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A Method for Investigating the Intersection
of Item Response Functions in Mokken’s
Nonparametric IRT Model
Klaas Sijtsma and Rob R. Meijer
Vrije Universiteit

For a set of k items having nonintersecting item
response functions (IRFS), the H coefficient
(Loevinger, 1948; Mokken, 1971) applied to a
transposed persons by items binary matrix HT has
a non-negative value. Based on this result, a
method is proposed for using HT to investigate
whether a set of IRFS intersect. Results from a

monte carlo study support the proposed use of HT.
These results support the use of HT as an exten-

sion to Mokken’s nonparametric item response
theory approach. Index terms: double monotoni-

city, HT coefficient, intersection of item response func-
tions, item response theory, Mokken models, non-
parametric models.

In item response models, the item response function (IRF) specifies the relationship between the
probability of a correct or keyed response on a dichotomous item and the measurement scale of the
psychological attribute under consideration. Usually, this probability is a nondecreasing function of
the scale. Mokken (1971; Mokken & Lewis, 1982) proposed two item response models for ordering
n persons and k dichotomous items on a measurement scale. Because neither ~~~’s nor distributions

of parameters are parametrically defined, both models can be characterized as nonparametric (e.g.,
Meijer, Sijtsma, & Smid, 1990).

The Mokken (1971) model of monotone homogeneity (MH) is based on three assumptions:
unidimensional measurement, local stochastic independence of responses to items, and nondecreas-
ing IRFs. Similar models are discussed by Holland (1981), Rosenbaum (1984, 1987a), Holland and
Rosenbaum (1986), Stout (1987), and Grayson (1988). The I~~ model is relevant because of its potential
for ordering persons along the measurement scale, denoted by 0. Because IRFs are not parametrical-
ly defined, 0 cannot be estimated numerically (see Lewis, 1983, and Mokken & Lewis, 1982, for the
estimation of a modified person parameter). Because the orderings based on the number-correct true
score T from classical test theory and 0 are identical (Lord, 1980; Mokken, 1971, p. 128), Tmay replace
0 for ordering persons.

The Mokken (1971) model of double monotonicity (~r~) is based on the assumptions of the MH
model as well as the assumption that the IRFS do not intersect. The shape of the ~~~’s is free to vary
within these limits, but IRFs for larger numbers of items are likely to be more parallel than for smaller
numbers. The assumption of nonintersecting IRFs implies that for each measurement value 0, the
ordering of the success probabilities on k items is the same (see Rosenbaum, 1987b). Ties occur if
IRFs touch. An invariant ordering of item difficulties is important, for example, in establishing rules
for beginning and ending subtest sessions in intelligence testing of children (e.g., Bleichrodt, Drenth,
Zaal, & Resing, 1985). An application of the property of invariant item ordering in different groups
is found in item bias research (Hulin, Drasgow, & Parsons, 1983, p. 162). Finally, an invariant item
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ordering is required for the application of a reliability method proposed by Mokken (1971; Sijtsma
& Molenaar, 1987).

In logistic item response theory (IRT) models, the item difficulty 8 is defined as that value of 0
for which the probability of success lies exactly halfway between the lower and upper asymptotes
of the IRF (Hambleton & Swaminathan, 1985, p. 38; Lord, 1980, pp. 12-13). This definition of 8
is not suitable for models that do not have logistic IRFS, such as the DM model. For example, for
two items g and h, let the IRF of g have larger values for all Os. Obviously, item g would be con-
sidered to be the easier item. However, if the minimum success probabilities of g and h were unequal
(e.g., .5 and 0.0, respectively), then within the DM model it is possible to conceive of IRFs such that
using the definition of 8 for logistic mFS 8, > 8,.

Alternatively, with the DM model 8 can be defined as the value of 0 for which the success
probability is the same constant for all items (e.g., Mokken, 1971, p. 174). The property of noninter-
secting IRFS then can be stated as follows: If for two items g and h, 8, > 6~ , then for all Os the con-
ditional probability of a correct response on h is at least as large as on g (Meijer et al., 1990; Mokken,
1971, p. 118). Because the IRFs are not parametrically defined, 8 cannot be estimated numerically.
It can be shown (Mokken, 1971, p. 126), however, that 8 and the proportion of correct responses
on an item g (denoted by 7tg) are reversely ordered. Because 1tg can be estimated consistently and
without bias from empirical data, it can replace 8 to estimate the ordering of items according to
their difficulties.

