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A Method for Interpolating Scattered Data
Based Upon a Minimum Norm Network*

By Gregory M. Nielson

Abstract. A method for interpolating scattered data is described. Given (x,, y¡, zt),i = \,...,N,
a bivariate function S with continuous first order partial derivatives is defined which has the
property that S(x¡, y¡) — z¡, i — 1,.. .,N. The method is based upon a triangulation of the
domain and a curve network which has certain minimum pseudonorm properties. Algorithms
and examples are included.

1. Introduction. In this paper, we present a new method for interpolating scattered
data. Given the data (jc,, yt, z¡), i = 1,...,N, we describe the construction of a
bivariate function S which has continuous first order partial derivatives and
SÍXj, y¡) = z¡, i = 1,...,N. The method consists of three separate steps:

(i) Triangulation. The points V¡ = (je,, yt), i = 1,...,N, are used as the vertices of
a triangulation of a domain D.

(ii) Curve Network. The approximation S and its first order partial derivatives, Sx
and S , are defined on the subset consisting of the union of all edges.

(iii) Blending. S is extended to D by means of a blending method which will
assume arbitrary position and slope on the boundary of a triangular domain.

The basic idea of an interpolant which is defined in a piecewise fashion over
triangles is not new. Both Lawson [7] and Akima [1] have described such methods.
Lawson's paper contains a good discussion of many of the aspects of triangulating
the convex hull of V¡, i = 1,... ,N. Both of these methods make use of a discrete C'
interpolant (i.e., a C1 finite element) for each triangle followed by a local method for
estimating certain partial derivatives. Even though our method is based upon the
approach of a curve network followed by the use of a triangular blending (trans-
finite) interpolant, the particular method we eventually propose can be viewed as an
assembly of discrete C1 interpolants along with a technique for estimating partial
derivatives.

2. The Curve Network. We assume N > 3 and that the points V¡, i = 1,...,N, are
not collinear. Let TjJk denote the triangle with vertices V„ V¡ and Vk, i =£j ¥= k ¥= i.
The list of triple indices which determines the triangulation is denoted by J, so that
D = Ut. ke/ Tjjk. Let e¡j represent the line segment with endpoints Vi and V}, and let
Ne = [ij: i, j £ {a, ß, y), aßy G /} be a list of the indices representing the edges of
the triangulation. In terms of this notation, the domain of the curve network is
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254 GREGORY M. NIELSON

E = U. eAr e,j. The derivative normal to an edge e¡, is given by

dF _ (yj-yt) dF    (xj-x,) dF
dnu~    ||e„. ||     a* ||e„ ||      3 v '

where 11 e,, 11 is the length of e,,. The derivative along an edge is given by

dF    (xj-x,) M   (yj-y.) dF
de,j lie,-, II      3* lie,.,. II     dy

Therefore,

dF _ (xj - xt)   8F     (yj-y,)   dF
dx lie,.,-II      3e,7 ||e,.,.||      3«,./

dF_ (yj-y,) dF    (xj-x,) a/r
dy        lleiy||     3e,7 ||e,.,.||      3«,/

and so it is clear that if S and 3S/3«,, are known on each edge, the information
required for step (ii) is available. It is more convenient to specify S and its normal
derivatives on E since these values can be defined independent of each other at all
points except the vertices. We will first define S on E, but prior to this, we review
some material concerning univariate cubic splines which motivates our particular
choice of the curve network.

Given the data (i,., s¡), i= l,...,n, where tx < t2 < ■■■<tn, the univariate
natural spline of interpolation can be characterized (cf. de Boor and Lynch [4]) as
the unique solution to the problem

Min     h fit)]2 dt,
(2.1) /-"['..'J Jtx

subject to:/(r,) = s¡,

where H[tx, tn] = {/: /£ C[tx, t„], f is absolutely continuous, /" £ L2[tx, /„]}.
From this point of view, the mathematical spline is an analogue of the physical
spline. As a result of this minimization, it can be shown that s is a piecewise cubic
polynomial which has a continuous second derivative and s"itx) = s"itn) = 0.
Towards the definition of a curve network with an analogous characterization, we
introduce C[E] = [F: F is the restriction to E of some C1 function defined on D
and the univariate function obtained as the restriction of F to e, is an element of
H[eu]}. Analogous to the minimum pseudonorm property of univariate splines, we
consider the problem of finding an interpolating curve network which minimizes

(2.2) o(F)=   2   j d2F
dSij,

yeiv,    eij[

where ds,, represents the element of arc length on the curve consisting of the line
segment e,,.

