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ABSTRACT Satellites need batteries to provide energy when operating in shadow regions, and lithium-ion

batteries have become the batteries of choice for most satellites due to their high energy density, low

self-discharge rate, and long cycle life. When a satellite battery is working in outer space, its capacity

will gradually decrease as the number of cycles increases, and a certain degree of capacity recovery will

occur. Due to the excellent mapping relationship between the discharge cutoff voltage and the capacity

degradation of lithium-ion batteries and the fact that the sample entropy (SampEn) can sensitively capture

local fluctuations, such as the recovery effect during lithium-ion battery capacity degradation, a method

for interval prediction of the satellite battery state of health (SOH) based on SampEn was proposed. This

method adopts a neural network model based on lower upper bound estimation (LUBE). Themethod uses the

discharge cutoff voltage and the discharge voltage SampEn as the inputs and the battery SOH as the output

for the neural network model. To improve the prediction interval coverage and reduce the prediction interval

width, especially considering that the lower bound of the interval prediction often determines whether the

satellite battery output power reaches the warning threshold, a modified comprehensive indicator function,

the coverage width-based criterion (CWC), was constructed. Additionally, based on the nondifferentiability

of this indicator function, a simulated annealing algorithm was used to optimize the neural network; at the

same time, the optimal values of the interval coverage and interval width were taken into account, resulting in

the lower bound of the prediction interval being closer to the actual value. Finally, test data from a NASA #18

battery were used to validate, analyze and verify the interval prediction algorithm proposed in this paper. The

results were compared with those obtained from a support vector machine (SVM)-based interval prediction

method.

INDEX TERMS Battery state of health (SOH), sample entropy (SampEn), lower upper bound

estimation (LUBE), neural network, simulated annealing.

I. INTRODUCTION

In recent years, an increasing number of satellites have been

launched into space to provide data for various tasks, includ-

ing weather forecasting, resource observation, and geological

surveys. The power system is key for the normal operation of

satellites in space, and its availability, reliability, and sustain-

ability are critical. Power systems usually combine a variety

of energy storage technologies, such as batteries and solar

cells, to provide a safe and reliable power supply for satel-

lites [1], [2]. Once the power system is damaged, many parts
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of the satellite will lose function and cannot continue to per-

form tasks [3]. The battery is the only source of energy when

the satellite is operating in a shadow region. Once abnormal

battery conditions occur, the satellite will not be able to work

in the shadow region. Therefore, the satellite battery life has

become the largest ‘ceiling’ constraining the development of

spacecraft. The performance of the satellite battery will grad-

ually degrade as the working hours increase. This degradation

will result in an insufficient amount of energy being supplied

to the satellite in the shadow region. The related loads will

then not work properly, thus affecting the overall performance

of the satellite and resulting in expensive maintenance and

serious damage. Therefore, constructing an effective model
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of battery performance degradation based on the extraction of

characteristic indicators that measure the degradation of the

spacecraft battery performance is important in actual practice.

Numerous types of satellite batteries have been devel-

oped. Lithium-ion batteries have become the third-generation

satellite energy storage batteries, replacing nickel-hydrogen

and nickel-cadmium batteries due to their high energy den-

sity, low self-discharge rate, long cycle life, and wide oper-

ating temperature range; these batteries have been used

in various engineering applications [4], [5]. For example,

lithium-ion batteries were used as the energy storage power

source in the National Aeronautics and Space Adminis-

tration (NASA)’s Spirit and Opportunity Mars exploration

rovers and the Phoenix Mars lander, the European Space

Agency (ESA)’s Mars Express and ROSETTA platform, and

the Japanese Hayabusa spacecraft [6]. Under these circum-

stances, the performance degradation and the health assess-

ment of satellite lithium-ion batteries have become a research

topic of interest. Many studies have focused on monitoring

the state of lithium-ion batteries, assessing their health, etc.,

and some classic parameters of the battery state have been

proposed, such as the state of charge (SOC) and state of

health (SOH) [7], [9].

The SOH characterizes the capacity of a battery to store

electrical energy and provide energy relative to a new bat-

tery and is an indicator that quantitatively describes the

state of battery performance. As charge and discharge occur,

the battery SOH trends downward 10], [11]. At present,

SOH assessment for batteries is mainly based on models

and data-driven methods. The model-based methods involve

modeling mechanisms on the basis of the physical and chem-

ical characteristics of the battery, simulating the dynamic

characteristics and the degradation process of the battery,

and applying a model parameter identification algorithm to

assess the SOH [12], [13]. The model-based methods include

the electrochemical model, the equivalent circuit model, and

the impedance spectrummodel. Although the physical mean-

ing of model-based SOH assessment is clear, the models

are generally complex, their assessment accuracy is gener-

ally not high, and the methods are not universal, exhibit-

ing poor real-time performance. With the rapid development

of machine learning and artificial intelligence, data-driven

methods have gradually entered the research field and are

now widely used in battery SOH assessment [14]. Com-

pared with the experiment- and mechanism-based modeling

methods, the data-driven methods ignore the electrochem-

ical principles to some extent and rely on various map-

ping and regression tools to develop the degradation model.