Mokken (1971) used Loevinger’s (1948) scalability coefficient ~1 as an indicator of measurement
quality for use with the MH model. Specifically, Mokken (1971, p. 150) demonstrated that for k items
having nondecreasing ~~t~’s,

where H = 0 if and only if at least k - 1 mFS are constant functions of 0 (a trivial case of unsuc-
cessful measurement). A non-negative value of H constitutes a necessary condition for the nondecreas-
ingness of IRFs: the assumption is rejected with a negative value of H.

Despite some critical comments on the role of the I~ coefficient in Mokken’s models (e.g., Roskam,
van den Wollenberg, & Jansen, 1986; see Mokken, Lewis, & Sijtsma, 1986, for a critical reply), the
l~ coefficient has proven to be a useful tool for test construction. Examples are provided by Mokken
and Lewis (1982) for quality of sleep, Kingma and TenVergert (1985) for Piagetian conservation tasks,
and Meijer et al. (1990) for verbal analogies.

The previous research using ~1 was concerned with the nondecreasingness of mFS. In the present
study, the ~1 coefficient based on the transposed data matrix f~T was used to investigate whether IRFs
intersect. In particular, it is shown that for k items having nonintersecting IRFS,

where H T = 0 if and only if all IRFs coincide, except for at most one value of 0. Analogously to
Equation 1, non-negative values of HT constitute a necessary condition for nonintersection of mFs
and, therefore, negative values are in conflict with this assumption.

The N~ coefficient fills a gap that exists in the study of whether two or more IRFs intersect. Methods
proposed by IVtokken (1971, pp. 180-182) and Rosenbaum (1987b) are laborious to apply, because
they involve the visual inspection of many orderings. Another deficiency of these methods is that

. the information obtained about intersections is often difficult to combine into one uniform decision
about model fit. The application of HT proposed here reduces these problems.
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Transposition of the Data Matrix: The HT Coefficient

Items are indexed by g and h (g, h = 1, ... , k), and persons are indexed by i and j (i, j = l, ... , I

n). Let 1tg denote the proportion of persons who respond correctly to item g. 7tgh denotes the propor-
tion of persons giving a correct response to both g and h. The covariance between the scores on items
g and h is defined as (3,h = regh - 7tg7th. Assuming that g < h implies 7tg < 7th (7tg and 7th are fixed),
the maximum possible covariance is obtained if ngh = ~g; therefore, a,h(max) = 7ig(l - rc,,). Using
these definitions, Loevinger’s scalability coefficient H can be defined as (based on Mokken & Lewis,
1982; Sijtsma, 1988)

This coefficient also can be written in terms of errors according to the Guttman (1950) scalogram
(see Mokken, 1971, for the exact formula). In Equation 3, the maximum value of H (which is equal
to 1) is obtained if c5,, = G,,(max) for ~~i item pairs; 0 is obtained if the average covariance equals
0; and a negative H value is obtained if the average covariance is negative.

Based on N, Mokken (1971) and Mokken and Lewis (1982) proposed an item scalability coefficient
that only involves the covariances of a particular item with the other k - 1 items. For item g,

[Refer to Mokken (1971) and Mokken and Lewis (1982) for all relevant definitions and proofs, as
well as other results, with respect to H and I~go]

For the application of I~ to the transposed data matrix (items x persons), let P, denote the pro-
portion of items to which person i gives the correct response. If a fixed test of k items is assumed,
then P, is the expectation of the observed proportion of correct responses across independent repeated
measurements (see Lord & Novick, 1968, pp. 30-31, for a similar definition of the true score rather
than the true proportion correct). In the sample, p, is estimated by x;/k, where xi equals the number-
correct score. Let Dij denote the expected proportion of items to which both persons i and j respond
correctly. In the sample, ~1; is estimated by xulk, where x, equals the number of items to which both
persons i and j respond ~&reg;rr~~tlyo ~&dquo; - [3,; - PiDj is the covariance between the scores of persons i

and j on k items. Assuming that i < j implies Pi :5 [3~ (p, and P, are fixed), the maximum possible
covariance is obtained if Pij = y9 therefore, aij(max) = ~3;(1 - ~~)o For a set of n persons, the H co-
efficient, now denoted as HT, is defined as

The corresponding coefficient for a particular person a is defined as

Like H and Ng, HT and Hi can be written in terms of error patterns. For an ability test, an error
in the sense of the Guttman scalogram occurs if the more able person j answers an item, say g, incor-
rectly, and person i (~¡ :5 Oj) answers item g correctly.