We find it convenient to view each F £ C[E] as a collection of univariate
functions

(2.3) fIJ(t) = F((l-t)V¡ + tVJ),       ij£Ne,0<t<l.
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INTERPOLATING SCATTERED DATA 255

With the following parametrization of the curve e,,:

xit) = (1 - t)x, + txj,      y(t) = (1 - t)y, + tyj,

and the fact that

J—f' = -^
U.W2'J      de2

we have that

o(F)=   2   f

=     1

m
i     n

J[x'(t)]2 +[y'(t)]2 dt

¡jŒNe    »cije,-..      •'oÍW'ffdt.

Theorem 2.1. Let S £ C[F] be the unique piecewise cubic network with the
properties that SiV¡) = z¡, i = 1,... ,N, and

(2-4)      2
(xj - x,)

y'6/v,

(yj-y,)

ijeN,    \\e,j\

(xJ-xi)Sx(Vi) + (yJ-yi)Sy(V,)

+ \ixj - xMVj) +\(yJ-yl)Sy(Vj) + \(z, - Zj)

(xJ-x,)Sx(Vi) + (yj-y1)Sy(Vl)

+ Uxj - xMVj) +\(yJ-yi)Sy(Vj) + \(z, - z,)

0,

= 0,

wAere

N¡ = (if: e, is the edge of the triangulation with the endpoint V¡).

Then, among all functions F £ C[E], FiV¡) = z¡, i = 1,.. .,N, the function S uniquely
minimizes a(F).

Proof. We first define the inner product

1
<F,G)=   2 f f/;it)g;'jit)dt

ij<ENt   MC,-,!!     '0

and note that

a(F) -aiS) = (F - S, F - S)+ 2(S, F - S).

For the moment, we assume that (2.4) has a solution and write

su(t) = t2(3-2t)zj + (l-t)2(2t+l)zi

+ t(l - t)2[(Xj - Xl)Sx(V/) + (yj-yfciV,)]

+ t2(t-l)[(xJ-x,)Sx(VJ)+(yJ-yi)Sy(VJ)].
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256 GREGORY M. NIELSON

If Fis any element of C[E] which interpolates, then

£'ij(t)[fi(t)-s?j{t)]dt

= tin - </]|¿ - *V [fij - yl + ////(')[/,,(') - MO] dt
= s?j[fij-s'u]\o-

Since

S;;(l) = 6[z,. - zj] + 2[(xj - xt)Sx(V,) + {yj-yt)S,(Vt)]

+4[(xJ-xl)Sx(V])+(yJ-yi)Sy(VJ)},

s'/jiO) = 6[z, - z,] - 4[(xj - xASx(V,) +(yJ-y,)Sy(Vl)]

-2[(xJ-x,)Sx(VJ)+(yJ-y<)Sy(VJ)],

we conclude that

(2-5)  2   T\1fs"(t)[f"(t)-s"(t)]dt
ijeNe  II ̂vII    JQ

= 1 \ 1   ITTlK*, - *,) + 2(^ - xJiSJLVj) + 2Sx(Vt))
i=l lye/v,   "eij"

+ 2(yJ-y,)(Sy(VJ) + 2Sy(Vi))}

x [(*y-x,) [fx(v,) - sx(v,)] +(yj-y,)[Fy(v,)-sy(v,)]]^.