Wu et al. [15] proposed using the importance of sampling (IS)

as the input for a feedforward neural network, simulating

the relationship between the remaining useful life (RUL) and

the charging curve. Ng et al. [16] selected the naïve Bayes

method to predict the RUL of a lithium-ion battery and com-

pared and verified the results with those obtained using a sup-

port vector machine (SVM)-based method. Zhang et al. [17]

proposed a jump diffusion process with a nonhomogeneous

compound Poisson process to model the degradation pro-

cess with randomly occurring jumps. In addition, many

researchers have proposed mathematical functions to esti-

mate battery SOH. Chen et al. [18] proposed an adaptive

bathtub-shaped failure-rate function (ABF) and used the arti-

ficial fish-swarm algorithm to optimize the ABF function and

simulate the battery cycle capacity curve. Wang et al. [19]

constructed a conditional three-parameter lithium-ion bat-

tery RUL model using an exponential function and an

SVM algorithm.

Related studies have shown that during the degradation

process caused by an increase in the number of cycles,

lithium-ion batteries often exhibit local fluctuations such as

capacity recovery effects. This phenomenon generally occurs

after the battery has been working for several cycles. If the

battery is left to rest for a period of time, then its capacity

will recover to some extent. This phenomenon occurs because

lithium ions gradually form two types of compounds during

charge and discharge. One type includes stable compounds,

which are difficult to decompose, resulting in permanent

degradation of the capacity of lithium-ion batteries. The other

type includes unstable compounds. When the battery is left

in a resting state, the unstable compounds will decompose,

thus regenerating lithium ions, which will restore the battery

capacity to some extent [20]–[22]. In the aforementioned

methods, the battery capacity in the aging cycle is directly

analyzed. Thus, taking the self-recovery phenomena into con-

sideration in the SOH prognostics of a lithium-ion battery is

meaningful.

Thus far, this issue has not been solved well, and only a

few researchers have focused on it [23]. Some researchers

have presented that capacity recovery has a certain regularity

over time. Eddahech et al. [24] constructed a battery power

aging experiment under two temperatures (45◦C and 55◦C)

with different combinations of power cycling and proved

that the battery capacity recovery phenomenon is depen-

dent on the Stop-SOC. Liu et al. [25] used a combination

of the covariance function and the averaging function to

improve the multistep prediction of Gaussian process regres-

sion (GPR), thereby predicting SOH recovery and degrada-

tion. He et al. [26] used the wavelet method to analyze global

degradation and local recovery and proposed a multiscale

GPR modeling method to tackle the accurate SOH estima-

tion problem. However, the capacity recovery phenomenon

is related to the rest time, and the rest time is determined

by the actual working conditions of the battery. Therefore,

accurately predicting the recovery phenomenon without con-

sidering the rest time is difficult. Some researchers consid-

ered the capacity recovery as an uncertainty. Zhang et al. [23]

proposed a multiphase stochastic degradation model with

random jumps based on the Wiener process, where the multi-

phasemodel and random jumps at the changing point are used

to describe the variations in the degradation rate and state

caused by regeneration phenomena. Olivares et al. [27] esti-

mated the SOH and predicted the RUL while simultaneously

detecting and isolating the effect of self-recovery phenomena
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within the life-cycle model. Tao and Lu [28] extracted some

features affecting the battery capacity recovery and used a

random forest (RF) to model and cognize the capacity degra-

dation process. However, researchers still hope to extract a

reliable and effective degradation indicator and construct a

mapping relation between indicators and the actual capacity

when constructing a SOH prognostic model. The trend of

battery capacity degradation can thereby be effectively fitted,

and the local fluctuations that reflect the actual battery SOH

can be captured.

In this regard, researchers have introduced a characteristic

parameter, the sample entropy (SampEn), for local fluctu-

ations in the process of lithium-ion capacity degradation.

SampEn, as a useful tool for exploring signal complexity

and predictability [29], can be introduced as a character-

istic parameter for diagnosing battery capacity degradation

due to its relatively sensitive response to changes in com-

plexity and fluctuations. Sun et al. [30] proposed extracting

SampEn from the discharge voltage of lead-acid batteries

in series as an indicator of aging. Hu et al. [31] used the

battery voltage SampEn under the hybrid pulse power curve

as the input and established a battery degradation model

by least-squares optimization. Hu et al. [32] extracted the

SampEn of a short-voltage sequence as the degradation char-

acteristic and used the sparse Bayesian predictive model-

ing (SBPM) method to capture the mapping relation between

battery capacity degradation and SampEn. Li et al. [33]

combined the particle filter PF) and SampEn characteristics

of the discharge voltage to predict the remaining capac-

ity of lithium-ion batteries. Li et al. 34] extracted Sam-

pEn from the surface temperature in the lithium-ion battery

charging process and combined it with the PF to develop

an intelligent estimation method for capacity degradation.