Obviously, all results for H and Hg hold by symmetry for ~IT and HI The relation of H’ and HI
to the properties of the IRFs was of particular interest here. It is shown below that non-negative values
of AF and H[ arc necessary conditions for a set of ~c person response functions (PRFS) to be non-
increasing, or equivalently, for a set of k ~~~’s to be nonintersecting. This is a new result in the
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context of the Mokken approach. Cliff (1977) proposed a coefficient, denoted by c,,, that is formally
identical to H’. The definition of cP3 is different from ~IT, however. Also, its relation to the
characteristics of PRFs or ~~~’s was not recognized.

The I~T Coefficient and Nonintersection of IRFs

Assume that given nonintersection of IRFS, for some value of 0 success probabilities n/8) (g = 1,
... , k) are strictly ordered so that

However, nonintersecting IRFS can touch locally; therefore, ni8) = ~t,,(8) for some 8s. IRFS may even
coincide completely so that this equality holds for all Os. It must, therefore, be recognized explicitly
that strict inequality (Equation 7) does not necessarily hold for each person: for some Os, ties may
occur that are expressed by

Equation 8, in the absence of Equation 7, could be misleading because knowing that, for example,
1tg(S¡) = 1th(8¡), does not imply the strict order of these items for other Os.

Given the DM model and the ordering according to Equation 8, Mokken (1971, pp. 118, 126) defined
the ordering of 8 to be exactly the reverse (apart from ties):

Although the DM model allows item discriminations and pseudochance levels to vary, the ordering
of success probabilities in Equation 8 is completely determined by the ordering of the latent item
difficulties in Equation 9. Using P notation, for an arbitrarily selected examinee i, this can be ex-

pressed as

The success probability fl(6) is a nonincreasing function of the item difficulty 5. Note that p(5) can
be interpreted as the PRF (Lumsden, 1978).

All PRF fl(6) that have the same ordering are called similarly ordered functions (see Mokken,
1971, pp. 119-120, for a more general treatment of similarly ordered functions). For similarly ordered
functions, say B¡(ö) and (3;(~), the following definition applies for each pair of function values 8,
and bh o

Next, assume that a test consists of k items, each characterized by some value 8, (g = 1, ..., k).
Õ may be either continuously or discretely distributed. Let P(6) denote the cumulative distribution
function of the item difficulty 8. Note that success probabilities are independent for different per-
sons. Then it can be shown that for two similarly ordered functions in general (Mokken, 1971), and
for Pi(8) and Pj(8) in particular,

Integration across 8 yields Dij 2:: P;~, or in terms of the covariance between persons !’ and j,
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Given nonzero variances for 0 and 8, the maximum covariances in the denominator of ~IT in Equa-
tion 5 are all positive constants; therefore, from Equation 13 it can be deduced that for nonincreasing
PRFS, or equivalently, nonintersecting IRFS, ~IT >_ 0. From this, the following theorem is obtained:

For a set of k items having nonintersecting IRFs (or equivalently, for n persons having nonincreasing
PRFS),

where HI = 0 if and only if at least n - 1 PRFs P(8) are constant over the region of 8 where its
density is not equal to 0.

The necessity and sufficiency of the condition for HT = 0 follow from the general results presented
by Mokken (1971) with respect to similarly ordered functions. Obviously, the theorem also holds for
the person coefficient Hf-
A constant value of p(5) for at least n - 1 Os means that for an arbitrary 0 the success probability

is the same on each of the k items. For different Os, these constant success probabilities need not
be equal. In general, ~3;(~) $ flj(6) for Oi # Oj. The condition for HI = 0 thus says that the IRFs
of k items all have the same shape and the same location; in other words, all k ~~t~s coincide. An
exception may occur for at most one 0 value.

Practical Use of HI

Interpretation of Numerical Values of HI

Roskam et al. (1986) and Mokken et al. (1986) discussed 11 as a function of the interplay of the
distance between the location parameters (item difficulties) of mFS, the slope (discrimination power)
of mFS, and the variance of the person distribution. Given that IRFS are monotonically nondecreas-
ing but are allowed to intersect, it is argued that H is an increasing function of each characteristic,
if the other two are held constant. By symmetry, HT is a function of the interplay of the distance
between PRFS, the slope of the PRFS, and the variance of the item difficulties, 8. How these
characteristics affect HI is studied under the condition that PRFs are monotonically nonincreasing,
but are allowed to intersect. Equivalently, it was thus assumed that IRFS do not intersect, but they
do not necessarily have to be monotonically nondecreasing. Note that if the full DM model (i.e., the
complete set of assumptions) were assumed, this last property also should have been assumed.