The change in summation is allowable because s'/Al) = i,','(0). This last equation
points out the fact that (S, F — S) is independent of whether if or ji is listed in Ne.
This is the reason we were not definite about this before. Applying (2.4) to (2.5), we
have that

(2.6) (S, F-S)=0,
and so

o-(F) -aiS) = aiF- S) > 0
for any curve network F such that FiV¡) = z¡. This establishes the minimum
property assuming that S exists. The existence of S requires a solution of the 2 A/
linear equations of (2.4). We will show that this system has a solution by showing
that the homogeneous system (z, = 0, i = 1,...,N) has only the trivial solution.
This argument will also establish the uniqueness of S. Let S be the piecewise cubic
curve network associated with the solution SxiVf), SviV¡), i = 1,...,N, of the
homogeneous system. The same Une of reasoning which led to (2.6) can be used to
conclude that

(S,S)=0.
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INTERPOLATING SCATTERED DATA 257

That is, we replace both S and F - S with S. Therefore, /O'[^(0]2 dt = 0, ij £ Ne,
which implies that s,¡ is linear. But s,,(0) = s,,(l) = 0, and so

(xj - x,)SxiV,) + ( v, -y,)S,(V,) = 0,       ij EN„i=l,...,N.

Since each V¡ is the vertex of some nondegenerate triangle, this is sufficient to imply
that SxiV¡) = SyiV¡) — 0, i = 1,...,N, and so the proof is complete.

Corollary 2.2. // iAe data (x,, y¡, z¡), i = 1,...,N, lie on a plane, then the curve
network S of Theorem 2.1 will also lie on this plane.

Proof. Let P represent the plane, and let

S = P\E
be the restriction of this plane to the edges. Then S £ C[E], S interpolates and
aiS) = 0. Since the minimum norm network is unique, it must be that case that
S = S.

In order to complete the information required by step (ii), we need to define the
normal derivative on each edge. We make a particularly simple choice here and take
the normal derivatives to be linear. That is,

dS
3",, {(l-t)V, + tVj) = (l-t) (yj-yi)sx(v,)-(xj- xt)sy(v,)

+t
(yJ-y,)sx(vj)-(xj-x,)sy(vj)

AC

3. The Blending Method. We now discuss the choice of the triangular blending
method to be used to extend the curve network to the domain D. For these purposes,
we let T represent an arbitrary triangle with vertices V¡, i = 1,2,3, and b¡ = A,(x, y),
i = 1,2,3, denote the barycentric coordinates given by

x = bxxx + b2x2 + b3x3,

y = bxyx + b2y2 + b3y3,

1 = bx+ b2 + b3.

Let/={(1,2,3), (2,3,1), (3,1,2)}.
The first method of approximation to assume predescribed values of a function

and its first order derivatives on the boundary of a triangle is due to Barnhill,
Birkhoff and Gordon [3]. This method requires the specification and compatibility
of the cross partials:

d2F   ,„, d2F
de^eij (V,) deijde,k

iV,),        (i,j,k)Gl.

While those values are obtainable from the curve network information, in general
they will not be compatible.

In fact,

325
3e„3e,¿ (Vi) = s'i'jiO)ckji + ajidkJi,       (i,j,k)Gl,
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258 GREGORY M. NIELSON

where

«»„ = (ym-y»)(sx(vm) - sx(vn)) + (x„ - xn)(sy(v„) - syivm)),

_ {x, - x„)(xm- xn) + (y,-y„)(ym-yn)

Wenl\\\\emne

and

(x¡~ xn)(ym-yn) -(y,-yn)(xm-x„)

Wenl\\\\emnV

Therefore 32S(F;)/3e,,.3e,^ will involve z,, SxiVj) and SyiVj), while d2SiVi)/deikdeIJ
will involve zk, SxiVk) and SyiVk), and so in general these two partíais will not be
equal. A recently developed method which does not explicitly involve or require the
compatibility of the cross partíais is described in [9]. This method is based upon the
combination of three interpolants each having certain miminum norm properties.
When the boundary values given by the curve network are substituted into this
triangular blending method we obtain the following nine-parameter C1 interpolant
defined over T.