In addition, some authors have directly selected the volt-

age and current changes during battery charging and dis-

charging to extract degradation characteristics. For example,

Wang et al. [35] used the current curve changes during con-

stant battery current-constant voltage charging to characterize

the battery SOH.

The aforementioned predictions of the remaining battery

capacity are mainly based on point predictions, and most of

the research has focused on how to improve the accuracy of

the point prediction method and how to effectively capture

the local fluctuations in the capacity prediction. However,

due to the uncertainties in the variables and the environment,

the prediction based on the point prediction method always

exhibits an error, which is difficult to eliminate. When the

prediction error is large, it often affects the ground sys-

tem personnel’s judgment and the operation of the satellite

on-orbit state. In fact, the ground operators’ prediction of

the battery SOH often requires a reasonable interval range;

that is, the interval should contain both the actual capacity

and the possible range of fluctuations so that the opera-

tors can detect abnormal fluctuations of the battery as early

as possible and adjust the working state of the satellite in

time.

As stated above, researchers have proposed two types of

approaches to construct prediction intervals for the battery

SOH. The first type includes theoretical approaches. For

these approaches, the theoretical interval is calculated based

on the assumption that forecast errors follow a determined

distribution with zero mean, usually the normal distribution

or Laplace distribution [36]. For instance, Wang et al. [37]

filtered the IC curve to extract the peak value and position

as health factors and established a SOH estimation model

based on GPR. Li et al. [38] developed a multistep-ahead

prediction model based on the mean entropy and a relevance

vector machine (RVM). Both methods construct 95% con-

fidence bounds of the prediction results based on a Gaus-

sian distribution. Nevertheless, as the data in actual practice

always involve complex processes, ensuring that the Gaus-

sian assumption can be fulfilled is difficult. The theoretical

prediction interval may behave poorly if the aforementioned

assumption is not valid. As an alternative, the second type

of approaches with no need for consideration of the fore-

cast error distribution has been proposed. The neural net-

work approach is typical of such approaches. In the field of

lithium-ion batteries, some studies on constructing prediction

intervals for capacity estimation based on the previously

mentioned error distribution have been performed. However,

directly constructing an interval for predicting the battery

capacity is little studied.

Based on the lower upper bound estimation (LUBE) neu-

ral network model, we propose a SOH interval prediction

model. This method selects the discharge cutoff voltage in

the discharge cycle of the lithium-ion battery and the Sam-

pEn extracted from the output voltage as the inputs and

the lithium-ion battery SOH as the output. The advantages

of our interval prediction method for battery SOH mainly

include three aspects: (1) The degradation characteristics of

SampEn not only can provide degradation information of the

battery but also are sensitive to the local fluctuations within

the life cycle. Thus, this model can accurately estimate the

SOH of batteries and capture the self-recovery phenomenon.

(2) Compared to the theoretical interval prediction method,

the method proposed in this paper can provide reliable and

effective prediction intervals without the need for an error

distribution. (3) Because the lower bound of the interval pre-

diction often determines the minimum power supply capacity

of the battery, a new comprehensive indicator, the coverage

width-based criterion (new CWC) is constructed to allow the

lower bound to be close to the actual value while improving

the interval coverage and reducing the interval width. Finally,

based on the lithium-ion battery aging dataset from theNASA

Ames Prognostics Center of Excellence (PCoE), the validity

of the proposed SOH interval prediction method is verified.

This method is compared with the existing SVM prediction

method, and the feasibility and advantages of the proposed

model method are verified.

The remainder of the paper is organized as follows.

Section 2 describes the extraction process of the degrada-

tion characteristics and the modeling principle of the LUBE
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FIGURE 1. Flowchart of the satellite battery interval prediction method.

neural network. Section 3 presents the experimental data

and result analysis. A comparison experiment with the SVM

method is reported in Section 4. Finally, Section 5 concludes

the paper and discusses future work.

II. INTERVAL PREDICTION METHOD FOR THE SATELLITE

BATTERY SOH

The flowchart of the satellite battery interval prediction

method proposed in this paper is shown in Fig. 1. First,

the voltage and capacity data during the discharge process

of the battery were collected. Then, the SOH was estimated

using the capacity approach. At present, SOH estimation

of lithium-ion batteries still has many problems, which are

mainly reflected in two aspects: (1) Simple and effective

methods for analyzing the battery aging process are lack-

ing. (2) The battery SOH online estimation method is not

mature, and the real-time performance is poor. The only

reliable method to calculate the SOH is discharging the bat-

tery completely with a load. Because the PCoE battery cycle

experiment involves complete discharge, the SOH is normally

defined as the ratio between the actual battery capacity and

nominal battery capacity, represented as [39]

SOH =
nominal capacity at present time

nominal capacity at initial time
(1)

Moreover, SampEnwas constructed based on the discharge

voltage data sequence; in addition, the discharge cutoff volt-

age was extracted from the discharge voltage data sequence.

