8 2.1 % 12.3 12.8 4.1 %
2 35.4 35.1 0.8 % 51.7 53.4 3.3 % 41.2 42.5 3.2 %
3 44.7 43.9 1.8 % 72.8 73.8 1.4 % 61.9 63.9 3.2 %
4 88.6 87.7 1.0 % 128 131 2.7 % 107 110 2.8 %
5 117 117 0.0 % 186 186 0.0 % 158 164 3.7 %
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Table V. Modal Assurance Criterion (MAC) applied to the interpolated mode shapes and their
counterparts obtained from direct ROM constructions.

Mode MAC for test design point (a) MAC for test design point (b) MAC for test design point (c)

1 1.0000 1.0000 1.0000
2 0.9999 0.9994 0.9985
3 0.9999 0.9998 0.9993
4 0.9995 0.9995 0.9986
5 0.9702 0.9504 0.9962

Table VI. Relative discrepancies between the maximum amplitude of the vertical displacement at the
trailing edge tip predicted by the complete FEM, the directly computed ROMs and the interpolated

ROMs.

Test design point (a) Test design point (b) Test design point (c)

Direct ROM Interp. ROM Direct ROM Interp. ROM Direct ROM Interp. ROM

1.87% 8.67% 2.77% 7.77% 3.30% 7.98%

uniformly distributed vertical load. For this purpose, three simulations are performed for
each test design configuration using: (a) the full-order FEM dynamic model, (b) a ROM
counterpart directly built from the first five natural modes of this model and (c) the ROM
counterpart computed by interpolating the 17 quintuplets stored in the ROM database. In all
cases, the governing equations of dynamic equilibrium are time-integrated by the trapezoidal
rule. Figure 6, Figure 7 and Figure 8 report for the test design points s(a), s(b) and s(c),
respectively, the computed time-histories of the vertical displacement at the trailing edge tip
point of the wing using each of the three different computational models. The reader can
observe that in each case, the interpolated ROM delivers good accuracy. Indeed, Table VI
shows that in each case, the relative discrepancy between the maximum amplitudes of the
dynamic responses predicted by the full-order FEM and interpolated ROM is of the order of
8% only. For comparison, the relative discrepancy between the maximum amplitudes of the
dynamic responses predicted by the full-order FEM and directly computed ROM is of the
order of 3%.

5. CONCLUSIONS

A rigorous method for interpolating parameterized linear structural dynamics reduced-order
models (ROMs) has been presented. The main purpose of this method is to construct in real-
time a new ROM for every new set of values of the given parameters. This method operates only
on the ROMs themselves and not on the underlying full-order models. Hence, it is amenable to
an on-line implementation. Its robustness and accuracy have been demonstrated for the fast
dynamic characterization of a parameterized mechanical system and prediction of the transient
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Figure 6. Test design point s(a): transient responses predicted by the complete FEM model, the directly
computed ROM and the interpolated ROM.

response of another one to a given input. This interpolation method is particularly appealing
for structural dynamics optimization procedures in which ROMs are used as surrogate models.

6. APPENDIX

Here, an important proposition characterizing the proposed generalized interpolation method
in a tangent space to a matrix manifold is proven. For this purpose, it is assumed that
the generalized interpolation method is equipped with a standard multi-variate interpolation
algorithm that approximates constant functions exactly (for example, see[18]).

Proposition. Let S =
(
s(0), s(1), . . . , s(NR−1)

)
denote a set of NR operating points

and let
{
Ri = (In, C?

i , Ω2
n,i)

}NR−1

i=0
denote a corresponding set of NR triplets representing

NR parameterized linear structural dynamics modal ROMs of size n << N each, where
In = I

(
s(i)

)
∈ Rn×n is the identity matrix of size n, C?

i = C?
(
s(i)

)
∈ Rn×n is positive

definite and Ω2
n,i = Ω2

n

(
s(i)

)
∈ Rn×n is a diagonal matrix with n positive entries representing
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Figure 7. Test design point s(b): transient responses predicted by the complete FEM model, the directly
computed ROM and the interpolated ROM.

the squares of n natural circular frequencies

Ω2
n,i =


ω2

1,i =
(
ω1

(
s(i)

))2
0

ω2
2,i =

(
ω2

(
s(i)

))2

. . .