(3.1)        STix, y)=      2     S(^.)[ft,2(3 - 2b,) + 6wb,(bkaiJ + 6,«,J]
0,j,k)El

+ S'k(Vi)[bfbk + wb,(3bkaIJ + bJ-bk)]

+ S,'(I/.)[a,2A, + uA(36,a„ + bk - A,)],

where

S;(Vt) = (xj - x,)SxiVt) + ( v, - y,)SyiVt),
b\b2b3

w —--
bxb2 + bxb3 + b2bi '

lle,.,||2+||e,J|2-||e,,||2

2||e,J|2

If SiJk is used to represent the same discrete interpolant for the triangle Tjjk, then
the final interpolant can be represented as

S(x,y) = Sljk(x,y)    for (x, y) £ TiJk.

Concerning the degree of algebraic precision of S, it can be shown that ST will
reproduce quadratics but the curve network is limited to linear precision and so the
final interpolation operator has precision of degree one.

4. Algorithms and Examples. The first step in applying the approximation S
requires a triangulation of D. In those cases where D is the convex hull of V¡,
i = 1,...,N, we have incorporated an algorithm described by Lawson [7] which
selects a particular triangulation on the basis of the max-min angle criterion. The
program that implements this algorithm produces information describing the
boundary along with three arrays «,, n2 and n3, each of length Nn which form a list
of the vertices of each triangle of the triangulation. An example of a triangulation
produced by this program is given in Table 1 and Figure 1.
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Data
Table 1

Boundary Triangulation

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.21

.46

.83

.97

.67

.53

.28

.07

.06

.25

.48

.67

.77

.90

.66

.50

.32

.25

.46

.57

.75

.94

.46

.18

.14

.93

.89

.54

.71

.74

.77

.70

.43

.56

.61

.54

.45

.31

.35

.47

.44

.31

.33

.20

.25

.05

.07

.19

.06

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

»i(0

7
1
7
7
2
6

10
11
17
11
11
6
2
5

17
17
19
16
12
2

12
12
18
18
23
4

15
15
13
24
19
23
13
3

20
22
4

23
14
4

«2(0

1
7
8

10
7
7
8

10
10
17
16
11
6

11
9

19
17
19
4
5

16
15
9

23
18
12
19
20
15
9

23
24
21
5

22
20
13
25
21
14

«3(0

2
10
11
6

11
9

17
9

16
12
5
5

12
18
16
18
15
5
3

15
13
24
19
24
13
20
21
21
25
20
25
14
4

21
23
14
22
22
22

The next step of our method requires the solution of (2.4). The coefficient matrix
of this linear system is in general quite sparse, but the structure is sufficiently
complicated to eliminate the use of a direct method which takes advantage of this
sparseness. We have found that an iterative method based upon the following
equivalent form of (2.4) works quite well:

Sx,
Sy, A

2 auSxj+ l] ßijty - ¿Xi
ij£N¡ i/'eJV,

2 ßu^ + 2 y.jSyj - zy¡
ijBNi y G A¡

i=l,...,N,
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260 GREGORY M. NIELSON

0.00 0   12 0.25 0.37 0.50
X-AX I S

Figure 1

0.62 0.75 0.87 l.00

where Sx, = S^),Sv, = S^)

_ (Xj-x,)2

and

211 e,. |3     ' «/ = 2   2 «ij,
ijeN¡

(xj-xMyj-yj)
P" 2||e,,||3 A yÍ/,J

ViJ
(yj-y,)2

211 e„. II3   ' y,■ = 2   S  Yiy,
yew,

7v _ 3    v    (z,-z,)(x,-x,)

Z i/erç Ile,.,.||3

"      2y4, llevll>
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INTERPOLATING SCATTERED DATA 261

For an initial approximation, we first obtain the first order partial derivatives of
each plane which interpolates over each triangle. Then for each vertex, we compute
the average of these derivatives for each triangle that involves this vertex. This
amounts to the following computation:

Sx?
1 fiJk

Sy?
l 8ijk

^     A
ijkeM,      IfkI Ml ,^M, AIJk' "       \Mi

where M¡ = [abc: Tabc is a triangle with vertex V¡),

| M¡ |    is the number of elements of M,,

ink = (jj - yk)zi + (yk- yt)'j + (y¡- jyK.
Sijk = (xk - Xj)z¡ + (x, - xk)Zj + (x, - x,)z,.,   and

Aijk = (xi - Xj)(y, -yk)~ ( v, - yj)(x, - xk).