Second, based on the discharge cutoff voltage, SampEn, and

the battery capacity data sequence, a neural network model

based on LUBE was constructed and trained. In this process,

a simulated annealing algorithm was used to optimize the

model parameters. Finally, based on the experimental data on

related lithium-ion batteries disclosed by NASA, the validity

FIGURE 2. Discharge voltage curve of a lithium-ion battery.

of the prediction method proposed in this paper was

verified. The training model process is offline. We can obtain

the SOH estimation by inputting the online parameters into

the offline-trainedmodel. The following sections describe the

extraction of the degradation characteristics of the lithium-ion

battery and the construction and optimization of the LUBE

neural network.

A. EXTRACTION OF DEGRADATION CHARACTERISTICS

1) DISCHARGE CUTOFF VOLTAGE

When the satellite enters a shadow region, the battery pro-

vides the power for satellite operation. At this time, the bat-

tery starts to discharge, and the discharge voltage gradually

decreases as the discharge process proceeds. The lowest volt-

age corresponding to the end of the discharge is the discharge

cutoff voltage, as shown in Fig. 2.

Due to the degradation of the satellite battery performance,

after the battery is fully charged, the discharge cutoff volt-

age reached after the same amount of power is discharged

while the discharge current is kept constant becomes lower

over time. Therefore, the discharge cutoff voltage was used

as one of the characteristic quantities for analyzing battery

performance in this study.

However, when only the discharge cutoff voltage is used

as the input to the neural network to construct the degrada-

tion model, although the overall degradation trend is well

fitted, the model is not sensitive to local fluctuations, such

as the capacity recovery effect during the degradation of

the lithium-ion battery. Therefore, based on the selection

of the discharge cutoff voltage as a characteristic quantity,

in this study, we further selected another parameter, SampEn,

to enhance the sensitivity of the neural network model to

the capacity recovery effect. The meaning of SampEn is

described below.

2) SAMPLE ENTROPY (SampEn))

Pincus [40] proposed the approximate entropy (ApEn) when

measuring the complexity of a time series, and SampEn was

obtained from a modification of ApEn. ApEn is used to solve
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the noise problem in time series and is a nonlinear dynamic

parameter that quantifies the regularity and unpredictability

of the fluctuations of a time series. SampEn has the same

physical meaning as the approximate entropy and measures

the complexity of the time series bymeasuring the probability

of generating new patterns in the signal. The greater the

probability of a new pattern is, the greater the complexity of

the sequence [41]. Compared with ApEn, SampEn exhibits

two advantages [42]:

(1) The calculation of SampEn does not depend on the data

length.

(2) SampEn is more consistent.

In general, the lower the SampEn value is, the higher

the sequence self-similarity; the larger the SampEn value

is, the more complex the sample sequence. The internal

complexity of a lithium-ion battery varies with the degra-

dation of the battery; thus, the SampEn of the voltage

sequence could be an effective signature correlated to bat-

tery health. At present, SampEn has been applied in the

analysis of wind-power generation, heat-exchange perfor-

mance, heart-rate variability, and time series of diagnostic

cases [43]–[45].

(1) A sequence of vectors of length m is selected according

to the sequence number of the time series, where {x(n)} =

x(1), x(2), . . . , x(N ). This set of vectors represents m con-

secutive values starting from the ith point in the N number of

data points.

(2) The distance between the vector Xm(i) and the vector

Xm(j) is defined as the absolute value of the maximum differ-

ence between the elements corresponding to the two sets of

vectors:

d [Xm(i),Xm(j)] = max
k=0,...,m−1

(|x(i+ k) − x(j+ k)|) (2)

(3) For a givenXm(i), the number of j(1 ≤ j ≤ N−m, j 6= i)

with a distance between Xm(i) and Xm(j) less than or equal to

r is calculated and denoted Bi:

Bmi (r) =
1

N − m− 1
Bi (3)

(4) Bm(r) is defined as

B(m)(r) =
1

N − m

N−m
∑

i=1

Bmi (r) (4)

(5) The dimension is increased to m + 1, and the number

of j(1 ≤ j ≤ N − m, j 6= i) with a distance between Xm+1(i)

and Xm+1(j) less than or equal to r is calculated and denoted

Ami . A
m
i is defined as

Ami (r) =
1

N − m− 1
Ai (5)

(6) We define Am(r) as

A(m)(r) =
1

N − m

N−m
∑

i=1

Ami (r) (6)

FIGURE 3. Architecture of the LUBE neural network.