Given the condition that PRFs are monotonically nonincreasing but are allowed to intersect, if two
characteristics are held constant HT is an increasing function of the third. For example, keeping the
distance and the slopes of the PRFS fixed, ~IT increases as the variance of 8 increases. If the variance
of 8 is 0, HT is either a positive constant or equal to 0. As an extreme example, imagine a set of
k nonintersecting IRFS that all touch at 0 = 8, = 82 = , ... , < = 8k but nowhere else. In this
theoretical example, covariances between persons with e =1= 8 are positive, implying HT > 0. In

general, for k nonintersecting IRFs that coincide at 8 = ö1 = 82 = , ... , 
= 8k, a positive HI is

obtained if there are at least two Os for which at least two different success probabilities exist (i.e.,
for these 8s not all IRFS coincide). Consequently, at least one positive covariance exists, so that
HT > 0. Only if all IRFs coincide, with the exception of at most one 0 value (see theorem), will all
the person covariances be equal to 0, implying that HT = 0.

For example, for parallel IRFS (e.g., Rasch IRFS), if the variance of 8 is 0, then H~ = 0. In this
situation, a particular person would have the same success probability on the k items of the test.
It would look as if each PRF is a constant function of ö, or equivalently, as if all IRFs coincide. It
is clear that in this case success probabilities cannot be ordered. If the variance of 5 increases, however,
PRFs can be studied along a broader range. In this situation, HT also increases. Thus, there is more
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information available on the nonincreasingness of the PRFS, or equivalently, the nonintersection of
the IRF. As a result, more confidence can be held in the invariant ordering of the k success proba-
bilities for different values of 0.

Thus, a negative ~1~’ indicates a violation of the assumption of nonintersection of IRFS. Larger,
positive I~T values provide more confidence in the invariant ordering of the success probabilities on
k items.

The difference between N and H T is particularly clear in the following situations. First, consider
k coinciding IRFs that are all constant functions of 0. In this situation, l~ _ ~IT = 0. Second, sup-
pose that none of the IRFS coincide, but all are constant functions of 0. This means that I~ = 0,
but H T > 0, and the further the IRFs are apart (the steeper the PRFs are), the larger H T vaill be. Third,
suppose that the IRFs coincide, but all are increasing functions of 0. This means that H T = 0, but
~1 > 0, and the steeper the IRFS are, the larger 1~ will be.

A Practical Lower for I+T

A negative HT value is probably rare in practice. Furthermore, a non-negative H Tdoes not exclude
intersection of IRFS. Analogously, a r~cgativc ~ value for items is rare, and a positive N value does
not exclude that some IRFs are (locally) decreasing. Mokken (1971, p. 184) and Mokken and Lewis
(1982) therefore proposed that a set of items satisfy the following requirements for a suitably selected
constant c:

for all item pairs; and

for all items.
Because H > min(~) (Mokken & Lewis, 1982), the second requirement implies H a c > 0.

Mokken recommended selecting c = .3; this lower bound excludes most violations of the property
of nondecreasingness of ~~~’s. Items violating these requirements are removed from the analysis.

For studying the nonintersection of IRFS, substituting person covariances (Cyij) and person coeffi-
cients (,~IT) in Equations 15 and 16, respectively, would be the incorrect procedure to follow for two
reasons. First, from a practical point of view, the inspection of all person covariances is both laborious
[(~) covariances] and an insecure strategy (each covariance is based on only k observations). Second,
removal of &dquo;outlying&dquo; persons (H5 < c) from the analysis would yield a biased sample with an
artificially high HT estimate.

Therefore, for HT and Hilalternative requirements are proposed that are deduced from a monte
carlo study discussed below:

percentage of negative Nf < b , (18)

where a and b are positive constants. Given such values, it may be expected that if IRFs intersect,
but HT nevertheless has a value of at least ~, several (preferably at least bo7o) H Tcoefficients i will have
negative values, thereby correctly indicating intersection.

Sampling Characteristics of HT

Mokken (1971, pp. 157-169; also see Goodman, 1959) provided the asymptotic sampling theory
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for the null hypotheses that H = 0 and that two or more H coefficients for the same test in different
populations are equal, respectively. Application of this sampling theory to H Twould be problematic
because the sample of items is always very small. A serious discrepancy between the empirical and
the theoretical distribution of HIT probably exists. Further, it would have to be assumed that samples
of k items are randomly drawn from a population of items, which does not seem to be realistic in
most applications. As an alternative, characteristics of the sampling distribution of HT were studied
by means of a monte carlo strategy.

A Monte Carlo Study

Method

Different levels of violation of the property of nonintersecting IRFS were defined by different con-
figurations of a fixed number of IRFs. Note, in particular, that levels of violation do not exist in-
dependently of the characteristics of IRFS, but rather are defined by them. Thus, taking three sets
of equidistant parallel IRFs (no violations) with different spacing across sets as a starting point, one
or more IRFs were replaced by flatter IRFs (to create more intersections). Combined with two levels
of different overall discrimination, a completely crossed design was constructed, each cell represent-
ing a level of violation.