0 ω2
n,i =

(
ωn

(
s(i)

))2

 . (24)

Given a new operating point s(NR) /∈ S, the generalized interpolation method described in
Section 3.1 of this paper delivers a triplet of the form RNR

= (In, C?
NR

, Ω2
n,NR

), where Ω2
n,NR

is a diagonal matrix with n positive entries.
Proof. In this case, the step-by-step application of the generalized interpolation method

presented in Section 3.1 to the set of NR SPD matrices I
(
s(i)

)
= In gives the following results.

• Step 0. I
(
s(i0)

)
= In is chosen as a reference element of SPD(n).

• Step 1. Each element I
(
s(i)

)
= In is obviously close to itself and therefore is mapped to

the matrix Γi of TIn
SPD(n) as follows

Γi = LogIn
(In) = log

(
In
−1/2InI−1/2

n

)
= log (In) = 0n (25)
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Figure 8. Test design point s(c): transient responses predicted by the complete FEM model, the directly
computed ROM and the interpolated ROM.

where 0n denotes the zero square matrix of size n.
• Step 2. Each entry of the matrix ΓNR

associated with the target operating point s(NR)

is computed by interpolating the corresponding entries of the matrices {Γi = 0n}NR−1
i=0

associated with the operating points {s(i)}NR−1
i=0 . Since a standard interpolation algorithm

approximates exactly a constant fonction,

ΓNR
= 0n. (26)

• Step 3. The matrix ΓNR
∈ TIn

SPD(n) is mapped to a matrix M?
NR

∈ SPD(n) as follows

M?
NR

= ExpIi0
(ΓNR

) = In
1/2exp(ΓNR

)In
1/2 = exp(0n) = In, (27)

which proves the first part of the above proposition.

Similarly, the step-by-step application of the generalized interpolation method presented in
Section 3.1 to the set of NR SPD matrices Ω2

n,i (24) gives the following results.

• Step 0. Ω2
i0

is chosen as a reference element of SPD(n).

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–16
Prepared using nmeauth.cls



A METHOD FOR INTERPOLATING ON MANIFOLDS STRUCTURAL DYNAMICS ROMS 17

• Step 1. Each matrix Ω2
i that is sufficiently close to Ω2

i0
is mapped to a matrix Γi of

TΩ2
i0

SPD(n) as follows

Γi = LogΩ2
n,i0

(Ω2
n,i)

= log
(
Ω2

n,i0

−1/2
Ω2

n,iΩ
2
n,i0

−1/2
)

= log




ω−1
1,i0

0
ω−1

2,i0
. . .

0 ω−1
n,i0




ω2
1,i 0

ω2
2,i

. . .
0 ω2

n,i




ω−1
1,i0

0
ω−1

2,i0
. . .

0 ω−1
n,i0




= log





(
ω1,i

ω1,i0

)2

0(
ω2,i

ω2,i0

)2

. . .

0
(

ωn,i

ωn,i0

)2





=


2 log

(
ω1,i

ω1,i0

)
0

2 log
(

ω2,i

ω2,i0

)
. . .

0 2 log
(

ωn,i

ωn,i0

)

 . (28)

• Step 2. Each entry of the matrix ΓNR
associated with the target operating point s(NR)

is computed by interpolating the corresponding entries of the matrices {Γi} ∈ Rn×n

associated with the operating points {s(i)}. Since each matrix Γi (28) is in this case
diagonal, ΓNR

is also diagonal and can be written as

ΓNR
=


α1 0

α2

. . .
0 αn

 . (29)

• Step 3. The matrix ΓNR
∈ TΩ2

n,i0
SPD(n) is mapped to a matrix K?

NR
on SPD(n) as
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follows

K?
NR

= ExpΩ2
n,i0

(ΓNR
)

= Ω2
n,i0

1/2
exp(ΓNR

)Ω2
n,i0

1/2

=


ω1,i0 0

ω2,i0

. . .
0 ωn,i0




exp(α1) 0
exp(α2)

. . .
0 exp(αn)




ω1,i0 0
ω2,i0

. . .
0 ωn,i0



=


ω2

1,i0
exp(α1) 0

ω2
2,i0

exp(α2)
. . .