The first pass of the following algorithm computes the initial values Sx?, Sy°,
i= 1,...,N, as well as a¡, ßt, y¡, Zx¡, Zy¡, i= 1,...,N, which remain constant
throughout the iteration process.

For/= l,...,7Y„do:
For (/', /, k) £ /, do:

a = ni(l),b = nJ(l),c = nk(l)

\Ma\ = \Ma\+l

Sxa = Sxa + Jabc/A abc

Sy° = Syfl° + gabc/Aabc

«« = «!+ «ab + «ac

ßa = ßa + ßab + ßac

ya = ya + y ab + %c

Zx„ Zxa + î
Tab(xb - Xa)(zb - Za)        V(XC-XJ(Z£. -Zj

-ab'

\_Zya = Zya + -
Tab(yb-ya)(Zb-Za)    ,    Tac(yc-ya)(Zc-Za)

For i = 1,. ..,N, do:
Sx?

Sx?

Sy?

I A/..

sy!0
\M,\

o = «,. y, - ßf
-i _ y¡a- -J

ß~x = ±

-i _ «i
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262 GREGORY M. NIELSON

We have used the notation

«ab = Tab«ab,     ßab = Tabßab,     ^ab ~ TafcYafc'

where

1        if Va and Vb are on the boundary,
1/2    otherwise.

The factor of tab is necessary because we go sequentially through the list of triangles
causing each interior edge to be processed twice.

The iterative part of the algorithm can be described as follows:

For/ = 1,...,7V, do:
La,. = Zx,,£, = Zy,.

For n — 0,1,..., until satisfied, do :
For / = l,...,Nt, do:

For(/,/, k) G I, do:
a = niil),b = njil),c = nkil)

8a = oa -i[äabSx»b + âacSx"c + ßabSynb + ßacSyc"]

*a = *« - \[ßabSxnb + ßacSx»c + yabSy"b + yacSy?]

For/ = 1,...,N, do:
sxrx = «j% + ßr\
Syr+x=ß-xS, + y-xe,

l_  l_S,. = Zx,,e, = Zy,.

In Figure 2, we show an example of the results of the above algorithm. The values z,,
i = 1,...,N, are obtained from the function .25EXP(-16((x - .5)2 + ( v - .5)2))
and the triangulation is that of Figure 1. In practice, we have found that, on the
average, about a dozen iterations will yield five or six digits of accuracy. Although
they are rare, we have encountered cases that take as many as eighteen and as few as
one to obtain this same accuracy.

The final step requires the evaluation of S given by (3.1) on the proper triangle. In
order to obtain a perspective plot of the surface, we evaluate the approximation on a
uniform rectangular grid. These values are stored in rectangular array S with

S(i, j) = S(xit y¡),       i= l,...,NR,j=l,...,NC,

where

xt = XL+ (/- 1)DX,
XH- XLDX = NR - 1

yj

and   DY

YL + (j-l)DY,
YH- YL
NC- 1

We take the approximation to be zero for those points which lie in the display
rectangle [XL, XH] X [YL, YH] but outside D. Rather than stepping through the
values of (x,, yj) and asking which triangle these points lie in, our algorithm goes
through the list of triangles and computes the values of S(/, /) which are defined by
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INTERPOLATING SCATTERED DATA 263

a given triangle. More precisely,

For/= \,...,Nt, do:
a = «,(/), b = n2i¡),c = n3i¡)

IL = (min(xa, xb, xc) - XL)/DX

JL = (min(ya, yb,yc)~YL)/DY
IH = (max(xa, xb, xc) - XL)/DX

JH=(max(ya,yb,yc)-YL)/DY
For i = IL, IL + 1,...,IH, do:

Forj = JL,JL+ I,...,JH, do:
x = XL + (i- 1)DX
y=YL+(j-l)DY
Solve x = bxxa + b2xb + b3xc

y = b2ya + b3yb + b3yc
l=bx + b2 + b3

to obtain A,, b2, b3
L If A, > 0, i = 1,2,3 then S(i, j) sabc(x, y)

Figure 2
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264 GREGORY M. NIELSON

In Figure 3a, we show the final interpolant based upon the curve network of
Figure 2. For comparison, in Figure 3b we include the interpolant which uses the
initial derivatives (Sx?, Sy?), i= 1,...,N.