Specifically, data matrices (100 persons x 9 items) containing artificial binary scores were obtained
(for the simulation procedure see Sijtsma & Molenaar, 1987) for two-parameter logistic IRFs and a
standard normal distribution of 8. A 2 x 3 x 5 design was considered: two levels of overall discrimina-
tion (a = 1, 2), three levels of distance between item difficulties [d(8) = 0.0, .2, .5; the 8s were equi-
distant with median 0], and five levels of violation of the property of nonintersecting IRFS (one level
was the case of no violations, the other four pertained to increasing degrees of violation). For each
cell, the following data were computed: (1) the value of H T, averaged over 100 random samples; (2)
the standard deviation (SD) of ~IT, taken across 100 random samples; and (3) the average percentage
of negative H;Tvalues.

Results

As the theoretical considerations predict, an increase in either distance [d(8)1 or discrimination
power (a) resulted in an increasing value of HT (see Table 1). For d(8) > 0, HIT decreased as the
seriousness of the violation of the property of nonintersection of ~~~’s increased. For d(6) = 0 in
Case 1 (no intersection; coinciding IRFS) I~T = 0 (HT = 0 is stipulated by the theorem). For Cases
2 through 5, there were always two subsets of coinciding IRFS that had their cutting point at 8 = 0,
which was in the middle of the symmetric person distribution. As a result, theoretically there were
only two (reverse) partial orderings of success probabilities that are equally represented. This condi-
tion yields H T = 0.

Because FIT is a positively weighted average of H5(I = 1, ..., k) (see Mokken & Lewis, 1982, for
the relationship between H and Hg, g = 1, ... , k), the percentage of negative ~ITvalues tended to
increase as H Tdecreased (Table 1). The SD of IIT was approximately .01 for all cases in which (subsets
of ) IRFs coincided (with or without intersections). For IRF that did not coincide for items [d(8) > 0]
and that either did or did not intersect, the SD varied from approximately .02 to .05.

For cells with d(6) > 0, using n = 200 rather than n = 100 yielded only minor changes in the
mean H T: the largest absolute difference (n = 100) was .017. The SD showed an average decrease of
.01 with the larger n. With test length k = 18 (n = 100), the overall results for HT and the SD remained
similar to those obtained with k = 9. Specifically, the SD ranged from .02 to .03, which is, on the
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Table 1
Mean and Standard Deviation (SD) of ~IT, and Mean Percentage of Negative H’ Values (07o1~;T) for Five

Cases and Items of Varying Discrimination (n = 100, k = 9, and 100 Replications Per Cell)

average, somewhat smaller than for k = 9. Furthermore, the conclusions concerning the percentage
of negative Hr values were not affected by a larger sample size or a longer test.

Discussion and Conclusions

Given these results, tentative values for a and b are proposed: HT 2: .3 and the percentage of

negative Revalues < 10. Thus, if HT a .3 and the percentage of negative ~IT values < 10, it is
assumed for all practical purposes that the IRFs do not intersect. If one or both of these requirements
are not satisfied, it is assumed that the item ordering is different for substantial numbers of persons.
Experience might lead to the conclusion that other values or more complex rules are more appropriate.

The cells in Table 1 for d(6) = .5, a = 2, and Cases 2 through 5, which reflect modest to strong
violations of the property of nonintersection of IRFs illustrate that the proposed bounds do not always
lead to correct decisions about nonintersection of IRFS. Note, however, that using the Mokken ap-
proach for item analysis removes the weakly discriminating items (Hg < .3) from the analysis prior
to investigation of the nonintersection of IRFs. Consequently, in practice, HT is applied to relatively
strongly discriminating item sets.

The following methodology for using .~IT is proposed. First, the more general MH model is

investigated by inspection of the covariances between the items, the H, values, and an additional
method (lVlcijer et al., 1990; Molenaar, 1982, 1983) that is based on the model property that the pro-
portion of correct responses on item g is a nondecreasing function of the &dquo;rest&dquo; score (i.e., the total
score minus the score on item g). Second, given the MH model, nonintersection of IRFs is investigated
by examining the HT coefficient and the percentage of negative lvalues. Given a negative outcome,
visual inspection methods proposed by Mokken (1971; also see Meijer et al., 1990) can be used to
find deviant items. After removing the deviant items, whether HT 2: .3 and the percentage of negative
H;’~values < 10 should again be evaluated.
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