0 ω2
n,i0

exp(αn)



=


ω2

1,NR
0

ω2
2,NR

. . .
0 ω2

n,NR

 = Ω2
n,NR

,

which proves the second and last part of the above proposition.

ACKNOWLEDGEMENTS

This material is based upon work supported partially by the Air Force Office of Scientific Research
under Grant F49620-01-1-0129 and partially by the National Science Foundation under Grant CNS-
0540419. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the Air Force Office of Scientific
Research or the National Science Foundation.

REFERENCES

1. Guyan RJ. Reduction of stiffness and mass matrices. AIAA Journal 1965; 3(2):380.
2. Flanigan CC. Development of the IRS component dynamic reduction method for substructure analysis.

AIAA Paper 1991-1056 1991.
3. Holmes P, Lumley J, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry.

Cambridge University Press, 1996.
4. Kerschen G, Golinval JC, Vakakis AF, Bergman LA. The method of proper orthogonal decomposition for

dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear dynamics
2005; 41:147–169.

5. Amabili M, Sarkar A, Paidoussis MP. Reduced-order models for nonlinear vibrations of cylindrical shells
via the proper orthogonal decomposition method. Journal of Fluids and Structures 2003; 18(2): 227–250.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 0:1–16
Prepared using nmeauth.cls



A METHOD FOR INTERPOLATING ON MANIFOLDS STRUCTURAL DYNAMICS ROMS 19

6. Han S, Feeny BF. Enhanced proper orthogonal decomposition for the modal analysis of homogeneous
structures. Journal of Vibration and Control 2002; 8(1):19–40.

7. Leibfritz F, Volkwein S. Reduced-order Output Feedback Control Design for PDE Systems Using Proper
Orthogonal Decomposition and Nonlinear Semidefinite Programming. Linear Algebra and its Applications,
Special Issue on Order Reduction of Large-Scale Systems 2004; 415(2–3):542–575.

8. Georgiou IT, Schwartz IB. Dynamics of large scale coupled structural/mechanical systems: a singular
perturbation/proper orthogonal decomposition approach. SIAM Journal of Applied Mathematics 2002;
59(4):1178–1207.

9. Hinze M, Volkwein S. Proper orthogonal decomposition surrogate models for nonlinear dynamical systems:
error estimates and suboptimal control. In Dimension Reduction of Large-Scale Systems, Lecture Notes
in Computational Science and Engineering, Springer 45, 2006; 261–306.

10. Danowsky B, Chrstos J, Klyde D, Farhat C, Brenner M. Application of multiple methods for aeroelastic
uncertainty analysis. AIAA Paper 2008-6371, AIAA Atmospheric Flight Mechanics Conference and
Exhibit , Honolulu, Hawaii, August 18-21, 2008.

11. Amsallem D, Farhat C. An interpolation method for adapting reduced-order models and application to
aeroelasticity. AIAA Journal 2008; 46(7):1803–1813.

12. Epureanu BI. A parametric analysis of reduced order models of viscous flows in turbomachinery. Journal
of Fluids and Structures 2003; 17(7):971–982.

13. Amsallem D, Cortial J, Farhat C. On-demand CFD-based aeroelastic predictions using a database of
reduced-order bases and models. AIAA Paper 2009-800, 47th AIAA Aerospace Sciences Meeting including
The New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 5-8, 2009.

14. Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computation. International Journal
of Computer Vision 2006; 66(1):41–66.

15. Kim T. Frequency-domain Karhunen-Loeve method and its application to linear dynamic systems. AIAA
Journal 1998; 36(11):2117–2123.

16. Yates EC. Agard standard aeroelastic configurations for dynamic response, candidate configuration I,
-Wing 445.6. NASA TM-100462 1987.

17. Ewins DJ. Modal Testing, Theory, Practice and Application (2nd edn). Research Study Press LTD, 2000.
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