Our next example is comparable to one discussed by Lawson (cf. [7, Figure 7, p.
175]). The values z¡, i = 1,... ,n, are obtained from the function

EXP(-8[(x-.5)2 + (v-.5)2]).

The 26 data points and a contour plot of the interpolant are shown in Figure 4a. The
contours are at the values S(x, y) = .2, .4, .6 and .8. A plot of the interpolant using
the initial values for the derivatives is shown in Figure 4b.

Figure 3a
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INTERPOLATING SCATTERED DATA 265

Figure 3b

Our third example involves a nonconvex, multiply-connected domain and is
included mainly to point out the possibility of using such domains with the present
method. Further discussion on the problem of triangulating this type of domain and
an algorithm can be found in [8]. In Figure 5a we show the triangulation and the
final interpolant. The values z,, /' = 1,...,N, are obtained from the same function as
used in the previous example. Figure 5b contains a plot of the interpolant using the
same data but over a triangulation of the convex hull.

The last example is based upon data provided by the United States Geological
Survey [6]. The ordinates represent elevations of a mostly subterranean formation of
granite called Hawk Rock which is located in the southeastern desert of Arizona. We
found this example particularly interesting because of the unique configuration of
the data. Due to the techniques of collection, this data consists of subsets which lie
on certain line segments. Figures 6a and 6b show these lines of data along with the
triangulation of it. Two views of the interpolant are shown in Figures 6c and 6d.
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u->

x
<c
I   o

"O.OO 0.20 0.40 0.60 0.80 1 . 00

X-AXIS

Figure 4a

co

x
<c
I  o

0.00 0. 20 0.40 0.60
X-AX ! S

0.80 00

Figure 4b

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTERPOLATING SCATTERED DATA 267

0.00 0. 20 0.40 0.60
X-AXIS

1 .00

Figure 5 a

'0.00 0.20 0.40 0.60

X-AX IS
0.80 .00

Figure 5b
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268 GREGORY M. NIELSON

HAWK ROCK SEISMIC REFRACTION LOCATION MAP

Figure 6a
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interpolating scattered data 269

0.00 0.12 0.21 0.3/ 0.50 062
X-AX 1 S

0   75 0.67 i . 00

Figure 6b
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Figure 6c

■¿F-
m

Figure 6d
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interpolating scattered DATA 271

Recently, Franke [5] has reported on the results of a project devoted to the
comparison of some 29 methods for interpolating scattered data. Included in this
report are the results of our implementation of the present method which is based
upon the max-min angle optimization of the triangulation of the convex hull, the
algorithm of this section for computing the minimum norm network and the
algorithm of this section for evaluating the interpolant on a rectangular grid. In
addition to certain assessments of the fitting characteristics of each of the methods,
Franke's report includes storage requirements and timing results. The storage
requirements tabulated by Franke are given in terms of additional storage required
beyond that needed for the data (x,, y¡, z¡), i = 1,...,N, and the output array of
evaluations. For the implementation of the present method, this amounts to ap-
proximately 32N. Franke's timing results are based on the use of an IBM 360/67.
We have run all of our examples on a UNI VAC 1100/42. In Table 2 we give some
approximations of the running time (in seconds) required for the three steps of our
method. All programs mentioned have been written in FORTRAN.

Table 2

Minimum Evaluation
Norm 40 X 40 80 X 80

N Triangulation Network Grid Grid

25 .10 88 .35 1.16
50 .35 2.14 .85 2.88

100 1.24 4.18 1.64 5.56
200 4.65 7.41 3.21 11.32
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