Thus, Bm(r) is defined as the probability that two

sequences will match for m points with a tolerance of r, while

Am(r) is the probability that two sequences will match for

m+ 1 points. SampEn is defined as follows:

SampEn(m, r) = lim
N→∞

− ln

[

Am(r)

Bm(r)

]

(7)

Since SampEn exhibits good consistency, the values of m

and r share some characteristics with respect to their influ-

ences on SampEn. Generally, m is 1 or 2, and r is 0.1. When

N is a finite number, Eq. (7) can be expressed as

SampEn(m, r,N ) = − ln

[

Am(r)

Bm(r)

]

(8)

B. CONSTRUCTION AND OPTIMIZATION OF THE LUBE

NEURAL NETWORK

The structure of the LUBE neural network, as a type of

interval prediction neural network, is shown in Fig. 3. The

final output is the upper and lower bounds of an estimated

value. Specifically, the prediction interval is composed of a

lower limit Li and an upper limitUi; the predicted target value

yi exists in the prediction interval with a certain probability,

and this probability is called the confidence level. The assess-

ment of the quality of a prediction interval is usually based

on two indicators: the prediction interval coverage probabil-

ity (PICP) and the normalized mean prediction interval width

(NMPIW). The PICP and the NMPIW have been widely used

as assessment indicators for prediction intervals in related

studies [46].

For a constructed prediction interval, assuming that the

actual value is within the constructed predicted interval with a

probability of 1−α, we generally expect a prediction interval

with greater coverage. Therefore, the PICP is an important

factor in assessing the prediction interval. The interval cov-

erage is measured by calculating how many actual values are

within the prediction interval. The equation is

PICP =
1

N

N
∑

i=1

ci (9)

whereN is the number of samples in the test set. The equation

to calculate ci is as follows. When the actual value ti falls

VOLUME 7, 2019 141553



M. Cao et al.: Method for Interval Prediction of Satellite Battery SOH Based on SampEn

between the upper and lower bounds of the constructed pre-

diction interval, ci is 1; otherwise, ci is 0:

ci =

{

1, if ti ∈ [Li,Ui]

0, if ti /∈ [Li,Ui]
(10)

HereUi is the upper bound of the prediction interval, and Li
is the lower bound of the prediction interval. Ideally, the PICP

should be very close to or greater than the confidence level of

the prediction interval. If the PICP is 0, then no actual value

falls within the interval. If the PICP is 1, then all of the actual

values fall within the interval. The larger the PICP value is,

the better the interval quality. If the upper and lower limits of

the interval are the minimum and maximum of all predicted

targets, respectively, then the corresponding PICP will be a

perfect 100%. However, an excessively wide prediction inter-

val does not provide any meaningful information to decision

makers. Therefore, while considering the interval coverage,

the width of the prediction interval should also be considered.

The MPIW is defined as follows:

MPIW =
1

N

N
∑

i=1

(Ui − Li) (11)

In practical applications, the NMPIW is generally used to

measure the interval width, which is defined as

NMPIW =
MPIW

R
(12)

where R is the value range of the targets to be tested; the

smaller the NMPIW value is, the better the interval quality.

The range for both the PICP and NMPIW is [0, 1].

Increasing the interval coverage usually means increasing the

interval width, while narrowing the interval width tends to

reduce the interval coverage. Therefore, the two targets have

mutually exclusive characteristics. In view of the mutually

exclusive characteristics of these two objectives, in this study,

we used the traditional integrated indicator CWC to combine

these two indicators. The specific definitions are as follows:

CWC = NMPIW ·
(

1 + γ (PICP)e−η(P[CP−µ)
)

(13)

where γ (PICP) is defined as

γ =

{

1, if PICP < µ

0, if PICP ≥ µ
(14)

However, in the satellite battery SOH prediction process,

the SOH is the ratio of the actual capacity to the standard

capacity and characterizes the power supply capability of the

battery. The lower bound of the prediction interval determines

the minimum power supply capacity of the battery. Once

the lower bound of the prediction interval is lower than

the warning threshold, the ground operators usually need to

adjust the satellite working state in time. Thus, the lower

bound of the prediction interval is correlated with the battery

SOH. Related literature about biased interval prediction has

been presented. Marín added an error quantity function for

mid-interval consideration-based wind-power generation and

load-forecasting systems [47]. The error quantity is defined

by the following equation:

‖e|| =

√

√

√

√

√

n
∑

j=1

∣

∣

∣

∣

∣

tj −
yj + y

j

2

∣

∣

∣

∣

∣

2

(15)

where tj is the value of the j
th sample. yj and yj

are the upper

and lower bounds of the prediction interval. Therefore, based

on the actual demand of the satellite battery SOH predic-

tion and abovementioned error quantity function, the inter-

val width and the interval coverage should be guaranteed.

Additionally, if the difference between the lower bound of the

interval prediction and the actual value is too large, then the

ground operator may adjust the battery too early. We propose

a new integrated indicator CWC, represented as

CWC = β1 · NMPIW + β2 · e2 + ·γ · exp[−η(PICP− µ)]

(16)

where β1 and β2 are the weight coefficients used to normalize

the NMPIW and e; the parameter e represents the number of

interval prediction deviations, as described in the following

equation:

e =

N
∑

i=1

|(SOHtrue − loweri)| (17)

where SOHtrue is the actual capacity of the battery at the

ith cycle and Loweri is the lower bound of the interval pre-

diction for this cycle.

Based on the above-modified integrated indicator,

the LUBE is modified. That is, the interval quality is included

through two basic assessment indicators, the PICP and

NMPIW. At the same time, the number of interval deviations

is added such that the lower bound of the interval prediction

is closer to the actual value. The modified LUBE adopts the

three-indicator integrated indicator CWC as the loss function.

Since the function is nondifferentiable, the heuristic simu-

lated annealing algorithm is used to optimize the network

structure.

The flowchart of the basic algorithm is shown in Fig. 4.

The specific steps and meanings are as follows:

(1) Data preparation: The original data are divided into two

parts, i.e., the training set and the test set. The training set is

used for model training, and the test set is used to test the

algorithm performance and carry out the data normalization.

(2) Parameter initialization: The parameter of the neural

network wopt and the parameters of the simulated annealing

algorithm, such as the initial temperature and initial indicator

value CWCopt , are initialized.

(3) A temperature update is performed until the tempera-

ture reaches the threshold.

(4) A new neural network parameter wopt is generated by

perturbation, and the neural network parameters are used to

construct a prediction interval and calculate the new indicator

value CWCopt . If the new indicator value is better than the
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FIGURE 4. Flowchart of the LUBE neural network optimization based on
the simulated annealing algorithm.

old one, i.e., CWCnew < CWCopt , then CWCopt = CWCnew
and wopt = wnew. Otherwise, a random number is generated.

If r ≥ e−
(CWCnew−CWCopt)

κT is satisfied, then the new solution

is still accepted; that is, the new solution is accepted with a

certain probability.

(5) If the temperature reaches the threshold, training is

stopped, and step (6) is carried out; otherwise, the procedure

is repeated from step (3).

(6) The resulting neural network is used to perform interval

prediction on the test set and to assess the performance of the

model according to the assessment indicator.

III. EXPERIMENTAL VALIDATION

1) EXPERIMENTAL DATA

The lithium-ion battery data used in this paper were derived

from the lithium-ion battery aging dataset published by

the NASA Ames PCoE for experimental validation. The

lithium-ion battery data were collected at the Idaho National

Laboratory using a commercially available 18650 lithium-

ion battery with a rated capacity of 2 Ah. In the experiment,

the battery was charged with a constant current of 1.5 A

under three conditions (charge, discharge, and impedance) at

24oC. After the voltage reached 4.2 V, the battery discharged

at a constant current of 2 A until the voltage decreased

to the cutoff voltage. During each cycle, the battery had

the same depth of discharge. During the continuous charge

and discharge cycles, the actual capacity of the battery was

FIGURE 5. Discharge cutoff voltage and SampEn curves for the
#18 battery.

collected, and impedance measurements were carried out by

electrochemical impedance spectroscopy (EIS) at frequencies

from 0.1 kHz to 5 kHz.

Since lithium-ion batteries consume chemical components

such as electrolytes, positive and negative electrodes, and

separators during energy conversion, irreversible degradation

occurs inside the battery. The actual capacity of a lithium-ion

battery will gradually decrease as the number of charge and

discharge cycles increases. In Fig. 5, the discharge cutoff

voltage and the SampEn of the discharge voltage for each

discharge cycle extracted from the PCoE dataset for the

#18 battery are shown. When SampEn was extracted, m and

r were set to 1 and 0.1, respectively. As shown in the fig-

ure, SampEn increased as the number of cycles increased,

and the discharge cutoff voltage gradually decreased as the

number of cycles increased. In Fig. 6, the capacity degrada-

tion curve of the #18 battery after normalization, i.e., Min-

Max scaling, is shown. The data show that as the number

of cycles increased, the capacity gradually decreased until it

reached the failure threshold. The charge and discharge cycle

experiment from the PCoE dataset will be ended when the
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FIGURE 6. Capacity degradation curve of the #18 battery.

FIGURE 7. Relation between SampEn and battery capacity.

capacity of the lithium-ion battery reached a 30% fade (from

2 Ah to 1.4 Ah).

2) SampEn AND CAPACITY DEGRADATION

As the lithium-ion battery was continuously charged and

discharged, its capacity rapidly decreased as the number of

cycles increased. The NASA battery degradation experiment

designer set several rests after a period of continuous charge

and discharge cycles to enable researchers to better investi-

gate the capacity recovery effects. The SampEn and the actual

capacity were normalized, and the measured changes in the

battery capacity and SampEn were collected as the number

of cycles increased. In Fig. 7, the curves of the changes in

the two characteristic parameters of the #18 battery with

increasing number of cycles are shown. The data in the

figure show an interesting phenomenon. That is, in the 46th

cycle and the 105th cycle of the #18 battery, the lithium-ion

battery exhibited some capacity recovery, while the SampEn

decreased with this increase in capacity, showing that Sam-

pEn can sensitively capture the capacity recovery effect of a

lithium-ion battery.

The sensitive capture of the capacity recovery effect of

lithium-ion batteries by SampEn is mainly possible because

TABLE 1. LUBE neural network and simulated annealing initial parameter
settings.

SampEn measures the complexity of a time series by measur-

ing the probability of generating a new pattern in the signal.

In essence, SampEn expresses the degree of disorder (com-

plexity) of the time series. The capacity recovery effect

is caused by unstable compounds and their decomposition

during the charging and discharging process of lithium-ion

batteries. In the process of unstable compounds being gen-

erated by lithium ions, the degree of disorder of the metal

compounds is higher than that of the metal ions [48], [49];

thus, this process is an entropy-increasing process. However,

after the decomposition of the unstable compounds, thewhole

system tends to be stable, and the degree of disorder is

reduced, which is an entropy-decreasing process. Therefore,

when the capacity recovery effect occurs, the degree of disor-

der of the system temporarily increases due to the formation

of unstable compounds, the actual capacity of the battery

briefly decreases, and SampEn briefly increases. When the

unstable compounds decompose, the degree of disorder of the

system decreases, the actual capacity increases, and SampEn

accordingly decreases.

A. PERFORMANCE OF THE INTERVAL PREDICTION

ALGORITHM

To verify the effectiveness of the modified LUBE neural

network model proposed in this paper, the discharge cutoff

voltage and the SampEn of the NASA #18 battery were

selected as the inputs of the prediction model, and the SOH

was selected as the output of the prediction model. In the

training process for the neural network model, the neural

network parameters were optimized by the simulated anneal-

ing algorithm. In this dataset, the first 90% of the data

is selected as the training set, and the remaining 10% is

utilized as the verification set. The LUBE neural network

and simulated annealing parameter settings were as shown

in Table 1.

Here, µ and γ are hyperparameters that adjust the quality

of the prediction interval, and β1 and β2 are the weighting

coefficients used to normalize the NMPIW and e. Tbegin and

Tend are the start and end temperatures of the simulated

annealing algorithm. Iter is the iterative coefficient, and Bolt

is the Boltzmann constant.

Fig. 8 shows the results obtained when the model parame-

ters were not optimized with the simulated annealing algo-

rithm after the neural network parameters were initialized.

Figs. 8(a) and 8(b) show the training result and the prediction

performance of the neural network model, respectively. The

data show that although the neural network model output

could fit the degradation trend, it could not construct an

effective prediction interval.
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FIGURE 8. Fitting result and prediction performance of the neural
network model for the #18 battery without optimization by the simulated
annealing algorithm.

In Fig. 9, the fitting result and the prediction performance

of the neural network model (for the #18 battery) optimized

by the simulated annealing algorithm, when µ and γ were set

to 0.9 and 50, respectively, for initialization, are shown. In the

simulated annealing optimization process, the initial average

NMPIW was wide, the PICP was small, and the comprehen-

sive indicator CWC was large. During the iteration, the PICP

gradually converged to a value slightly higher than the confi-

dence level of 0.9, while the NMPIW gradually narrowed at

the beginning to obtain a better prediction interval (high PICP

and narrow NMPIW, while the CWC continuously decreased

during the process). Finally, a valid prediction interval was

obtained from the iteration. The results in Fig. 9(a) show that

the LUBE neural network model with the discharge cutoff

voltage and SampEn as inputs could simulate the degradation

of the battery, while the results in Fig. 9(b) show that the

prediction interval could include the actual value. In Fig. 9,

because the interval coverage expectation was set too high,

the lower bound of the prediction interval reached the failure

threshold after the 92nd cycle. Meanwhile, the lower bounds

FIGURE 9. Fitting result and prediction performance for the #18 battery
when γ and µ were not optimized.

of the prediction interval from the 110th to the 120th cycle

and from the 123rd to the 132nd cycle were consistently

located at the failure threshold; however, the actual battery

SOH failed in the 132nd cycle. Although the excessively

wide NMPIW ensured the PICP, it also reduced the reliability

and practicability of the interval prediction. Therefore, when

initializing the LUBE neural network, if µ and γ are set too

high, overfitting problems will occur.

To increase the PICP while reducing the NMPIW as much

as possible, we further conducted a traversal experiment

on combinations of µ = {0.8, 0.82, . . . , 0.96} and γ =

{10, 15, . . . , 50} and found that when the values of µ and

γ were set at 0.86 and 40, respectively, the NMPIW could

be reduced without greatly affecting the PICP, allowing the

minimum integrated indicator CWC to be obtained. At the

same time, the modified integrated indicator CWC consists

of the PICP, NMPIW, and interval deviation e, which need to

be constrained by β1 and β2 to ensure that the changes remain

between 0 and 1. In Fig. 10, the fitting result and predic-

tion performance obtained by adjusting the interval coverage

expectation µ and the penalty factor γ are shown. As shown
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FIGURE 10. Fitting result and prediction performance for the #18 battery
after the optimization of µ and γ .

in Fig. 10(a), through the above optimization adjustments,

a narrow NMPIW was obtained without reducing the PICP.

The results in Fig. 10(b) show that the optimized interval

prediction lower bound was closer to the actual value; only

1 point fell outside of the interval boundaries, showing excel-

lent prediction performance.

IV. COMPARISON EXPERIMENT

To compare the prediction performances of the interval pre-

diction model proposed in this paper and a theoretical interval

prediction model, the theoretical interval prediction model

using SVM by Widodo [7], with a 90% confidence interval,

was selected for experimental comparison. The input x and

output y can be expressed as follows according to SVM

theory [50]:

y = f (x) + ζ (18)

where ζ is a random variable. We assume that ζ and input

x are independent of each other; thus, the calculated con-

fidence interval does not produce a large error in practice.

We define ζn as

ζn = yn − f̂ (xn) (19)

ζ is usually subject to a zero-mean Gaussian or Laplace

distribution, and the Laplace distribution is more suitable in

many cases [51]. The Laplace distribution density function

with parameter σ is

p(z) =
1

2σ
exp

(

−
|z|

σ

)

(20)

We use ζn(n = 1, · · · ,N ) for the sample to estimate σ

using the maximum likelihood method, and the maximum

likelihood function is

L(σ ; ζ ) =

(

1

2σ

)N

exp

(

−
|ζ1| + · · · + |ζN |

σ

)

(21)

We set ∂ lnL
∂σ

= 0.

σ̂ =
1

N

N
∑

n=1

|ζn| (22)

We set P(ŷ− 1 6 y 6 ŷ+ 1) = p0, so

p0 =

∫ 1

−1

p(ζ )dζ = 1 − exp

(

−
1

σ̂

)

(23)

1 = −σ̂ ln (1 − p0) (24)

Finally, the confidence interval for the confidence p0 of the

SVM output y is
[

ŷ+ σ̂ ln (1 − p0) , ŷ− σ̂ ln (1 − p0)
]

(25)

In the experiment, the #18 battery was also selected,

the first 120 sets of data were selected as the training set,

and the last 12 sets were selected as the test set. For each

set of data, the discharge cutoff voltage and SampEn were

selected as the inputs and the SOH was used as the output of

the SVM method. In terms of parameter settings, the radial

basis function (RBF) kernel was also selected to map the

inputs, and the RBF kernel parameter γ and the regular-

ization parameter C were set to 0.4 and 45, respectively.

The SVM prediction training results are shown in Fig. 11.

The SVM prediction trend was generally consistent with the

battery degradation trend; however, three of the prediction

results deviated from the 90% confidence interval, mainly

because the SVM algorithm is vulnerable to the overfitting

problem, causing small fluctuations to be amplified such that

they affect the prediction performance. However, the interval

prediction method proposed in this paper could include the

actual value in the prediction interval, and only one point was

outside of the interval boundaries. At the same time, the SVM

method estimated the end cycle of the battery SOH as earlier

than the actual situation. When the battery SOH estimated

by the SVM method reached the failure threshold in the

126th cycle, the actual battery SOH still had a 5% remaining

capacity. However, the lower bound of the prediction interval

obtained with the interval prediction method proposed in this

paper reached the failure threshold in the 130th cycle and
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FIGURE 11. SVM prediction performance.

TABLE 2. Prediction performance indicators.

could provide a reasonable range for the failure threshold of

the battery SOH, allowing the ground operator to adjust the

battery working state in time.

Finally, the prediction performance of the trained neural

network model was measured by four indicators: NMPIW,

PICP, e, and CWC. The results are shown in Table 2. The

results show that after the model initialization parameters

were adjusted, the PICP was higher, the NMPIW was nar-

rower, and the indicating effect of the lower bound of the

prediction interval was better.

V. CONCLUSION

In this study, based on the assessment and prediction require-

ments of the satellite lithium-ion battery SOH and consider-

ing the capacity local recovery effect of satellite lithium-ion

batteries during charge and discharge cycles, a modified

LUBE neural network model was constructed in which the

discharge cutoff voltage, SampEn based on the discharge

voltage, and lithium-ion battery capacity were selected as

characteristic parameters. A simulated annealing algorithm

was used to optimize the modified comprehensive assess-

ment indicator, CWC. The experimental results based on

NASA #18 battery test data show that the proposed method

for predicting the lithium-ion battery SOH can success-

fully predict the degradation trend and local fluctuations of

the lithium-ion battery SOH and simultaneously ensure a

PICP and an NMPIW that will produce satisfactory perfor-

mance. When the satellite lithium-ion battery SOH suddenly

changes, the comparison of the SOH prediction results with

the actual results can provide the ground operators with rele-

vant warnings, showing practicability.

For future work, as the telemetry data sent back by some

satellites in orbit to the ground station do not include the

battery capacity parameter, and this method cannot directly

estimate the degradation of the satellite battery without the

capacity data. However, research on the in-orbit satellite

lithium-ion battery SOH can be further carried out based on

comparisons with a ground battery aging experiment. For

example, a same working condition experiment can be con-

ducted by selecting the same battery on the ground, and the

ground experimental data can be effectively integrated with

the in-orbit telemetry parameters. In addition, the integrated

indicator CWC in the LUBE neural network can be further

optimized to improve the prediction performance.
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